Scientific Notation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TI 83/84: Scientific Notation on Your Calculator
TI 83/84: Scientific Notation on your calculator this is above the comma, next to the square root! choose the proper MODE : Normal or Sci entering numbers: 2.39 x 106 on calculator: 2.39 2nd EE 6 ENTER reading numbers: 2.39E6 on the calculator means for us. • When you're in Normal mode, the calculator will write regular numbers unless they get too big or too small, when it will switch to scientific notation. • In Sci mode, the calculator displays every answer as scientific notation. • In both modes, you can type in numbers in scientific notation or as regular numbers. Humans should never, ever, ever write scientific notation using the calculator’s E notation! Try these problems. Answer in scientific notation, and round decimals to two places. 2.39 x 1016 (5) 2.39 x 109+ 4.7 x 10 10 (4) 4.7 x 10−3 3.01 103 1.07 10 0 2.39 10 5 4.94 10 10 5.09 1018 − 3.76 10−− 1 2.39 10 5 7.93 10 8 Remember to change your MODE back to Normal when you're done. Using the STORE key: Let's say that you want to store a number so that you can use it later, or that you want to store answers for several different variables, and then use them together in one problem. Here's how: Enter the number, then press STO (above the ON key), then press ALPHA and the letter you want. (The letters are in alphabetical order above the other keys.) Then press ENTER. -
Primitive Number Types
Primitive number types Values of each of the primitive number types Java has these 4 primitive integral types: byte: A value occupies 1 byte (8 bits). The range of values is -2^7..2^7-1, or -128..127 short: A value occupies 2 bytes (16 bits). The range of values is -2^15..2^15-1 int: A value occupies 4 bytes (32 bits). The range of values is -2^31..2^31-1 long: A value occupies 8 bytes (64 bits). The range of values is -2^63..2^63-1 and two “floating-point” types, whose values are approximations to the real numbers: float: A value occupies 4 bytes (32 bits). double: A value occupies 8 bytes (64 bits). Values of the integral types are maintained in two’s complement notation (see the dictionary entry for two’s complement notation). A discussion of floating-point values is outside the scope of this website, except to say that some bits are used for the mantissa and some for the exponent and that infinity and NaN (not a number) are both floating-point values. We don’t discuss this further. Generally, one uses mainly types int and double. But if you are declaring a large array and you know that the values fit in a byte, you can save ¾ of the space using a byte array instead of an int array, e.g. byte[] b= new byte[1000]; Operations on the primitive integer types Types byte and short have no operations. Instead, operations on their values int and long operations are treated as if the values were of type int. -
C++ Data Types
Software Design & Programming I Starting Out with C++ (From Control Structures through Objects) 7th Edition Written by: Tony Gaddis Pearson - Addison Wesley ISBN: 13-978-0-132-57625-3 Chapter 2 (Part II) Introduction to C++ The char Data Type (Sample Program) Character and String Constants The char Data Type Program 2-12 assigns character constants to the variable letter. Anytime a program works with a character, it internally works with the code used to represent that character, so this program is still assigning the values 65 and 66 to letter. Character constants can only hold a single character. To store a series of characters in a constant we need a string constant. In the following example, 'H' is a character constant and "Hello" is a string constant. Notice that a character constant is enclosed in single quotation marks whereas a string constant is enclosed in double quotation marks. cout << ‘H’ << endl; cout << “Hello” << endl; The char Data Type Strings, which allow a series of characters to be stored in consecutive memory locations, can be virtually any length. This means that there must be some way for the program to know how long the string is. In C++ this is done by appending an extra byte to the end of string constants. In this last byte, the number 0 is stored. It is called the null terminator or null character and marks the end of the string. Don’t confuse the null terminator with the character '0'. If you look at Appendix A you will see that the character '0' has ASCII code 48, whereas the null terminator has ASCII code 0. -
Floating Point Numbers
Floating Point Numbers CS031 September 12, 2011 Motivation We’ve seen how unsigned and signed integers are represented by a computer. We’d like to represent decimal numbers like 3.7510 as well. By learning how these numbers are represented in hardware, we can understand and avoid pitfalls of using them in our code. Fixed-Point Binary Representation Fractional numbers are represented in binary much like integers are, but negative exponents and a decimal point are used. 3.7510 = 2+1+0.5+0.25 1 0 -1 -2 = 2 +2 +2 +2 = 11.112 Not all numbers have a finite representation: 0.110 = 0.0625+0.03125+0.0078125+… -4 -5 -8 -9 = 2 +2 +2 +2 +… = 0.00011001100110011… 2 Computer Representation Goals Fixed-point representation assumes no space limitations, so it’s infeasible here. Assume we have 32 bits per number. We want to represent as many decimal numbers as we can, don’t want to sacrifice range. Adding two numbers should be as similar to adding signed integers as possible. Comparing two numbers should be straightforward and intuitive in this representation. The Challenges How many distinct numbers can we represent with 32 bits? Answer: 232 We must decide which numbers to represent. Suppose we want to represent both 3.7510 = 11.112 and 7.510 = 111.12. How will the computer distinguish between them in our representation? Excursus – Scientific Notation 913.8 = 91.38 x 101 = 9.138 x 102 = 0.9138 x 103 We call the final 3 representations scientific notation. It’s standard to use the format 9.138 x 102 (exactly one non-zero digit before the decimal point) for a unique representation. -
Floating Point Numbers and Arithmetic
Overview Floating Point Numbers & • Floating Point Numbers Arithmetic • Motivation: Decimal Scientific Notation – Binary Scientific Notation • Floating Point Representation inside computer (binary) – Greater range, precision • Decimal to Floating Point conversion, and vice versa • Big Idea: Type is not associated with data • MIPS floating point instructions, registers CS 160 Ward 1 CS 160 Ward 2 Review of Numbers Other Numbers •What about other numbers? • Computers are made to deal with –Very large numbers? (seconds/century) numbers 9 3,155,760,00010 (3.1557610 x 10 ) • What can we represent in N bits? –Very small numbers? (atomic diameter) -8 – Unsigned integers: 0.0000000110 (1.010 x 10 ) 0to2N -1 –Rationals (repeating pattern) 2/3 (0.666666666. .) – Signed Integers (Two’s Complement) (N-1) (N-1) –Irrationals -2 to 2 -1 21/2 (1.414213562373. .) –Transcendentals e (2.718...), π (3.141...) •All represented in scientific notation CS 160 Ward 3 CS 160 Ward 4 Scientific Notation Review Scientific Notation for Binary Numbers mantissa exponent Mantissa exponent 23 -1 6.02 x 10 1.0two x 2 decimal point radix (base) “binary point” radix (base) •Computer arithmetic that supports it called •Normalized form: no leadings 0s floating point, because it represents (exactly one digit to left of decimal point) numbers where binary point is not fixed, as it is for integers •Alternatives to representing 1/1,000,000,000 –Declare such variable in C as float –Normalized: 1.0 x 10-9 –Not normalized: 0.1 x 10-8, 10.0 x 10-10 CS 160 Ward 5 CS 160 Ward 6 Floating -
Simple Statements, Large Numbers
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2007 Simple Statements, Large Numbers Shana Streeks University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Streeks, Shana, "Simple Statements, Large Numbers" (2007). MAT Exam Expository Papers. 41. https://digitalcommons.unl.edu/mathmidexppap/41 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Master of Arts in Teaching (MAT) Masters Exam Shana Streeks In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Gordon Woodward, Advisor July 2007 Simple Statements, Large Numbers Shana Streeks July 2007 Page 1 Streeks Simple Statements, Large Numbers Large numbers are numbers that are significantly larger than those ordinarily used in everyday life, as defined by Wikipedia (2007). Large numbers typically refer to large positive integers, or more generally, large positive real numbers, but may also be used in other contexts. Very large numbers often occur in fields such as mathematics, cosmology, and cryptography. Sometimes people refer to numbers as being “astronomically large”. However, it is easy to mathematically define numbers that are much larger than those even in astronomy. We are familiar with the large magnitudes, such as million or billion. -
Big Numbers Tom Davis [email protected] September 21, 2011
Big Numbers Tom Davis [email protected] http://www.geometer.org/mathcircles September 21, 2011 1 Introduction The problem is that we tend to live among the set of puny integers and generally ignore the vast infinitude of larger ones. How trite and limiting our view! — P.D. Schumer It seems that most children at some age get interested in large numbers. “What comes after a thousand? After a million? After a billion?”, et cetera, are common questions. Obviously there is no limit; whatever number you name, a larger one can be obtained simply by adding one. But what is interesting is just how large a number can be expressed in a fairly compact way. Using the standard arithmetic operations (addition, subtraction, multiplication, division and exponentia- tion), what is the largest number you can make using three copies of the digit “9”? It’s pretty clear we should just stick to exponents, and given that, here are some possibilities: 999, 999, 9 999, and 99 . 9 9 Already we need to be a little careful with the final one: 99 . Does this mean: (99)9 or 9(9 )? Since (99)9 = 981 this interpretation would gain us very little. If this were the standard definition, then why c not write ab as abc? Because of this, a tower of exponents is always interpreted as being evaluated from d d c c c (c ) right to left. In other words, ab = a(b ), ab = a(b ), et cetera. 9 With this definition of towers of exponents, it is clear that 99 is the best we can do. -
Princeton University COS 217: Introduction to Programming Systems C Primitive Data Types
Princeton University COS 217: Introduction to Programming Systems C Primitive Data Types Type: int Description: A (positive or negative) integer. Size: System dependent. On CourseLab with gcc217: 4 bytes. Example Variable Declarations: int iFirst; signed int iSecond; Example Literals (assuming size is 4 bytes): C Literal Binary Representation Note 123 00000000 00000000 00000000 01111011 decimal form -123 11111111 11111111 11111111 10000101 negative form 0173 00000000 00000000 00000000 01111011 octal form 0x7B 00000000 00000000 00000000 01111011 hexadecimal form 2147483647 01111111 11111111 11111111 11111111 largest -2147483648 10000000 00000000 00000000 00000000 smallest Type: unsigned int Description: A non-negative integer. Size: System dependent. sizeof(unsigned int) == sizeof(int). On CourseLab with gcc217: 4 bytes. Example Variable Declaration: unsigned int uiFirst; unsigned uiSecond; Example Literals (assuming size is 4 bytes): C Literal Binary Representation Note 123U 00000000 00000000 00000000 01111011 decimal form 0173U 00000000 00000000 00000000 01111011 octal form 0x7BU 00000000 00000000 00000000 01111011 hexadecimal form 4294967295U 11111111 11111111 11111111 11111111 largest 0U 00000000 00000000 00000000 00000000 smallest Type: long Description: A (positive or negative) integer. Size: System dependent. sizeof(long) >= sizeof(int). On CourseLab with gcc217: 8 bytes. Example Variable Declarations: long lFirst; long int iSecond; signed long lThird; signed long int lFourth; Page 1 of 5 Example Literals (assuming size is 8 bytes): -
36 Scientific Notation
36 Scientific Notation Scientific notation is used to express extremely large or extremely small numbers efficiently. The main idea is to write the number you want as a number between 1 and 10 multiplied by an integer power of 10. Fill in the blanks in the table below. Write the decimal form of the number given in scientific notation. Then give the calculator’s notation for the scientific notation. This is the only time you should write this calculator notation. Calculator notation is not acceptable in your written work; use a human language! The last column is for a word name for the number. In a few rows, you will write the scientific notation yourself. Scientific Decimal Notation Calculator Word name for the notation notation number One billion one billion dollars dollars 1.0 ×10 9 dollars One year 3.16 ×10 7 seconds Distance from earth to moon 3.8 ×10 8 meters 6.24 ×10 23 Mass of Mars 624 sextillion kg kilograms 1.0 ×10 -9 Nanosecond seconds 8 Speed of tv 3.0 ×10 signals meters/second -27 -27 Atomic mass 1.66 ×10 Just say, “1.66 ×10 unit kilograms kg”! × 12 Light year 6 10 miles 15 Light year 9.5 ×10 meters One billion light years meters 16 Parsec 3.1 ×10 meters 6 Megaparsec 10 parsecs Megabyte = 220 = 1,048,576 20 2 bytes bytes bytes Micron One millionth of a meter The number of About one hundred stars in the billion Milky Way -14 Diameter of a 7.5 ×10 carbon-12 meters atom Rosalie A. -
The Costs of Inaction
Climate Change – the Costs of Inaction Report to Friends of the Earth England, Wales and Northern Ireland Frank Ackerman and Elizabeth Stanton Global Development and Environment Institute, Tufts University October 11, 2006 Table of Contents Executive Summary ................................................................................................. iii Introduction................................................................................................................1 Categorizing climate risks........................................................................................................... 2 The UK in 2050: hot, and getting hotter....................................................................7 Impacts of Climate Change......................................................................................11 Agriculture ................................................................................................................................ 11 Industry and infrastructure........................................................................................................ 15 Fresh water................................................................................................................................ 17 Human health............................................................................................................................ 18 Ecosystems and extinctions ...................................................................................................... 22 Summary measures of -
Floating Point CSE410, Winter 2017
L07: Floating Point CSE410, Winter 2017 Floating Point CSE 410 Winter 2017 Instructor: Teaching Assistants: Justin Hsia Kathryn Chan, Kevin Bi, Ryan Wong, Waylon Huang, Xinyu Sui L07: Floating Point CSE410, Winter 2017 Administrivia Lab 1 due next Thursday (1/26) Homework 2 released today, due 1/31 Lab 0 scores available on Canvas 2 L07: Floating Point CSE410, Winter 2017 Unsigned Multiplication in C u ••• Operands: * bits v ••• True Product: u · v ••• ••• bits Discard bits: UMultw(u , v) ••• bits Standard Multiplication Function . Ignores high order bits Implements Modular Arithmetic w . UMultw(u , v)= u ∙ v mod 2 3 L07: Floating Point CSE410, Winter 2017 Multiplication with shift and add Operation u<<k gives u*2k . Both signed and unsigned u ••• Operands: bits k * 2k 0 ••• 0 1 0 ••• 0 0 True Product: bits u · 2k ••• 0 ••• 0 0 k Discard bits: bits UMultw(u , 2 ) ••• 0 ••• 0 0 k TMultw(u , 2 ) Examples: . u<<3 == u * 8 . u<<5 - u<<3 == u * 24 . Most machines shift and add faster than multiply • Compiler generates this code automatically 4 L07: Floating Point CSE410, Winter 2017 Number Representation Revisited What can we represent in one word? . Signed and Unsigned Integers . Characters (ASCII) . Addresses How do we encode the following: . Real numbers (e.g. 3.14159) . Very large numbers (e.g. 6.02×1023) Floating . Very small numbers (e.g. 6.626×10‐34) Point . Special numbers (e.g. ∞, NaN) 5 L07: Floating Point CSE410, Winter 2017 Floating Point Topics Fractional binary numbers IEEE floating‐point standard Floating‐point operations and rounding Floating‐point in C There are many more details that we won’t cover . -
What Fun! It's Practice with Scientific Notation!
What Fun! It's Practice with Scientific Notation! Review of Scientific Notation Scientific notation provides a place to hold the zeroes that come after a whole number or before a fraction. The number 100,000,000 for example, takes up a lot of room and takes time to write out, while 108 is much more efficient. Though we think of zero as having no value, zeroes can make a number much bigger or smaller. Think about the difference between 10 dollars and 100 dollars. Even one zero can make a big difference in the value of the number. In the same way, 0.1 (one-tenth) of the US military budget is much more than 0.01 (one-hundredth) of the budget. The small number to the right of the 10 in scientific notation is called the exponent. Note that a negative exponent indicates that the number is a fraction (less than one). The line below shows the equivalent values of decimal notation (the way we write numbers usually, like "1,000 dollars") and scientific notation (103 dollars). For numbers smaller than one, the fraction is given as well. smaller bigger Fraction 1/100 1/10 Decimal notation 0.01 0.1 1 10 100 1,000 ____________________________________________________________________________ Scientific notation 10-2 10-1 100 101 102 103 Practice With Scientific Notation Write out the decimal equivalent (regular form) of the following numbers that are in scientific notation. Section A: Model: 101 = 10 1) 102 = _______________ 4) 10-2 = _________________ 2) 104 = _______________ 5) 10-5 = _________________ 3) 107 = _______________ 6) 100 = __________________ Section B: Model: 2 x 102 = 200 7) 3 x 102 = _________________ 10) 6 x 10-3 = ________________ 8) 7 x 104 = _________________ 11) 900 x 10-2 = ______________ 9) 2.4 x 103 = _______________ 12) 4 x 10-6 = _________________ Section C: Now convert from decimal form into scientific notation.