A Review on Liquid Chromatography-Tandem Mass Spectrometry Methods for Rapid Quantification of Oncology Drugs

Total Page:16

File Type:pdf, Size:1020Kb

A Review on Liquid Chromatography-Tandem Mass Spectrometry Methods for Rapid Quantification of Oncology Drugs pharmaceutics Review A Review on Liquid Chromatography-Tandem Mass Spectrometry Methods for Rapid Quantification of Oncology Drugs Andrea Li-Ann Wong 1,2,†, Xiaoqiang Xiang 3,†, Pei Shi Ong 4, Ee Qin Ying Mitchell 4, Nicholas Syn 1,2, Ian Wee 1,2, Alan Prem Kumar 1,5 , Wei Peng Yong 1,2, Gautam Sethi 5, Boon Cher Goh 1,2,5,*, Paul Chi-Lui Ho 4,* and Lingzhi Wang 1,5,* 1 Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; [email protected] (A.L.-A.W.); [email protected] (N.S.); [email protected] (I.W.); [email protected] (A.P.K.); [email protected] (W.P.Y.) 2 Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore 3 School of Pharmacy, Fudan University, Shanghai 201203, China; [email protected] 4 Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; [email protected] (P.S.O.); [email protected] (E.Q.Y.M.) 5 Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; [email protected] * Correspondence: [email protected] (B.C.G.); [email protected] (P.C.-L.H.); [email protected] (L.W.); Tel.: +65-6772-4140 (B.C.G.); +65-6516-2651 (P.C.-L.H.); +65-6516-8925 (L.W.); Fax: +65-68739664 (B.C.G. & L.W.); +65-6777-5545 (P.C.-L.H.) † Equal contribution. Received: 15 October 2018; Accepted: 5 November 2018; Published: 8 November 2018 Abstract: In the last decade, the tremendous improvement in the sensitivity and also affordability of liquid chromatography-tandem mass spectrometry (LC-MS/MS) has revolutionized its application in pharmaceutical analysis, resulting in widespread employment of LC-MS/MS in determining pharmaceutical compounds, including anticancer drugs in pharmaceutical research and also industries. Currently, LC-MS/MS has been widely used to quantify small molecule oncology drugs in various biological matrices to support preclinical and clinical pharmacokinetic studies in R&D of oncology drugs. This mini-review article will describe the state-of-the-art LC-MS/MS and its application in rapid quantification of small molecule anticancer drugs. In addition, efforts have also been made in this review to address several key aspects in the development of rapid LC-MS/MS methods, including sample preparation, chromatographic separation, and matrix effect evaluation. Keywords: LC-MS/MS; rapid; quantification; oncology drugs 1. Introduction Cancer has a major impact on global health as it is the second leading cause of death. According to the World Cancer Report 2014, the number of new cancer cases is expected to rise by about 70% over the next two decades [1]. This is due to the rapidly ageing population, unhealthy lifestyles, and environmental pollutants, which could consist of carcinogens that can be present in the air, water, and soil, as well as in food as additives or contaminants. Early diagnosis of cancer allows timely treatment of the disease. Unfortunately, the early detection of cancer is still in its infancy as the progress in developing improved early diagnostics and screening tests has been inadequate. For instance, close to 70% of patients with lung cancer present with locally advanced or metastatic disease at the time of diagnosis. Therefore, surgical resection, the single most consistent and successful Pharmaceutics 2018, 10, 221; doi:10.3390/pharmaceutics10040221 www.mdpi.com/journal/pharmaceutics Pharmaceutics 2018, 10, x 2 of 19 Pharmaceutics 2018, 10, 221 2 of 20 disease at the time of diagnosis. Therefore, surgical resection, the single most consistent and successful option for cure, cannot be performed [2]. This thereby makes chemotherapy an important treatmentoption for cure,option cannot against be performedcancer. Anticancer [2]. This therebydrugs makesare characterized chemotherapy by ana importantnarrow therapeutic treatment window.option against Hence, cancer. it is important Anticancer to drugs understand are characterized and manage by a the narrow inter-individual therapeutic window. variability Hence, of drug it is exposureimportant through to understand genotyping/phenotyping and manage the inter-individualand therapeutic drug variability monitoring of drug (TDM) exposure of anticancer through drugsgenotyping/phenotyping in the clinical setting. and therapeutic In the pharmaceutical drug monitoring industry, (TDM) ofthe anticancer current drugschallenges in the clinicalin the developmentsetting. In the of pharmaceuticalanticancer drugs industry, include thethe currentsignificant challenges time and in cost the required development for the of preclinical anticancer anddrugs clinical include testing the significant of the new time chemical and cost entities required (NCEs), for the and preclinical the low and success clinical rates. testing To ofovercome the new thesechemical obstacles, entities the (NCEs), pharmaceutical and the low industry success has rates. been To increasing overcome theseits effort obstacles, to improve the pharmaceutical the efficiency inindustry the processes has been of drug increasing discovery its effort and development. to improve the This efficiency is in line in with the processesthe objective of drugof reducing discovery the attritionand development. rate of NCEs This at is later in line stages with of the the objective anticancer ofreducing drug development the attrition pipeline, rate of NCEsespecially at later in clinicalstages of trials the anticanceras by that stage drug developmenta large portion pipeline, of the cost especially of developing in clinical an trialsoncology as by drug that stagewould a largehave beenportion incurred. of the cost According of developing to a review an oncology article, drug two would major haveunderlying been incurred. reasons According accounting to for a review drug attritionarticle, two were major identified underlying [3]. reasonsThe first accounting one is due for to drug poor attrition efficacy, were which identified can be [3 ].overcome The first oneby developingis due to poor more efficacy, predictive which animal can be overcomemodels in by the developing preclinical more phase. predictive The second animal crucial models factor in the is owingpreclinical to poor phase. pharmacokinetics The second crucial (PK). factor To overcome is owing tothe poor latter pharmacokinetics hurdle, a high throughput (PK). To overcome preclinical the screeninglatter hurdle, PK aapproach high throughput should be preclinical developed screening and vali PKdated. approach However, should the be success developed of PK and analysis validated. is highlyHowever, dependent the success on the of PKavailability analysis of is rapid highly and dependent sensitiveon bioanalytical the availability assays of for rapid quantification and sensitive of drugsbioanalytical in biological assays samples. for quantification Therefore, of drugsrapid inand biological sensitive samples. quantification Therefore, of anticancer rapid and sensitivedrugs in variousquantification biological of anticancer matrices drugsis urgently in various needed biological to discover matrices novel is urgently and effective needed chemotherapeutic to discover novel agentsand effective against chemotherapeutic various cancers. Liquid agents againstchromatography-tandem various cancers. Liquidmass spectrometry chromatography-tandem (LC-MS/MS) offersmass spectrometrysuperior specificity (LC-MS/MS) and offerssensitivity superior for specificitycompounds and without sensitivity natural for compounds chromophores without or fluorophores.natural chromophores Hence, this or fluorophores. highly sensitive Hence, and this specific highly sensitiveplatform andhas specificbeen widely platform applied has been in widelyinvestigating applied pharmacokinetic in investigating pharmacokineticproperties of novel properties anticancer of novel drugs anticancer in their drugs R&D in in their preclinical R&D in studiespreclinical as well studies as asin wellclinical as intrials. clinical The trials. workflow The workflow of LC-MS/MS of LC-MS/MS proposed proposed for bioanalytical for bioanalytical method developmentmethod development is shown is shownin Figure in Figure 1. The1. Thesuccess success for fordeveloping developing rapid rapid and and sensitive sensitive analyticalanalytical methods isis dependentdependent on on appropriate appropriate sample sample preparation, preparation, fast chromatographicfast chromatographic separation separation to achieve to achievesymmetrical symmetrical peaks, and peaks, efficient and efficient ionization. ionization. The purpose of of this this review review is is to to summarize summarize the the rapid rapid LC-MS/MS LC-MS/MS methods methods for for quantification quantification of oncologyof oncology drugs drugs or orpotential potential anticancer anticancer compounds compounds published published in in PubMed PubMed and and Web Web of of Science databases. In In addition, addition, important important considerations considerations regarding regarding several several crucial crucial aspects in developing rapid LC-MS/MS methods, methods, such such as as sample sample preparation, chromatographic separation, matrix effect evaluation, and internal standard selection will be discussed. Figure 1.1.Pipeline Pipeline for conductingfor conducting bioanalysis bioanalysis using liquid using chromatography-tandem liquid chromatography-tandem mass spectrometry. mass 2. Methodspectrometry. of Literature Search 2. MethodThe literature of Literature search Search was conducted using the PubMed
Recommended publications
  • Raman Spectroscopic Characterization and Analysis of Agricultural and Biological Systems Qi Wang Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Raman spectroscopic characterization and analysis of agricultural and biological systems Qi Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, Biomedical Commons, Bioresource and Agricultural Engineering Commons, and the Biostatistics Commons Recommended Citation Wang, Qi, "Raman spectroscopic characterization and analysis of agricultural and biological systems" (2013). Graduate Theses and Dissertations. 13019. https://lib.dr.iastate.edu/etd/13019 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Raman spectroscopic characterization and analysis of agricultural and biological systems by Qi Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Agricultural Engineering Program of Study Committee: Chenxu Yu, Major Professor Jacek Adam Koziel Kenneth J Koehler Lie Tang Sinisa Grozdanic Iowa State University Ames, Iowa 2013 Copyright © Qi Wang, 2013. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES………………………………………………………………………………...…..v LIST OF TABLES.................................................................................................................................vi
    [Show full text]
  • Analytical Chemistry in the 21St Century: Challenges, Solutions, and Future Perspectives of Complex Matrices Quantitative Analyses in Biological/Clinical Field
    Review Analytical Chemistry in the 21st Century: Challenges, Solutions, and Future Perspectives of Complex Matrices Quantitative Analyses in Biological/Clinical Field 1, 2, 2, 3 Giuseppe Maria Merone y, Angela Tartaglia y, Marcello Locatelli * , Cristian D’Ovidio , Enrica Rosato 3, Ugo de Grazia 4 , Francesco Santavenere 5, Sandra Rossi 5 and Fabio Savini 5 1 Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; [email protected] 2 Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via Dei Vestini 31, 66100 Chieti (CH), Italy; [email protected] 3 Section of Legal Medicine, Department of Medicine and Aging Sciences, University of Chieti–Pescara “G. d’Annunzio”, 66100 Chieti, Italy; [email protected] (C.D.); [email protected] (E.R.) 4 Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy; [email protected] 5 Pharmatoxicology Laboratory—Hospital “Santo Spirito”, Via Fonte Romana 8, 65124 Pescara, Italy; [email protected] (F.S.); [email protected] (S.R.); [email protected] (F.S.) * Correspondence: [email protected]; Tel.: +39-0871-3554590; Fax: +39-0871-3554911 These authors contributed equally to the work. y Received: 16 September 2020; Accepted: 16 October 2020; Published: 30 October 2020 Abstract: Nowadays, the challenges in analytical chemistry, and mostly in quantitative analysis, include the development and validation of new materials, strategies and procedures to meet the growing need for rapid, sensitive, selective and green methods.
    [Show full text]
  • (LC-MS/MS) Method for the Determination of NDMA in Ranitidine Drug Substance and Solid Dosage Drug Product
    10/17/2019 Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Method for the Determination of NDMA in Ranitidine Drug Substance and Solid Dosage Drug Product Background: Ranitidine is a prescription and over-the-counter drug used to treat acid reflux. The drug is a histamine-2 receptor antagonist (acid inhibitor or H2 blocker). Some of the common H2 receptor blockers include: Ranitidine (Zantac), Nizatidine (Axid), Famotidine (Pepcid, Pepcid AC) and Cimetidine (Tagamet, Tagamet HB). Ranitidine medicine was suspected of being contaminated with N-nitroso-di-methylamine (NDMA), a probable human carcinogen, following notification in June 2019. Accordingly, a liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was developed and validated by the Agency to determine the level of NDMA in ranitidine drug products and drug substances. This method is a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of NDMA in ranitidine drug substance and drug product. This LC-MS method based on a QQQ platform may be used as an alternative or confirmatory method for the liquid chromatography high resolution mass spectrometry (LC-HRMS) method detailed in FY19-177- DPA-S. The QQQ platform is more widely available than the LC-HRMS platform previously shared by the agency. Conclusions: An LC-MS/MS method was developed and validated following ICH Q2 (R1) for the detection and quantitation of NDMA in Ranitidine drug substance and drug product. The limit of detection (LOD), limit of quantitation (LOQ) and range of the method are summarized below: NDMA LOD (ng/mL) 0.3 (ppm) 0.01 LOQ (ng/mL) 1.0 (ppm) 0.033 Range (ng/mL) 1.0 - 100 (ppm) 0.033 – 3.33 Page 1 of 7 10/17/2019 LC-MS/MS Method for the Determination of NDMA impurity in Ranitidine Drug Substance or Solid Dosage Drug Product Purpose This method is used to quantitate N-nitroso-di-methylamine (NDMA) impurity in ranitidine drug substance or solid dosage drug product.
    [Show full text]
  • Laser-Induced Dissociation of Phosphorylated Peptides Using
    09_Cotter 10/19/07 7:57 AM Page 133 Clinical Proteomics Copyright © 2006 Humana Press Inc. All rights of any nature whatsoever are reserved. ISSN 1542-6416/06/02:133–144/$30.00 (Online) Original Article Laser-Induced Dissociation of Phosphorylated Peptides Using Matrix Assisted Laser Desorption/Ionization Tandem Time-of-Flight Mass Spectrometry Dongxia Wang,1 Philip A. Cole,2 and Robert J. Cotter2,* 1Biotechnology Core Facility, National Center for Infectious Disease, Center for Disease Control and Prevention, Atlanta, GA; 2Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD site or concensus sequence is present in a given Abstract tryptic peptide. Here, we investigated the frag- Reversible phosphorylation is one of the mentation of phosphorylated peptides under most important posttranslational modifications laser-induced dissociation (LID) using a of cellular proteins. Mass spectrometry is a MALDI-time-of-flight mass spectrometer with a widely used technique in the characterization of curved-field reflectron. Our data demonstrated phosphorylated proteins and peptides. Similar that intact fragments bearing phosphorylated to nonmodified peptides, sequence information residues were produced from all tested peptides for phosphopeptides digested from proteins can that contain at least one and up to four be obtained by tandem mass analysis using phosphorylation sites at serine, threonine, or either electrospray ionization or matrix assisted tyrosine residues. In addition, the LID of laser desorption/ionization (MALDI) mass phosphopeptides derivatized by N-terminal spectrometry. However, the facile loss of neutral sulfonation yields simplified MS/MS spectra, phosphoric acid (H3PO4) or HPO3 from precur- suggesting the combination of these two types sor ions and fragment ions hampers the precise of spectra could provide an effective approach determination of phosphorylation site, particu- to the characterization of proteins modified by larly if more than one potential phosphorylation phosphorylation.
    [Show full text]
  • An Organic Chemist's Guide to Electrospray Mass Spectrometric
    molecules Review An Organic Chemist’s Guide to Electrospray Mass Spectrometric Structure Elucidation Arnold Steckel 1 and Gitta Schlosser 2,* 1 Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; [email protected] 2 Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary * Correspondence: [email protected] Received: 16 January 2019; Accepted: 8 February 2019; Published: 10 February 2019 Abstract: Tandem mass spectrometry is an important tool for structure elucidation of natural and synthetic organic products. Fragmentation of odd electron ions (OE+) generated by electron ionization (EI) was extensively studied in the last few decades, however there are only a few systematic reviews available concerning the fragmentation of even-electron ions (EE+/EE−) produced by the currently most common ionization techniques, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). This review summarizes the most important features of tandem mass spectra generated by collision-induced dissociation fragmentation and presents didactic examples for the unexperienced users. Keywords: tandem mass spectrometry; MS/MS fragmentation; collision-induced dissociation; CID; ESI; structure elucidation 1. Introduction Electron ionization (EI), a hard ionization technique, is the method of choice for analyses of small (<1000 Da), nonpolar, volatile compounds. As its name implies, the technique involves ionization by electrons with ~70 eV energy. This energy is high enough to yield very reproducible mass spectra with a large number of fragments. However, these spectra frequently lack the radical type molecular ions (M+) due to the high internal energy transferred to the precursors [1].
    [Show full text]
  • Surface-Enhanced Raman Spectroscopy for Bioanalysis and Diagnosis
    Showcasing the Surface-enhanced Raman Spectroscopy (SERS) technique for Bioanalysis and Diagnosis As featured in: applications by a group of researchers led by Prof Liwu Volume 13 Number 27 21 July 2021 Zhang from Fudan University and Prof Ventsislav Valev Pages 11581-12046 from the University of Bath. Nanoscale rsc.li/nanoscale Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis SERS is an eff ective analytical technique that has excellent potential in bioanalysis and diagnosis as demonstrated by its increasing applications in vivo . SERS fi nds a broad range of applications with clinical relevance, such as biological ISSN 2040-3372 PAPER Shifeng Zhao et al. The sign reversal of anomalous Hall eff ect derived from the transformation of scattering eff ect in cluster-assembled sensing, drug delivery, single cell assays, early stage cancer Ni 0.8 Fe 0.2 nanostructural fi lms screening and fast detection of pathogens. We present a comprehensive survey of SERS-based assays, from basic See Nicoleta E. Dina , Ventsislav K. considerations to bioanalytical applications. Valev, Liwu Zhang et al. , Nanoscale , 2021, 13 , 11593. rsc.li/nanoscale Registered charity number: 207890 Nanoscale View Article Online REVIEW View Journal | View Issue Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis Cite this: Nanoscale, 2021, 13, 11593 Muhammad Ali Tahir,†a Nicoleta E. Dina, *†b Hanyun Cheng,a Ventsislav K. Valev *c and Liwu Zhang *a,d In recent years, bioanalytical surface-enhanced Raman spectroscopy (SERS) has blossomed into a fast- growing research area. Owing to its high sensitivity and outstanding multiplexing ability, SERS is an effective analytical technique that has excellent potential in bioanalysis and diagnosis, as demonstrated by its increasing applications in vivo.
    [Show full text]
  • Rapid Liquid Chromatography–Tandem Mass Spectrometry-Based Method
    Rapid liquid chromatography-tandem mass spectrometry- based method for the analysis of alcohol ethoxylates and alkylphenol ethoxylates in environmental samples Authors: Patrick D. DeArmond1* and Amanda L. DiGoregorio2 1United States Environmental Protection Agency, Office of Research and Development, National Exposure Laboratory, Environmental Sciences Division, 944 E. Harmon Ave., Las Vegas, NV 89119 2Student Services Contractor, United States Environmental Protection Agency, 944 E. Harmon Ave., Las Vegas, NV 89119 *Correspondence. Email address: [email protected] (B. Schumacher) Accepted for publication in the Journal of Chromatography A. in July 2013. Final version published as: DeArmond P.D., DiGoregorio A.L. Rapid liquid chromatography-tandem mass spectrometry-based method for the analysis of alcohol ethoxylates and alkylphenol ethoxylates in environmental samples. Journal of Chromatography A, Aug 30; 1305: 154-63 (2013). Abstract A sensitive and selective method for the determination of alcohol ethoxylates (AEOs) and alkylphenol ethoxylates (APEOs) using solid-phase extraction (SPE) and LC-MS/MS was developed and applied to the analysis of water samples. All AEO and APEO homologues, a total of 152 analytes, were analyzed within a run time of 11 min, and the MS allowed for the detection of ethoxymers containing 2- 20 ethoxy units (nEO = 2-20). The limits of detection (LOD) were as low as 0.1 pg injected, which generally increased as nEO increased. Additionally, the responses of the various ethoxymers varied by orders of magnitude, with ethoxymers with nEO = 3-5 being the most sensitive and those with nEO > 15 producing the least response in the MS. Absolute extraction recoveries of the analytes ranged from 37% to 69%, with the recovery depending on the length of the alkyl chain.
    [Show full text]
  • Gas Chromatography-High Resolution Tandem Mass Spectrometry Using
    Chemistry Publications Chemistry 2012 Gas Chromatography-High Resolution Tandem Mass Spectrometry Using a GC-APPI-LIT Orbitrap for Complex Volatile Compounds Analysis Young Jin Lee Iowa State University, [email protected] Erica A. Smith Iowa State University Ji Hyun Jun Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs Part of the Analytical Chemistry Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/897. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Gas Chromatography-High Resolution Tandem Mass Spectrometry Using a GC-APPI-LIT Orbitrap for Complex Volatile Compounds Analysis Abstract A new approach of volatile compounds analysis is proposed using a linear ion trap Orbitrap mass spectrometer coupled with gas chromatography through an atmospheric pressure photoionization interface. In the proposed GC-HRMS/MS approach, direct chemical composition analysis is made for the precursor ions in high resolution MS spectra and the structural identifications were made through the database search of high quality MS/MS spectra. Successful analysis of a complex perfume sample was demonstrated and compared with GC-EI-Q and GC-EI-TOF. The current approach is complementary to conventional GC-EI- MS analysis and can identify low abundance co-eluting compounds.
    [Show full text]
  • Utilizing a Hybrid Mass Spectrometer to Enable Fundamental Protein Characterization: Intact Mass Analysis and Top-Down Fragmentation with the LTQ Orbitrap MS
    Application Note: 498 Utilizing a Hybrid Mass Spectrometer to Enable Fundamental Protein Characterization: Intact Mass Analysis and Top-Down Fragmentation with the LTQ Orbitrap MS Tonya Pekar Second, Vlad Zabrouskov, Thermo Fisher Scientific, San Jose, CA, USA Alexander Makarov, Thermo Fisher Scientific, Bremen, Germany Introduction Experimental Key Words A fundamental stage in protein characterization is to Protein standards, including bovine carbonic anhydrase, • LTQ Orbitrap Velos determine and verify the intact state of the macromolecule. yeast enolase, bovine transferrin and human monoclonal This is often accomplished through the use of mass IgG, were purchased from Sigma-Aldrich. For direct • LTQ Orbitrap XL spectrometry (MS) to first detect and measure the molecular infusion, proteins in solution were purified by either a • Applied mass. Beyond confirmation of intact mass, the next objective Thermo Scientific Vivaspin centrifugal spin column or a Fragmentation is the verification of its primary structure, the amino acid size-exclusion column (GE Healthcare), employing at least Techniques sequence of the protein. Traditionally, a map of the two rounds of buffer exchange into 10 mM ammonium macromolecule is reconstructed from matching masses of acetate. Protein solutions were at a concentration of least • Electron Transfer peptide fragments produced through external enzymatic 1 mg/mL prior to clean-up. Samples were diluted into Dissociation ETD digestion of the protein to masses calculated from an in 50:50:0.1 acetonitrile:water:formic acid prior to infusion silico • Top-Down digest of the target protein sequence. A more direct into the mass spectrometer. Instrument parameters were approach involves top-down MS/MS of the intact protein altered during infusion of protein solutions to optimize the Proteomics molecular ion.
    [Show full text]
  • Drug Metabolism, Pharmacokinetics and Bioanalysis
    Drug Metabolism, Pharmacokinetics and Bioanalysis Edited by Hye Suk Lee and Kwang-Hyeon Liu Printed Edition of the Special Issue Published in Pharmaceutics www.mdpi.com/journal/pharmaceutics Drug Metabolism, Pharmacokinetics and Bioanalysis Drug Metabolism, Pharmacokinetics and Bioanalysis Special Issue Editors Hye Suk Lee Kwang-Hyeon Liu MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Hye Suk Lee Kwang-Hyeon Liu The Catholic University of Korea Kyungpook National University Korea Korea Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Pharmaceutics (ISSN 1999-4923) in 2018 (available at: https://www.mdpi.com/journal/ pharmaceutics/special issues/dmpk and bioanalysis) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-916-6 (Pbk) ISBN 978-3-03897-917-3 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... vii Preface to ”Drug Metabolism, Pharmacokinetics and Bioanalysis” ................. ix Fakhrossadat Emami, Alireza Vatanara, Eun Ji Park and Dong Hee Na Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals Reprinted from: Pharmaceutics 2018, 10, 131, doi:10.3390/pharmaceutics10030131 ........
    [Show full text]
  • Bioanalysis Zone
    Powered by Bioanalysis TOP ARTICLE SUPPLEMENT CONTENTS REVIEW: Immunogenicity and PK/PD evaluation in biotherapeutic drug development: scientific considerations for bioanalytical methods and data analysis Bioanalysis Vol. 6 Issue 1 RESEARCH ARTICLE: An ultrasensitive method for the quantitation of active and inactive GLP-1 in human plasma via immunoaffinity LC-MS/MS Bioanalysis Vol. 6 Issue 1 REVIEW: Analytical protocols based on LC–MS, GC–MS and CE–MS for nontargeted metabolomics of biological tissues Bioanalysis Vol. 6 Issue 12 REVIEW Immunogenicity and PK/PD evaluation in biotherapeutic drug development: scientific considerations for bioanalytical methods and data ana lysis With the advent of novel technologies, considerable advances have been made in the evaluation of the relationship between PK and PD. Ligand-binding assays have been the primary assay format supporting PK and immunogenicity assessments. Critical and in-depth characterizations of the ligand-binding assay of interest can provide valuable understanding of the limitations, for interpreting PK/PD and immunogenicity results. This review illustrates key challenges with regard to understanding the relationship between anti-drug antibody and PK/PD, including confounding factors associated with the development and validation of ligand-binding assays, mechanisms by which anti-drug antibody impacts PK/PD, factors to consider during data analyses and interpretation, and a perspective on integrating immunogenicity data into the well-established quantitative modeling approach.
    [Show full text]
  • Pahs), Polycyclic Aromatic Sulfur Heterocycles (Pashs
    916 Quantification of Polycyclic Aromatic Compounds (PACs), and Alkylated Derivatives by Gas Chromatography-Tandem Mass Spectrometry (GC/MS/MS) to Qualify a Reference Oil Rami Kanan (1,2*), Jan T. Andersson, (3) Justine Receveur (1), Julien Guyomarch (1), Stéphane Le Floch (1) and Hélène Budzinski (2) (1) Cedre-Brest Cedex2, France (2) University of Bordeaux 1-EPOC-LPTC-Talence Cedex, France (3) Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse Müenster, Germany [email protected] Abstract Polycyclic aromatic hydrocarbons (PAHs) are organic compounds listed as priority pollutants by international environmental protection agencies due to their carcinogenic, mutagenic, and toxic effects. Several studies have indicated that some polycyclic aromatic sulfur heterocycles (PASHs) are also carcinogenic and/or mutagenic. Gas chromatography- tandem-mass spectrometry (GC-MS-MS) has been used in the analysis of PAHs in complex matrices. However, no GC-MS-MS studies have focused on the determination of PAHs and PASHs. Moreover, previous MS-MS studies were not targeted toward alkylated derivatives, which are significant contributors in the composition of crude oils. In the present work, a simple methodology has been developed for the analysis of PAHs, PASHs and alkylated derivatives in the Erika fuel oil using solid-phase extraction (SPE) coupled to gas chromatography-tandem mass spectrometry (GC-MS-MS). The LOD and LOQ of the method range between 0.01 and 0.1 ng/mL and between 0.1 and 0.5 ng/mL, respectively. The calibration curves showed a good linearity for most of the compounds. 1 Introduction Each case of spill entails a series of questions as regards the potential toxicity of the oil, and generally preliminary information is provided by the quantification of the 16 PAHs of the US EPA list.
    [Show full text]