06 Strawberry Virus Feature1.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Virology Journal Biomed Central
Virology Journal BioMed Central Research Open Access The complete genomes of three viruses assembled from shotgun libraries of marine RNA virus communities Alexander I Culley1, Andrew S Lang2 and Curtis A Suttle*1,3 Address: 1University of British Columbia, Department of Botany, 3529-6270 University Blvd, Vancouver, B.C. V6T 1Z4, Canada, 2Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada and 3University of British Columbia, Department of Earth and Ocean Sciences, Department of Microbiology and Immunology, 1461-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada Email: Alexander I Culley - [email protected]; Andrew S Lang - [email protected]; Curtis A Suttle* - [email protected] * Corresponding author Published: 6 July 2007 Received: 10 May 2007 Accepted: 6 July 2007 Virology Journal 2007, 4:69 doi:10.1186/1743-422X-4-69 This article is available from: http://www.virologyj.com/content/4/1/69 © 2007 Culley et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: RNA viruses have been isolated that infect marine organisms ranging from bacteria to whales, but little is known about the composition and population structure of the in situ marine RNA virus community. In a recent study, the majority of three genomes of previously unknown positive-sense single-stranded (ss) RNA viruses were assembled from reverse-transcribed whole- genome shotgun libraries. -
OCCURRENCE of STONE FRUIT VIRUSES in PLUM ORCHARDS in LATVIA Alina Gospodaryk*,**, Inga Moroèko-Bièevska*, Neda Pûpola*, and Anna Kâle*
PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 67 (2013), No. 2 (683), pp. 116–123. DOI: 10.2478/prolas-2013-0018 OCCURRENCE OF STONE FRUIT VIRUSES IN PLUM ORCHARDS IN LATVIA Alina Gospodaryk*,**, Inga Moroèko-Bièevska*, Neda Pûpola*, and Anna Kâle* * Latvia State Institute of Fruit-Growing, Graudu iela 1, Dobele LV-3701, LATVIA [email protected] ** Educational and Scientific Centre „Institute of Biology”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., Kiev 01033, UKRAINE Communicated by Edîte Kaufmane To evaluate the occurrence of nine viruses infecting Prunus a large-scale survey and sampling in Latvian plum orchards was carried out. Occurrence of Apple mosaic virus (ApMV), Prune dwarf virus (PDV), Prunus necrotic ringspot virus (PNRSV), Apple chlorotic leaf spot virus (ACLSV), and Plum pox virus (PPV) was investigated by RT-PCR and DAS ELISA detection methods. The de- tection rates of both methods were compared. Screening of occurrence of Strawberry latent ringspot virus (SLRSV), Arabis mosaic virus (ArMV), Tomato ringspot virus (ToRSV) and Petunia asteroid mosaic virus (PeAMV) was performed by DAS-ELISA. In total, 38% of the tested trees by RT-PCR were infected at least with one of the analysed viruses. Among those 30.7% were in- fected with PNRSV and 16.4% with PDV, while ApMV, ACLSV and PPV were detected in few samples. The most widespread mixed infection was the combination of PDV+PNRSV. Observed symptoms characteristic for PPV were confirmed with RT-PCR and D strain was detected. Com- parative analyses showed that detection rates by RT-PCR and DAS ELISA in plums depended on the particular virus tested. -
Identification and Complete Genomic Sequence of a Novel Sadwavirus
Archives of Virology https://doi.org/10.1007/s00705-020-04592-9 ANNOTATED SEQUENCE RECORD Identifcation and complete genomic sequence of a novel sadwavirus discovered in pineapple (Ananas comosus) Adriana Larrea‑Sarmiento1 · Alejandro Olmedo‑Velarde1 · James C. Green1 · Maher Al Rwahnih2 · Xupeng Wang1 · Yun‑He Li3 · Weihuai Wu4 · Jingxin Zhang5 · Tracie K. Matsumoto6 · Jon Y. Suzuki6 · Marisa M. Wall6 · Wayne Borth1 · Michael J. Melzer1 · John S. Hu1 Received: 19 December 2019 / Accepted: 15 February 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020 Abstract The complete genomic sequence of a putative novel member of the family Secoviridae was determined by high-throughput sequencing of a pineapple accession obtained from the National Plant Germplasm Repository in Hilo, Hawaii. The predicted genome of the putative virus was composed of two RNA molecules of 6,128 and 4,161 nucleotides in length, excluding the poly-A tails. Each genome segment contained one large open reading frame (ORF) that shares homology and phylogenetic identity with members of the family Secoviridae. The presence of this new virus in pineapple was confrmed using RT-PCR and Sanger sequencing from six samples collected in Oahu, Hawaii. The name “pineapple secovirus A” (PSVA) is proposed for this putative new sadwavirus. Members of the family Secoviridae are non-enveloped has a poly-A tract at its 3’- end. Secovirids form isometric viruses containing linear positive-sense single-stranded viral particles and are classifed within eight genera: Nepo- RNA [(+)-ssRNA] genomes that are monopartite or bipar- virus, Comovirus, Fabavirus, Sadwavirus, Cheravirus, Tor- tite. Each genome segment encodes a large polyprotein, is radovirus, Sequivirus, and Waikavirus [1]. -
Isolation, Purification, Serology and Nature of Rose Mosaic Virus
ISOLATION, PURIFICATION, SEROLOGY AND NATURE OF ROSE MOSAIC VIRUS by ROBERT S. HALLIWELL A THESIS submitted to OREGON STATE UNIVERSITY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY June 1962 APPROVED; Redacted for privacy Professor of Botany and Plant Pathology In Charge of Major Redacted for privacy lairmaiy of Department of Botrai 0 (7 <7 Redacted for privacy Chairman of School Graduate Committee Redacted for privacy Deani of Graduate SchoolO Date thesis is presented May 16, 1962 Typed by Claudia Annis ACKNOWLEDGEMENT The author wishes to express his gratitude to Dr. J. A. Milbrath for his encouragement and guidance throughout the course of this investigation and to Dr. R. E. Ford for his advice and assistance in the serological studies. Thanks are also due to Dr. F. H. Smith, Dr. R. A. Young, Dr. I. W. Deep, and Dr. C. H. Wang for their helpful criticism and advice in preparing this manuscript. He is grateful to H. H. Millsap for taking the pictures, and J. D. Newstead for the electron micro graphs used in this thesis. The writer expresses his appreciation to Dr. R. W. Fulton of the Plant Pathology Department of the University of Wisconsin for supplying his isolate of rose mosaic virus for this study. This project was made possible by support from the Oregon Bulb, Florist and Nursery Council. TABLE OF CONTENTS Page Introduction 1 Review of Literature 3 Materials and Methods 10 I. Plant inoculation technique 10 II. Plant culture 10 Results 11 I. Isolation of rose mosaic virus of rose, 11 A. -
Plant Virus Evolution
Marilyn J. Roossinck Editor Plant Virus Evolution Plant Virus Evolution Marilyn J. Roossinck Editor Plant Virus Evolution Dr. Marilyn J. Roossinck The Samuel Roberts Noble Foundation Plant Biology Division P.O. Box 2180 Ardmore, OK 73402 USA Cover Photo: Integrated sequences of Petunia vein cleaning virus (in red) are seen in a chromosome spread of Petunia hybrida (see Chapter 4). ISBN: 978-3-540-75762-7 e-ISBN: 978-3-540-75763-4 Library of Congress Control Number: 2007940847 © 2008 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Preface The evolution of viruses has been a topic of intense investigation and theoretical development over the past several decades. Numerous workshops, review articles, and books have been devoted to the subject. -
Virus Diseases of Trees and Shrubs
VirusDiseases of Treesand Shrubs Instituteof TerrestrialEcology NaturalEnvironment Research Council á Natural Environment Research Council Institute of Terrestrial Ecology Virus Diseases of Trees and Shrubs J.1. Cooper Institute of Terrestrial Ecology cfo Unit of Invertebrate Virology OXFORD Printed in Great Britain by Cambrian News Aberystwyth C Copyright 1979 Published in 1979 by Institute of Terrestrial Ecology 68 Hills Road Cambridge CB2 ILA ISBN 0-904282-28-7 The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to and draws upon the collective knowledge of the fourteen sister institutes \Which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. Nearly half of ITE's work is research commissioned by customers, such as the Nature Con- servancy Council who require information for wildlife conservation, the Forestry Commission and the Department of the Environment. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organisations in overseas projects and programmes of research. The photograph on the front cover is of Red Flowering Horse Chestnut (Aesculus carnea Hayne). -
Comparison of Three Different Techniques for Eradication of Apple Mosaic Virus (Apmv) from Hazelnut (Corylus Avellana L.)
Journal of Plant Protection Research ISSN 1427-4345 ORIGINAL ARTICLE Comparison of three different techniques for eradication of Apple mosaic virus (ApMV) from hazelnut (Corylus avellana L.) Ergun Kaya* Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey Vol. 61, No. 1: 11–19, 2021 Abstract DOI: 10.24425/jppr.2021.136275 Numerous plant species around the world suffer from the presence of viruses, which espe- cially in economically important crops, cause irretrievable damage and/or extensive losses. Received: July 28, 2020 Many biotechnological approaches have been developed, such as meristem culture, chemo- Accepted: October 1, 2020 therapy, thermotherapy or cryotherapy, to eliminate viruses from infected plants. These have been used alone or in combination. In this work, meristem culture, thermotherapy and *Corresponding address: cryotherapy were compared for Apple mosaic virus elimination from hazelnut local cultivar [email protected] “Palaz”. The virus-free plant was also confirmed by reverse transcriptase poly merase chain reaction (RT-PCR) after each treatment and, the best results were obtained by cryotherapy. A one step freezing technique, droplet vitrification, was used for cryotherapy, and the best regeneration percentage was 52%. After cryotherapy, virus-free seedlings of hazelnut local cultivar “Palaz” were confirmed as being virus-free after three subcultured periods. Keywords: cryotherapy, droplet vitrification, meristem culture, PVS2, RT-PCR, thermo- therapy Introduction Plant viruses are major pathogens that cause economic Plant viruses can be controlled by quarantine, isola- losses and damage for many crops, fruits, vegetables, tion, sanitation and certification programs depending and woody plants. Nearly all plants are influenced by on sensitive and specific methods. -
Taxonomy of Picornaviridae: Current Situation and Future Proposals
EUROPIC 2008 TaxonomyTaxonomy ofof PicornaviridaePicornaviridae:: C1 CurrentCurrent SituationSituation andand FutureFuture ProposalsProposals Nick J. Knowles1, Tapani Hovi2, Timo Hyypiä3, Andrew M.Q. King4, A. Michael Lindberg5, Philip D. Minor6, Mark A. Pallansch7, Ann C. Palmenberg8, Tim Skern9, Glyn Stanway10, Teruo Yamashita11 and Roland Zell12 (1) Institute for Animal Health, Pirbright, UK; (2) Enterovirus Laboratory, KTL, Helsinki, Finland; (3) Dept. of Virology, Univ. Turku, Finland; 4) ‘Sunfield’, Dawney Hill, Pirbright, Woking, Surrey, UK; (5) School of Pure and Applied Natural Sciences, University of Kalmar, Sweden; (6) NIBSC, South Mimms, UK; (7) CDC, Atlanta, USA; (8) Institute for Molecular Virology, Wisconsin, USA; (9) Max F. Perutz Laboratories, Medical Univ. Vienna, Austria; (10) Dept. of Biological Sci., Univ. Essex, UK; (11) Aichi Prefectural Institute of Public Health, Aichi, Japan; (12) Institut fuer Virologie und Antivirale Therapie, Jena, Germany. RECENT ICTV‐APPROVED CHANGES (ICTV LEVEL 05) “Sapelovirus” Teschovirus Porcine teschovirus "Avian sapelovirus" Four taxonomic proposals have recently been approved by the ICTV: i) to combine the "Porcine sapelovirus" "Human rhinovirus C" "Simian sapelovirus" Cardiovirus Enterovirus and Rhinovirus genera, keeping the existing name Enterovirus; ii) to combine Encephalomyocarditis virus the species Poliovirus and Human enterovirus C, retaining the latter name; iii) to assign Human rhinovirus A Theilovirus Human enterovirus C as the type species of the enterovirus genus; iv) -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
Characterization and Epidemiology of Soybean Vein Necrosis Associated Virus Jing Zhou University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2012 Characterization and Epidemiology of Soybean Vein Necrosis Associated Virus Jing Zhou University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Botany Commons, Molecular Biology Commons, and the Plant Pathology Commons Recommended Citation Zhou, Jing, "Characterization and Epidemiology of Soybean Vein Necrosis Associated Virus" (2012). Theses and Dissertations. 643. http://scholarworks.uark.edu/etd/643 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. CHARACTERIZATION AND EPIDEMIOLOGY OF SOYBEAN VEIN NECROSIS ASSOCIATED VIRUS CHARACTERIZATION AND EPIDEMIOLOGY OF SOYBEAN VEIN NECROSIS ASSOCIATED VIRUS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Cell and Molecular Biology By Jing Zhou Qingdao Agriculture University, College of Life Sciences Bachelor of Science in Biotechnology, 2008 December 2012 University of Arkansas ABSTRACT Soybean vein necrosis disease (SVND) is widespread in major soybean-producing areas in the U.S. The typical disease symptoms exhibit as vein clearing along the main vein, which turn into chlorosis or necrosis as season progresses. Double-stranded RNA isolation and shot gun cloning of symptomatic tissues revealed the presence of a new tospovirus, provisionally named as Soybean vein necrosis associated virus (SVNaV). The presence of the virus has been confirmed in 12 states: Arkansas, Illinois, Missouri, Kansas, Tennessee, Kentucky, Mississippi, Maryland, Delaware, Virginia and New York. -
Molecular Analysis of Vanilla Mosaic Virus from the Cook Islands
Molecular Analysis of Vanilla mosaic virus from the Cook Islands Christopher Puli’uvea A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Science (MSc) 2017 School of Science I Abstract Vanilla was first introduced to French Polynesia in 1848 and from 1899-1966 was a major export for French Polynesia who then produced an average of 158 tonnes of cured Vanilla tahitensis beans annually. In 1967, vanilla production declined rapidly to a low of 0.6 tonnes by 1981, which prompted a nation-wide investigation with the aim of restoring vanilla production to its former levels. As a result, a mosaic-inducing virus was discovered infecting V. tahitensis that was distinct from Cymbidium mosaic virus (CyMV) and Odontoglossum ringspot virus (ORSV) but serologically related to dasheen mosaic virus (DsMV). The potyvirus was subsequently named vanilla mosaic virus (VanMV) and was later reported to infect V. tahitensis in the Cook Islands and V. planifolia in Fiji and Vanuatu. Attempts were made to mechanically inoculate VanMV to a number of plants that are susceptible to DsMV, but with no success. Based on a partial sequence analysis, VanMV-FP (French Polynesian isolate) and VanMV-CI (Cook Islands isolate) were later characterised as strains of DsMV exclusively infecting vanilla. Since its discovery, little information is known about how VanMV-CI acquired the ability to exclusively infect vanilla and lose its ability to infect natural hosts of DsMV or vice versa. The aims of this research were to characterise the VanMV genome and attempt to determine the molecular basis for host range specificity of VanMV-CI. -
Virus Diseases and Noninfectious Disorders of Stone Fruits in North America
/ VIRUS DISEASES AND NONINFECTIOUS DISORDERS OF STONE FRUITS IN NORTH AMERICA Agriculture Handbook No. 437 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE VIRUS DISEASES AND NONINFECTIOUS DISORDERS OF STONE FRUITS IN NORTH AMERICA Agriculture Handbook No. 437 This handbook supersedes Agriculture Handbook 10, Virus Diseases and Other Disorders with Viruslike Symptoms of Stone Fruits in North America. Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.C. ISSUED JANUARY 1976 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C 20402 — Price $7.10 (Paper Cover) Stock Number 0100-02691 FOREWORD The study of fruit tree virus diseases is a tedious process because of the time needed to produce experimental woody plants and, often, the long interval from inoculation until the development of diagnostic symptoms. The need for cooperation and interchange of information among investigators of these diseases has been apparent for a long time. As early as 1941, a conference was called by Director V. R. Gardner at Michigan State University to discuss the problem. One result of this early conference was the selection of a committee (E. M. Hildebrand, G. H. Berkeley, and D. Cation) to collect and classify both published and unpublished data on the nomenclature, symptoms, host range, geographical distribution, and other pertinent information on stone fruit virus diseases. This information was used to prepare a "Handbook of Stone Fruit Virus Diseases in North America," which was published in 1942 as a mis- cellaneous publication of the Michigan Agricultural Experiment Station. At a second conference of stone fruit virus disease workers held in Cleveland, Ohio, in 1944 under the chairmanship of Director Gardner, a Publication Committee (D.