Glueballs, Tetraquarks and Excited Baryons from Dyson-Schwinger Equations Christian S

Total Page:16

File Type:pdf, Size:1020Kb

Glueballs, Tetraquarks and Excited Baryons from Dyson-Schwinger Equations Christian S Glueballs, tetraquarks and excited baryons from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen with Gernot Eichmann, Walter Heupel, Helios Sanchis-Alepuz and Richard Williams Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 1 / 38 Overview 1.Introduction 2.Gluons and glueballs 1 1 − = − 3.Quarks and mesons − 4.Tetraquarks 5.Excited baryons Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 2 / 38 Glueballs Lattice: States in the light and heavy quark energy regions Most calculations quenched Preliminary unquenched results: larger masses Gregory et al., JHEP 1210 (2012) 170 DSE: structural information Morningstar and Peardon, PRD 60 (1999) 034509 Y.~Chen et al., PRD 73 (2006) 014516 Meyers, Swanson, PRD 87 (2013) 3, 036009 Sanchis-Alepuz, CF, Kellermann and von Smekal, PRD 92 (2015) 3, 034001 Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 3 / 38 Tetraquarks in the light meson sector f (980) ⇡⇡,KK¯ 0 ! a (980) ⇡⌘,KK¯ 0 ! Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 4 / 38 Tetraquarks in the light meson sector Light meson sector: Scalars! f (980) ⇡⇡,KK¯ 0 ! a (980) ⇡⌘,KK¯ 0 ! Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 4 / 38 Tetraquarks in the light meson sector Light meson sector: Scalars! f (980) ⇡⇡,KK¯ 0 ! a (980) ⇡⌘,KK¯ 0 ! Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 4 / 38 Tetraquark candidates in charmonium region Internal structure ?? Wolfgang Gradl, BESIII, St Goar 2015 Related to details of underlying QCD forces between quarks Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 5 / 38 Baryons: quark model Text text Text2 text Text3 Loring, Metsch, Petry, EPJA 10 (2001) 395 ‘missing resonances’ ?! parity doubling ?! 1 ± 1 ± level ordering: N vs. Λ 2 2 Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 6 / 38 Explaining the Roper Quark model: p(2S), but generically too large mass e.g. Loring, Metsch, Petry, EPJA 10 (2001) 395 and many others… Hybrid ? Evidence from lattice to the contrary Dudek, Edwards, PRD 85 (2012) 054016 Dynamically generated by coupled channels (no ‘bare’ state) Krehl, Hanhart, Krewald and Speth, PRC C 62 (2000) 025207 Doring, Hanhart, Huang, Krewald and Meissner, NPA 829 (2009) 170 Dynamically modified by coupled channels Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama and Sato, PRL 104 (2010) 042302 ‘bare’ state via DSE/Faddeev (NJL, QCD inspired model) Wilson, Cloet, Chang and Roberts, PRC 85 (2012) 025205, Segovia, El-Bennich, Rojas, Cloet, Roberts, Xu and Zong, PRL 115 (2015) 17 Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 7 / 38 Lattice QCD and the Roper different actions volume effects interpolators large discrepancies ! m2 m ⇡ ⇠ q (Gell-Mann-Oakes-Renner) Liu, Chen, Gong, Sufian, Sun and Li, PoS LATTICE 2013 (2014) 507 Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 8 / 38 Lattice QCD and the Roper different actions volume effects interpolators large discrepancies ! m2 m ⇡ ⇠ q (Gell-Mann-Oakes-Renner) Liu, Chen, Gong, Sufian, Sun and Li, PoS LATTICE 2013 (2014) 507 Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 8 / 38 Bound states and resonances from DSEs, BSEs, FEs Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 9 / 38 Overview 1.Introduction 2.Gluons and glueballs 1 1 − = − 3.Quarks and mesons − 4.Tetraquarks 5.Excited baryons Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 10 / 38 QCD in covariant gauge Quarks, gluons and ghosts 1 = [ , A, c]exp d4x ¯ (iD/ m) (F a )2 ZQCD D − − − 4 µ⌫ Z ( Z ✓ +gauge term + c¯( @D)c) − ) Landau gauge propagators in momentum space, p p Z(p2) DGluon(p) = δ µ ν µν µν − p2 p2 ✓ ◆ Quark 2 2 1 S (p) = Z (p )[ ip/ + M(p )]− f − The Goal: gauge invariant information in a gauge fixed approach. Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 11 / 38 Landau gauge gluon propagator 1 1 2 − = − 1 pµp⌫ Z(p ) − 2 D (p)= δ µ⌫ µ⌫ − p2 p2 ✓ ◆ 1 1 − 2 − 6 + 1 − 2 Sternbeck et. al. (2006) 1 1 1.5 DSE − = − − ) 2 1 Z(p spacelike momenta: good agreement with lattice 0.5 fully dressed gluon is not massless ! 0 0 1 2 3 4 5 recent improvement: 3g-vertex p [GeV] Eichmann, Williams, Alkofer, Vujinovic PRD 89, (2014) 10 CF, Maas, Pawlowski, Annals Phys. 324 (2009) 2408. Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 12 / 38 Landau gauge gluon propagator spectral spectral function: positivity function violations Cornwall, Papavassiliou,... Gluon cannot appear in detector! Strauss, CF, Kellermann, Phys. Rev. Lett. 109, (2012) 252001 Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 13 / 38 Glueballs from DSE/BSEs Mixing of two-gluon amplitudes with ghost-antighost Probes analytical structure of gluons and ghosts Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 14 / 38 Glueballs from DSE/BSEs Mixing of two-gluon amplitudes with ghost-antighost Probes analytical structure of gluons and ghosts Results: M(0++)=1.64 GeV + M(0− )=4.53 GeV ghosts do not contribute ! Sanchis-Alepuz, CF, Kellermann and von Smekal, PRD 92 (2015) 3, 034001 (see also Meyers, Swanson, PRD 87 (2013) 3, 036009) Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 14 / 38 Overview 1.Introduction 2.Gluons and glueballs 1 1 − = − 3.Quarks and mesons − 4.Tetraquarks 5.Excited baryons Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 15 / 38 DSEs and Bethe-Salpeter equation Kernel K uniquely related to quark-DSE via axWTI π, ρ,... →Pion is bound state and Goldstone boson Maris, Roberts, Tandy, PLB 420 (1998) 267 Two strategies: I. use rainbow-ladder model for quark-gluon interaction →ok for many phenomenological applications II. calculate gluon and vertex from their DSEs Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 16 / 38 Strategie I: Model for quark-gluon interaction 2 2 k2 2 7 k η 2 2 α(k )=⇤⇥ e− Λ + αUV (k ) Maris, Roberts,Tandy, PRC 56 (1997), PRC 60 (1999) Λ2 ⇣ ⌘ ✓ ◆ fix ⇤ from fπ; small dependence of many results on ⌘ masses mu=md, m s, m c, from π, Κ, J/ψ Renormalizable and momentum dependent ! Qualitatively similar to results from explicit calculation CF, Maas, Pawlowski, Annals Phys. 324 (2009) 2408. Williams, EPJA 51 (2015) 5, 57. Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 17 / 38 Quark mass: flavor dependence 1 Typical solution: 10 0 ) [GeV] 2 10 -1 10 -2 10 Bottom quark Charm quark -3 10 Strange quark Up/Down quark 1 2 2 Chiral limit [S(p)]− =[ ip/ + M(p )]/Zf (p ) -4 Quark Mass Function: M(p 10 − -2 -1 0 1 2 3 10 10 10 10 10 10 2 2 p [GeV ] 0.4 Lattice: quenched Lattice: unquenched (Nf=2+1) 2 DSE: quenched M(p ): momentum dependent! 0.3 DSE: unquenched (Nf=2) 0.2 Dynamical mass: Mstrong≈350 MeV M(p) [GeV] 0.1 Flavour dependence because of mweak 0.0 0.0 1.0 2.0 3.0 4.0 ¯ 3 p [GeV] Chiral condensate: ΨΨ (250 MeV) CF, Nickel, Williams, EPJ C 60 (2009) 47 h i⇡ Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 18 / 38 Quark mass: flavor dependence 1 Typical solution: 10 0 ) [GeV] 2 10 -1 10 -2 10 Bottom quark NotCharm directly quark measurable ! -3 10 Strange quark Up/Down quark 1 2 2 Chiral limit [S(p)]− =[ ip/ + M(p )]/Zf (p ) -4 Quark Mass Function: M(p 10 − -2 -1 0 1 2 3 10 10 10 10 10 10 2 2 p [GeV ] 0.4 Lattice: quenched Lattice: unquenched (Nf=2+1) 2 DSE: quenched M(p ): momentum dependent! 0.3 DSE: unquenched (Nf=2) 0.2 Dynamical mass: Mstrong≈350 MeV M(p) [GeV] 0.1 Flavour dependence because of mweak 0.0 0.0 1.0 2.0 3.0 4.0 ¯ 3 p [GeV] Chiral condensate: ΨΨ (250 MeV) CF, Nickel, Williams, EPJ C 60 (2009) 47 h i⇡ Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 18 / 38 Rainbow-ladder: heavy meson spectrum DSE/BSE CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015) good channels: 1--,2++, 3 —,…: prediction for tensor state acceptable channels : 0-+,1++,... deficiencies in other channels: ’imbalance’ of spin-structure Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 19 / 38 Rainbow-ladder: heavy meson spectrum DSE/BSE CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015) good channels: 1--,2++, 3 —,…: prediction for tensor state acceptable channels : 0-+,1++,... deficiencies in other channels: ’imbalance’ of spin-structure Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 19 / 38 Rainbow-ladder: heavy meson spectrum DSE/BSE CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015) good channels: 1--,2++, 3 —,…: prediction for tensor state acceptable channels : 0-+,1++,... deficiencies in other channels: ’imbalance’ of spin-structure Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 19 / 38 Overview 1.Introduction 2.Gluons and glueballs 1 1 − = − 3.Quarks and mesons − 4.Tetraquarks 5.Excited baryons Christian Fischer (University of Gießen) Glueballs, tetraquarks and excited baryons from DSEs 20 / 38 Tetraquarks from the four-body interaction Exact equation: + perm. Two-body interactions Three- and four-body interactions Kvinikhidze & Khvedelidze, Theor.
Recommended publications
  • Pos(Lattice 2010)246 Mass? W ∗ Speaker
    Dynamical W mass? PoS(Lattice 2010)246 Bernd A. Berg∗ Department of Physics, Florida State University, Tallahassee, FL 32306, USA As long as a Higgs boson is not observed, the design of alternatives for electroweak symmetry breaking remains of interest. The question addressed here is whether there are possibly dynamical mechanisms, which deconfine SU(2) at zero temperature and generate a massive vector boson triplet. Results for a model with joint local U(2) transformations of SU(2) and U(1) vector fields are presented in a limit, which does not involve any unobserved fields. The XXVIII International Symposium on Lattice Field Theory June 14-19, 2010 Villasimius, Sardinia, Italy ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Dynamical W mass? Bernd A. Berg 1. Introduction In Euclidean field theory notation the action of the electroweak gauge part of the standard model reads Z 1 1 S = d4xLew , Lew = − FemFem − TrFb Fb , (1.1) 4 µν µν 2 µν µν em b Fµν = ∂µ aν − ∂ν aµ , Fµν = ∂µ Bν − ∂ν Bµ + igb Bµ ,Bν , (1.2) 0 PoS(Lattice 2010)246 where aµ are U(1) and Bµ are SU(2) gauge fields. Typical textbook introductions of the standard model emphasize at this point that the theory contains four massless gauge bosons and introduce the Higgs mechanism as a vehicle to modify the theory so that only one gauge boson, the photon, stays massless. Such presentations reflect that the introduction of the Higgs particle in electroweak interactions [1] preceded our non-perturbative understanding of non-Abelian gauge theories.
    [Show full text]
  • Higgs and Particle Production in Nucleus-Nucleus Collisions
    Higgs and Particle Production in Nucleus-Nucleus Collisions Zhe Liu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2016 c 2015 Zhe Liu All Rights Reserved Abstract Higgs and Particle Production in Nucleus-Nucleus Collisions Zhe Liu We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsäcker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsäcker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium.
    [Show full text]
  • Baryon Number Fluctuation and the Quark-Gluon Plasma
    Baryon Number Fluctuation and the Quark-Gluon Plasma Z. W. Lin and C. M. Ko Because of the fractional baryon number Using the generating function at of quarks, baryon and antibaryon number equilibrium, fluctuations in the quark-gluon plasma is less than those in the hadronic matter, making them plausible signatures for the quark-gluon plasma expected to be formed in relativistic heavy ion with g(l) = ∑ Pn = 1 due to normalization of collisions. To illustrate this possibility, we have the multiplicity probability distribution, it is introduced a kinetic model that takes into straightforward to obtain all moments of the account both production and annihilation of equilibrium multiplicity distribution. In terms of quark-antiquark or baryon-antibaryon pairs [1]. the fundamental unit of baryon number bo in the In the case of only baryon-antibaryon matter, the mean baryon number per event is production from and annihilation to two mesons, given by i.e., m1m2 ↔ BB , we have the following master equation for the multiplicity distribution of BB pairs: while the squared baryon number fluctuation per baryon at equilibrium is given by In obtaining the last expressions in Eqs. (5) and In the above, Pn(ϑ) denotes the probability of ϑ 〈σ 〉 (6), we have kept only the leading term in E finding n pairs of BB at time ; G ≡ G v 〈σ 〉 corresponding to the grand canonical limit, and L ≡ L v are the momentum-averaged cross sections for baryon production and E 1, as baryons and antibaryons are abundantly produced in heavy ion collisions at annihilation, respectively; Nk represents the total number of particle species k; and V is the proper RHIC.
    [Show full text]
  • Fully Strange Tetraquark Sss¯S¯ Spectrum and Possible Experimental Evidence
    PHYSICAL REVIEW D 103, 016016 (2021) Fully strange tetraquark sss¯s¯ spectrum and possible experimental evidence † Feng-Xiao Liu ,1,2 Ming-Sheng Liu,1,2 Xian-Hui Zhong,1,2,* and Qiang Zhao3,4,2, 1Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China 2Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 4University of Chinese Academy of Sciences, Beijing 100049, China (Received 21 August 2020; accepted 5 January 2021; published 26 January 2021) In this work, we construct 36 tetraquark configurations for the 1S-, 1P-, and 2S-wave states, and make a prediction of the mass spectrum for the tetraquark sss¯s¯ system in the framework of a nonrelativistic potential quark model without the diquark-antidiquark approximation. The model parameters are well determined by our previous study of the strangeonium spectrum. We find that the resonances f0ð2200Þ and 2340 2218 2378 f2ð Þ may favor the assignments of ground states Tðsss¯s¯Þ0þþ ð Þ and Tðsss¯s¯Þ2þþ ð Þ, respectively, and the newly observed Xð2500Þ at BESIII may be a candidate of the lowest mass 1P-wave 0−þ state − 2481 0þþ 2440 Tðsss¯s¯Þ0 þ ð Þ. Signals for the other ground state Tðsss¯s¯Þ0þþ ð Þ may also have been observed in PC −− the ϕϕ invariant mass spectrum in J=ψ → γϕϕ at BESIII. The masses of the J ¼ 1 Tsss¯s¯ states are predicted to be in the range of ∼2.44–2.99 GeV, which indicates that the ϕð2170Þ resonance may not be a good candidate of the Tsss¯s¯ state.
    [Show full text]
  • Pos(LATTICE2014)106 ∗ [email protected] Speaker
    Flavored tetraquark spectroscopy PoS(LATTICE2014)106 Andrea L. Guerrieri∗ Dipartimento di Fisica and INFN, Università di Roma ’Tor Vergata’ Via della Ricerca Scientifica 1, I-00133 Roma, Italy E-mail: [email protected] Mauro Papinutto, Alessandro Pilloni, Antonio D. Polosa Dipartimento di Fisica and INFN, ’Sapienza’ Università di Roma P.le Aldo Moro 5, I-00185 Roma, Italy Nazario Tantalo CERN, PH-TH, Geneva, Switzerland and Dipartimento di Fisica and INFN, Università di Roma ’Tor Vergata’ Via della Ricerca Scientifica 1, I-00133 Roma, Italy The recent confirmation of the charged charmonium like resonance Z(4430) by the LHCb ex- periment strongly suggests the existence of QCD multi quark bound states. Some preliminary results about hypothetical flavored tetraquark mesons are reported. Such states are particularly amenable to Lattice QCD studies as their interpolating operators do not overlap with those of ordinary hidden-charm mesons. The 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014 Columbia University New York, NY ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Flavored tetraquark spectroscopy Andrea L. Guerrieri 1. Introduction The recent confirmation of the charged resonant state Z(4430) by LHCb [1] strongly suggests the existence of genuine compact tetraquark mesons in the QCD spectrum. Among the many phenomenological models, it seems that only the diquark-antidiquark model in its type-II version can accomodate in a unified description the puzzling spectrum of the exotics [2]. Although diquark- antidiquark model has success in describing the observed exotic spectrum, it also predicts a number of unobserved exotic partners.
    [Show full text]
  • Physics Potential of a High-Luminosity J/Ψ Factory Abstract
    Physics Potential of a High-luminosity J= Factory Andrzej Kupsc,1, ∗ Hai-Bo Li,2, y and Stephen Lars Olsen3, z 1Uppsala University, Box 516, SE-75120 Uppsala, Sweden 2Institute of High Energy Physics, Beijing 100049, People’s Republic of China 3Institute for Basic Science, Daejeon 34126, Republic of Korea Abstract We examine the scientific opportunities offered by a dedicated “J= factory” comprising an e+e− collider equipped with a polarized e− beam and a monochromator that reduces the center-of-mass energy spread of the colliding beams. Such a facility, which would have budget implications that are similar to those of the Fermilab muon program, would produce O(1013) J= events per Snowmass year and support tests of discrete symmetries in hyperon decays and in- vestigations of QCD confinement with unprecedented precision. While the main emphasis of this study is on searches for new sources of CP -violation in hyperon decays with sensitivities that reach the Standard Model expectations, such a facility would additionally provide unique opportunities for sensitive studies of the spectroscopy and decay − properties of glueball and QCD-hybrid mesons. Polarized e beam operation with Ecm just above the 2mτ threshold would support a search for CP violation in τ − ! π−π0ν decays with unique sensitivity. Operation at the 0 peak would enable unique probes of the Dark Sector via invisible decays of the J= and other light mesons. Keywords: Hyperons, CP violation, rare decays, glueball & QCD-hybrid spectroscopy, τ decays ∗Electronic address: [email protected] yElectronic address: [email protected] zElectronic address: [email protected] 1 Introduction In contrast to K-meson and B-meson systems, where CP violations have been extensively investigated, CP violations in hyperon decays have never been observed.
    [Show full text]
  • Glueball Searches Using Electron-Positron Annihilations with BESIII
    FAIRNESS2019 IOP Publishing Journal of Physics: Conference Series 1667 (2020) 012019 doi:10.1088/1742-6596/1667/1/012019 Glueball searches using electron-positron annihilations with BESIII R Kappert and J G Messchendorp, for the BESIII collaboration KVI-CART, University of Groningen, Groningen, The Netherlands E-mail: [email protected] Abstract. Using a BESIII-data sample of 1:31 × 109 J= events collected in 2009 and 2012, the glueball-sensitive decay J= ! γpp¯ is analyzed. In the past, an exciting near-threshold enhancement X(pp¯) showed up. Furthermore, the poorly-understood properties of the ηc resonance, its radiative production, and many other interesting dynamics can be studied via this decay. The high statistics provided by BESIII enables to perform a partial-wave analysis (PWA) of the reaction channel. With a PWA, the spin-parity of the possible intermediate glueball state can be determined unambiguously and more information can be gained about the dynamics of other resonances, such as the ηc. The main background contributions are from final-state radiation and from the J= ! π0(γγ)pp¯ channel. In a follow-up study, we will investigate the possibilities to further suppress the background and to use data-driven methods to control them. 1. Introduction The discovery of the Higgs boson has been a breakthrough in the understanding of the origin of mass. However, this boson only explains 1% of the total mass of baryons. The remaining 99% originates, according to quantum chromodynamics (QCD), from the self-interaction of the gluons. The nature of gluons gives rise to the formation of exotic hadronic matter.
    [Show full text]
  • Physics Letters B 816 (2021) 136227
    Physics Letters B 816 (2021) 136227 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Scalar isoscalar mesons and the scalar glueball from radiative J/ψ decays ∗ A.V. Sarantsev a,b, I. Denisenko c, U. Thoma a, E. Klempt a, a Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Germany b NRC “Kurchatov Institute”, PNPI, Gatchina 188300, Russia c Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia a r t i c l e i n f o a b s t r a c t ¯ Article history: A coupled-channel analysis of BESIII data on radiative J/ψ decays into ππ, K K , ηη and ωφ has been Received 12 January 2021 performed. The partial-wave amplitude is constrained by a large number of further data. The analysis Received in revised form 16 March 2021 finds ten isoscalar scalar mesons. Their masses, widths and decay modes are determined. The scalar Accepted 16 March 2021 mesons are interpreted as mainly SU(3)-singlet and mainly octet states. Octet isoscalar scalar states Available online xxxx are observed with significant yields only in the 1500-2100 MeV mass region. Singlet scalar mesons are Editor: M. Doser produced over a wide mass range but their yield peaks in the same mass region. The peak is interpreted = ± +10 = ± +30 as scalar glueball. Its mass and width are determined to M 1865 25−30 MeV and 370 50−20 MeV, − its yield in radiative J/ψ decays to (5.8 ± 1.0) 10 3. © 2021 The Author(s).
    [Show full text]
  • Snowmass 2021 Letter of Interest: Hadron Spectroscopy at Belle II
    Snowmass 2021 Letter of Interest: Hadron Spectroscopy at Belle II on behalf of the U.S. Belle II Collaboration D. M. Asner1, Sw. Banerjee2, J. V. Bennett3, G. Bonvicini4, R. A. Briere5, T. E. Browder6, D. N. Brown2, C. Chen7, D. Cinabro4, J. Cochran7, L. M. Cremaldi3, A. Di Canto1, K. Flood6, B. G. Fulsom8, R. Godang9, W. W. Jacobs10, D. E. Jaffe1, K. Kinoshita11, R. Kroeger3, R. Kulasiri12, P. J. Laycock1, K. A. Nishimura6, T. K. Pedlar13, L. E. Piilonen14, S. Prell7, C. Rosenfeld15, D. A. Sanders3, V. Savinov16, A. J. Schwartz11, J. Strube8, D. J. Summers3, S. E. Vahsen6, G. S. Varner6, A. Vossen17, L. Wood8, and J. Yelton18 1Brookhaven National Laboratory, Upton, New York 11973 2University of Louisville, Louisville, Kentucky 40292 3University of Mississippi, University, Mississippi 38677 4Wayne State University, Detroit, Michigan 48202 5Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 6University of Hawaii, Honolulu, Hawaii 96822 7Iowa State University, Ames, Iowa 50011 8Pacific Northwest National Laboratory, Richland, Washington 99352 9University of South Alabama, Mobile, Alabama 36688 10Indiana University, Bloomington, Indiana 47408 11University of Cincinnati, Cincinnati, Ohio 45221 12Kennesaw State University, Kennesaw, Georgia 30144 13Luther College, Decorah, Iowa 52101 14Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 15University of South Carolina, Columbia, South Carolina 29208 16University of Pittsburgh, Pittsburgh, Pennsylvania 15260 17Duke University, Durham, North Carolina 27708 18University of Florida, Gainesville, Florida 32611 Corresponding Author: B. G. Fulsom (Pacific Northwest National Laboratory), [email protected] Thematic Area(s): (RF07) Hadron Spectroscopy 1 Abstract: The Belle II experiment at the SuperKEKB energy-asymmetric e+e− collider is a substantial upgrade of the B factory facility at KEK in Tsukuba, Japan.
    [Show full text]
  • New Physics of Strong Interaction and Dark Universe
    universe Review New Physics of Strong Interaction and Dark Universe Vitaly Beylin 1 , Maxim Khlopov 1,2,3,* , Vladimir Kuksa 1 and Nikolay Volchanskiy 1,4 1 Institute of Physics, Southern Federal University, Stachki 194, 344090 Rostov on Don, Russia; [email protected] (V.B.); [email protected] (V.K.); [email protected] (N.V.) 2 CNRS, Astroparticule et Cosmologie, Université de Paris, F-75013 Paris, France 3 National Research Nuclear University “MEPHI” (Moscow State Engineering Physics Institute), 31 Kashirskoe Chaussee, 115409 Moscow, Russia 4 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia * Correspondence: [email protected]; Tel.:+33-676380567 Received: 18 September 2020; Accepted: 21 October 2020; Published: 26 October 2020 Abstract: The history of dark universe physics can be traced from processes in the very early universe to the modern dominance of dark matter and energy. Here, we review the possible nontrivial role of strong interactions in cosmological effects of new physics. In the case of ordinary QCD interaction, the existence of new stable colored particles such as new stable quarks leads to new exotic forms of matter, some of which can be candidates for dark matter. New QCD-like strong interactions lead to new stable composite candidates bound by QCD-like confinement. We put special emphasis on the effects of interaction between new stable hadrons and ordinary matter, formation of anomalous forms of cosmic rays and exotic forms of matter, like stable fractionally charged particles. The possible correlation of these effects with high energy neutrino and cosmic ray signatures opens the way to study new physics of strong interactions by its indirect multi-messenger astrophysical probes.
    [Show full text]
  • The Experimental Status of Glueballs Arxiv:0812.0600V3 [Hep-Ex]
    The Experimental Status of Glueballs V. Crede 1 and C. A. Meyer 2 1 Florida State University, Tallahassee, FL 32306 USA 2 Carnegie Mellon University, Pittsburgh, PA 15213 USA October 22, 2018 Abstract Glueballs and other resonances with large gluonic components are predicted as bound states by Quantum Chromodynamics (QCD). The lightest (scalar) glueball is estimated to have a mass in the range from 1 to 2 GeV/c2; a pseudoscalar and tensor glueball are expected at higher masses. Many different experiments exploiting a large variety of production mechanisms have presented results in recent years on light mesons with J PC = 0++, 0−+, and 2++ quantum numbers. This review looks at the experimental status of glueballs. Good evidence exists for a scalar glueball which is mixed with nearby mesons, but a full understanding is still missing. Evidence for tensor and pseudoscalar glueballs are weak at best. Theoretical expectations of phenomenological models and QCD on the lattice are briefly discussed. arXiv:0812.0600v3 [hep-ex] 2 Mar 2009 1 Contents 1 Introduction 3 2 Meson Spectroscopy 3 3 Theoretical Expectations for Glueballs 6 3.1 Historical ...........................................6 3.2 Model Calculations ......................................8 3.3 Lattice Calculations ......................................9 4 Experimental Methods and Major Experiments 11 4.1 Proton-Antiproton Annihilation ............................... 11 4.2 e+e− Annihilation Experiments and Radiative Decays of Quarkonia ........... 14 4.3 Central Production ...................................... 15 4.4 Two-Photon Fusion at e+e− Colliders ........................... 18 4.5 Other Experiments ...................................... 19 5 The Known Mesons 20 5.1 The Scalar, Pseudoscalar and Tensor Mesons ....................... 20 5.2 Results from pp¯ Annihilation: The Crystal Barrel Experiment .............
    [Show full text]
  • Arxiv:0810.4453V1 [Hep-Ph] 24 Oct 2008
    The Physics of Glueballs Vincent Mathieu Groupe de Physique Nucl´eaire Th´eorique, Universit´e de Mons-Hainaut, Acad´emie universitaire Wallonie-Bruxelles, Place du Parc 20, BE-7000 Mons, Belgium. [email protected] Nikolai Kochelev Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia. [email protected] Vicente Vento Departament de F´ısica Te`orica and Institut de F´ısica Corpuscular, Universitat de Val`encia-CSIC, E-46100 Burjassot (Valencia), Spain. [email protected] Glueballs are particles whose valence degrees of freedom are gluons and therefore in their descrip- tion the gauge field plays a dominant role. We review recent results in the physics of glueballs with the aim set on phenomenology and discuss the possibility of finding them in conventional hadronic experiments and in the Quark Gluon Plasma. In order to describe their properties we resort to a va- riety of theoretical treatments which include, lattice QCD, constituent models, AdS/QCD methods, and QCD sum rules. The review is supposed to be an informed guide to the literature. Therefore, we do not discuss in detail technical developments but refer the reader to the appropriate references. I. INTRODUCTION Quantum Chromodynamics (QCD) is the theory of the hadronic interactions. It is an elegant theory whose full non perturbative solution has escaped our knowledge since its formulation more than 30 years ago.[1] The theory is asymptotically free[2, 3] and confining.[4] A particularly good test of our understanding of the nonperturbative aspects of QCD is to study particles where the gauge field plays a more important dynamical role than in the standard hadrons.
    [Show full text]