Rifting Processes in NW-Germany and the German North Sea Sector

Total Page:16

File Type:pdf, Size:1020Kb

Rifting Processes in NW-Germany and the German North Sea Sector Netherlands Journal of Geosciences / Geologie en Mijnbouw 81 (2): 149-158 (2002) Rifting processes in NW-Germany and the German North Sea Sector F. Kockel Eiermarkt 12 B, D-30938 Burgwedel, Germany Manuscript received: September 2000; accepted: January 2002 Abstract Since the beginning of the development of the North German Basin in Stephanian to Early Rotliegend times, rifting played a major role. Nearly all structures in NW-Germany and the German North Sea - (more than 800) - salt diapirs, grabens, in­ verted grabens and inversion structures - are genetically related to rifting. Today, the rifting periods are well dated. We find signs of dilatation at all times except from the Late Aptian to the end of the Turonian. To the contrary, the period of the Co- niacian and Santonian, lasting only five million years was a time of compression, transpression, crustal shortening and inver­ sion. Rifting activities decreased notably after inversion in Late Cretaceous times. Tertiary movements concentrated on a lim­ ited number of major, long existing lineaments. Seismically today NW-Germany and the German North Sea sector is one of the quietest regions in Central Europe. Key words: Rifting, NW Germany, North Sea, Permian, Mesozoic, Tertiary Introduction Zechstein structures (salt and inversion structures) straddling and triggered by these basement faults. The area considered here forms part of the mobile epi-Variscan platform on which the Polish-North Pre-Variscan German and southern North Sea basin developed since the beginning of the Late Permian. This basin The rifted passive northern margin of the Late Pre- with its filling of partly more than 10.000 m of sedi­ cambrian to Silurian Tornquist Ocean is the oldest ments is by no means the result of a mere subsidence well-documented trace of rifting and can be observed caused by the cooling of an early Permian mantle in seismic sections off Riigen in the Baltic Sea. The plume. It represents a complex system of deep rifts southern margin of Baltica, covered with thin Cam­ and rift basins which had been active in different peri­ brian sediments, is step-faulted towards the Tornquist ods of the Mesozoic (Table l).The pattern of base­ Ocean in the SSW.This ocean closed in Early Silurian ment block boundary faults (Fig.l) underlying these times and its passive continental margin was thrusted rifts originated in Permian and Triassic times and be­ from the south by an internally imbricated accre- came frequently reactivated later. Modern reflection tionary wedge of Ordovician and Early Silurian sedi­ seismic measurements by the German oil industry ments called the 'Caledonian front' (Pieske & Neu­ permit the exact dating of the fault movements and mann, 1991; Schluter et al., 1997). reveal a highly complex genetic history of the post- Netherlands Journal of Geosciences / Geologie en Mijnbouw 81 (2) 2002 149 Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.139, on 30 Sep 2021 at 04:47:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0016774600022381 symbol floodinga H (DOM) •ra epoch stratigraphic unit in main tectonic and volcanic events regressions (Ma) section erosional periods 1.8 Quaternary Pleistocene, Holocane (q) 1,8 further uplift of the Central Oacman hile Neogene Pliocene 3.5 upNtt and erosion of NW-Germany, HHng toward* N and W S.3 c CW 23.8 Miocene (tmi) 18,5 strong rifling (Upper + Lower Rhine rM), baaaka mid-Miocene flooding 33,7 OHgocena (tol) 9,9 (Hassan), several moderate movements of basement faults 54,8 Palaogana Eocene (too) 21,1 in NW Germany and the German Morth Sea 8,1 Cenozoi (tpo) Saaiandlan/Thanetian flpa) Midway foodlng 85 Oanian, Monttan W 4,0 several regreaelona and MaastrichBan (krma) 6,3 apoalonal periods L. Cretaceous Campanian (krca) 12.2 Campanian flooding Santonian (krsa) 2,3 compression ana inversion in Lower Saxony Basin and erosion in LSB Coniacien (krcc) 3,2 locally at lineaments in the Pompeckj block (P B i (kro) Turortan (krt) 4,5 98.9 Cenomanian (krc) 5,4 Albian (krt) 13,3 P. B. completely flooded E. Cretaceous Aptian (krp) 8,8 end of rifting activities in the Lower Saxony basin Barremian (krb) 6,0 continuous rifting and dieptrtsm Haute rrvlan (krh) Sfl In the Lower Saxony Basin (LSB) ueuaMiisj or nooning (kru) Valanginian (krv) 4,5 of PompeekJ block 142,0 Ryazanian (Wd) 5,4 SerpuM Fm. (loS) emeraien and erosion L. Jurassic Munder Margal Fm. (joM) 8,8 paroxysmal rifting and subsidence of the LSB of Pompeckj block Eimbeekhausen Fm. OoE) LSB isolated from oceans (Malm) GigasFm. floG) rifling and dlapirism in the Lower Saxony Basin Kimmaridge Fm. OoKi) 3,4 and locally on the Pompeckj block M. Klmmaridgian flooding flo) Korallenoolith Fm. floK) 5,3 c 159,4 Heersum Fm. floH) i Callovian QmcO 5,0 progadation of deka'j o M. Jurassic Bathonian (jmbt) 4,8 continuous rifting, dlapirism fiom the N z <jm) Bajocian dmbj) 7,3 formation of the Lower Saxony rift basin flmal) 3.6 180.1 o Aalsnian Toarcian (Jute) 9,5 s E.Jurassic Pliensbechian (jupl) 5,7 e (M Slnemurian flush 6,6 Beginning of rifting in the Lower Saxony Basin M 206.7 Hettangian (June) 3,8 beginning of the Jurassic Exter Fm. (to) 6,0 flooding hi NW Germany Amstadt Fm. (km4) 6,0 Keupar WeserFm. (km3) 4,8 strong rifling (Ems-, Horn-, Gtuckstadt-Graben, (k) Stuttgart Fm. (km2) 1,0 Brunewick-Gifhorn zona and other), main phase of Grabfeld Fm. (km1) 5.5 dlapirism in NW Germany and southern North Sea 231.5 Erfurt Fm. <ku) 2,5 Muschalkalk U. Muschalkalk (mo) marina Ingfasslon from W (m) M. Muschalkalk (mm) 9,5 241 L. Muschalkalk (mu) rifting (Ems-, Horn-, Giuckstadt-Graben and others) marina Ingresston from E U. Buntsandst. Rot Fm. 1-4 (so) Soling Fm. (smS) M. Hardegsen Fm. (smH) strong rifling (Ems-. Horn-, Giuckstadt-Graben ate.) Buntsandstein DetfurthFm. (smD) 11.0 (sm) Volpriahausen Fm (smV) Quickbom Fm. (smQ) local rifling L. Bunt- Catvorde Fm. (suC) 251 sandstain (su) BernburgFm. (suB) Mdlln Fm. (E7) local rifling Friesland Fm. <z6) c OhreFm. <*5) Zachstein Alter Fm. (24) 7,0 (*> LeineFm. (z3) marina ingressun StaBfurt Fm. (z2) local rifting (southern Oldenburg) marina Ingrasslon 258 WerraFm. (Z1) local rifting (Lower Rhine embayment) Copper shale Ingresston RotHegend Upper RotHegend (K>) 38.0 rifling between Elba and Weser 296 (ro+ru) Lower Rotliegend (ru) rifling, strong acid to basic voleanism, intrusions Staphanlan (est) erosion of variaoan L. Carboniferous Westphalian (cwD-A) 24,0 and of Variscan folding In Westphalian D chain Paleozoi 320 Namurian <enC-A) 1 354 E. Carboniferous Dtnantian (ed) 34,0 beginning of Variaoan folding in Rheno-hercynian zona Table 1. Stratigraphic column for NW Germany and major tectonic events.Time scale from Menning (1997) (Carboniferous toTriassic) and Gradsteinetal. (1999). 150 Netherlands Journal of Geosciences / Geologie en Mijnbouw 81 (2) 2002 Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.139, on 30 Sep 2021 at 04:47:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0016774600022381 Variscan reservoir rocks. Rifting was caused by the Altmark I- III pulses. The rift boundary faults are covered by The central part of the Rheno-Hercynian zone of the sediments of the Dethlingen Formation (Upper Rot­ Variscan chain was also part of a rift. In Siegenian, liegend). Some of the faults became reactivated in Emsian and Eifelian times the Aachen-Midi Thrust post-Zechstein times. near Aachen formed a prominent rift edge south of There are indications in the German North Sea the Eurasian platform. This was revealed by the bal­ Sector and in Schleswig-Holstein of rifting continu­ anced reconstruction of a deep seismic DEKORP ing into the late Upper Rotliegend times. The halite section (vonWinterfeld &Walter, 1993). deposits intercalated in the Dethlingen and Hannover Grabens and half-grabens are cut into the Car­ Formations in the Horn Graben and in the Gliick- boniferous limestone platform of Dinantian age in stadt Graben are much thicker than on the graben Central UK and it is possible that they extend to­ shoulders (Flensburg Z 1 borehole without salt and wards the east into the North Sea and into Dutch and Schleswig Z 1 in the graben with undisturbed and German waters. thick Dethlingen and Hannover salts). Dinantian rifting has also been assumed for paleo- The next period of rifting is well documented in geographic reasons in the Rheno-Hercynian zone of the Lower Rhine Graben and in the Netherlands. the Variscides to explain the different facies units in Half-graben structures there have been encountered the Harz Mountains (Wachendorf et al., 1995). Later containing thick Zechstein 1 (Werra) halite, which in compressional overprinting during the Variscan the vicinity is lacking. The graben structures are cov­ orogeny, however, reshaped these rifts and horst ered by basal Zechstein 2 sediments and rifting had blocks into imbricated thrust zones. stopped at the onset of the Stassfurt cycle (Geluk, Nevertheless, these early rifting processes had no 1999; Wolf, 1985). influence on the genesis of the Mesozoic structures in Rifting has also been assumed for the Zechstein 2 the North German basin. (Stassfurt) cycle to explain thickness variations (Ziegler, 1989). This should be investigated in more Permian detail. A further pulse of rifting can be observed in Late Block faulting older than Upper Rotliegend is ob­ Zechstein times. In the Dutch-German border zone served in Norwegian and Danish waters north of the (Best, 1989) and in the Netherlands (Geluk, 1999) Duck's Beak.
Recommended publications
  • A New Species of the Sauropsid Reptile Nothosaurus from the Lower Muschelkalk of the Western Germanic Basin, Winterswijk, the Netherlands
    A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, The Netherlands NICOLE KLEIN and PAUL C.H. ALBERS Klein, N. and Albers, P.C.H. 2009. A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, The Netherlands. Acta Palaeontologica Polonica 54 (4): 589–598. doi:10.4202/ app.2008.0083 A nothosaur skull recently discovered from the Lower Muschelkalk (early Anisian) locality of Winterswijk, The Nether− lands, represents at only 46 mm in length the smallest nothosaur skull known today. It resembles largely the skull mor− phology of Nothosaurus marchicus. Differences concern beside the size, the straight rectangular and relative broad parietals, the short posterior extent of the maxilla, the skull proportions, and the overall low number of maxillary teeth. In spite of its small size, the skull can not unequivocally be interpreted as juvenile. It shows fused premaxillae, nasals, frontals, and parietals, a nearly co−ossified jugal, and fully developed braincase elements, such as a basisphenoid and mas− sive epipterygoids. Adding the specimen to an existing phylogenetic analysis shows that it should be assigned to a new species, Nothosaurus winkelhorsti sp. nov., at least until its juvenile status can be unequivocally verified. Nothosaurus winkelhorsti sp. nov. represents, together with Nothosaurus juvenilis, the most basal nothosaur, so far. Key words: Sauropterygia, Nothosaurus, ontogeny, Anisian, The Netherlands. Nicole Klein [nklein@uni−bonn.de], Steinmann−Institut für Geologie, Mineralogie und Paläontologie, Universtät Bonn, Nußallee 8, 53115 Bonn, Germany; Paul C.H. Albers [[email protected]], Naturalis, Nationaal Natuurhistorisch Museum, Darwinweg 2, 2333 CR Leiden, The Netherlands.
    [Show full text]
  • Silicification and Organic Matter Preservation In
    Central European Geology, Vol. 60/1, 35–52 (2017) DOI: 10.1556/24.60.2017.002 First published online February 28, 2017 Silicification and organic matter preservation in the Anisian Muschelkalk: Implications for the basin dynamics of the central European Muschelkalk Sea Annette E. Götz1*, Michael Montenari1, Gelu Costin2 1School of Physical and Geographical Sciences, Keele University, Staffordshire, United Kingdom 2Department of Earth Science, Rice University, Houston, TX, USA Received: July 19, 2016; accepted: October 3, 2016 Anisian Muschelkalk carbonates of the southern Germanic Basin containing silicified ooidal grainstone are interpreted as evidence of changing pH conditions triggered by increased bioproductivity (marine phytoplankton) and terrestrial input of plant debris during maximum flooding. Three distinct stages of calcite ooid replacement by silica were detected. Stage 1 reflects authigenic quartz development during the growth of the ooids, suggesting a change in the pH–temperature regime of the depositional environment. Stages 2 and 3 are found in silica-rich domains. The composition of silica-rich ooids shows significant Al2O3 and SrO but no FeO and MnO, indicating that late diagenetic alteration was minor. Silicified interparticle pore space is characterized by excellent preservation of marine prasinophytes; palynological slides show high abundance of terrestrial phytoclasts. The implications of our findings for basin dynamics reach from paleogeography to cyclostratigraphy and sequence stratigraphy, since changes in the seawater chemistry and sedimentary organic matter distribution reflect both the marine conditions as well as the hinterland. Basin interior changes might overprint the influence of the Tethys Ocean through the eastern and western gate areas. Stratigraphically, such changes might enhance marine flooding signals.
    [Show full text]
  • GUIDEBOOK the Mid-Triassic Muschelkalk in Southern Poland: Shallow-Marine Carbonate Sedimentation in a Tectonically Active Basin
    31st IAS Meeting of Sedimentology Kraków 2015 GUIDEBOOK The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Guide to field trip B5 • 26–27 June 2015 Joachim Szulc, Michał Matysik, Hans Hagdorn 31st IAS Meeting of Sedimentology INTERNATIONAL ASSOCIATION Kraków, Poland • June 2015 OF SEDIMENTOLOGISTS 225 Guide to field trip B5 (26–27 June 2015) The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Joachim Szulc1, Michał Matysik2, Hans Hagdorn3 1Institute of Geological Sciences, Jagiellonian University, Kraków, Poland ([email protected]) 2Natural History Museum of Denmark, University of Copenhagen, Denmark ([email protected]) 3Muschelkalk Musem, Ingelfingen, Germany (encrinus@hagdorn-ingelfingen) Route (Fig. 1): From Kraków we take motorway (Żyglin quarry, stop B5.3). From Żyglin we drive by A4 west to Chrzanów; we leave it for road 781 to Płaza road 908 to Tarnowskie Góry then to NW by road 11 to (Kans-Pol quarry, stop B5.1). From Płaza we return to Tworog. From Tworog west by road 907 to Toszek and A4, continue west to Mysłowice and leave for road A1 then west by road 94 to Strzelce Opolskie. From Strzelce to Siewierz (GZD quarry, stop B5.2). From Siewierz Opolskie we take road 409 to Kalinów and then turn we drive A1 south to Podskale cross where we leave south onto a local road to Góra Sw. Anny (accomoda- for S1 westbound to Pyrzowice and then by road 78 to tion). From Góra św. Anny we drive north by a local road Niezdara.
    [Show full text]
  • The Carnian Humid Episode of the Late Triassic: a Review
    The Carnian Humid Episode of the late Triassic: A Review Ruffell, A., Simms, M. J., & Wignall, P. B. (2016). The Carnian Humid Episode of the late Triassic: A Review. Geological Magazine, 153(Special Issue 2), 271-284. https://doi.org/10.1017/S0016756815000424 Published in: Geological Magazine Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2015 Cambridge University Press General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:01. Oct. 2021 Geol. Mag. XXX, The Carnian Humid Episode of the late Triassic: A Review A.RUFFELL*, M.J. SIMMSt & P.B.WIGNALL** *School of Geography, Archaeology & Palaeoecology, Queen’s University, Belfast, BT7 1NN, N.Ireland tNational Museums Northern Ireland, Cultra, Holywood, Co. Down, BT18 0EU [email protected] **School of Earth and Environment, The University of Leeds, Leeds. LS2 9JT ---------------------------------------------------------------------------------------- Abstract - From 1989 to 1994 a series of papers outlined evidence for a brief episode of climate change from arid to humid, and then back to arid, during the Carnian Stage of the late Triassic.
    [Show full text]
  • Beiträge Zur Kenntniss Der Obertriadischen Cephalopoden-Faunen
    562 Retiews—Himalayan Triassic Fossils. Maryland. It is strange that the British Survey has always laboured under difficulties, and that its staff and equipment have been inadequate to deal with many matters of economic interest which other countries find it wise to thoroughly investigate. III.— (1) BEITRAGE ZUR KKNNTNISS DER OBERTRIADISCHEN CEPHALO- PODEN-FAUNEN DES HIMALAYA. By Dr. EDMUND MOJSISOVICS EDLBR VON MOJSVAE. Denkschr. d. k. Akad. d. Wissenschaften, Wien, math.-naturw. Classe, Bd. lxiii, pp. 575-701, pis. i-xxii, 1896. (2) HIMALAYAN FOSSILS. THE CEPHALOPODA OF THE MHSOHELKALK. By CARL DIENER. Mem. Geol. Surv. India. Palseontologia Indica, ser. xv, vol. ii, part 2, 118 pp., xxxi pis., 1895. HEN the older collections from the Himalayan Trias were W described, species were regarded in a much wider sense than obtains nowadays ; hence, before the correlation of the Indian Trias with the Triassic rocks of other countries could be attempted, it was necessary for these collections to be re-examined and fully described. Accordingly, at the suggestion of Mr. Griesbach (now Director), the Geological Survey of India consented to send all their collections of Himalayan fossils to Professor Suess in Vienna, in order that they might be worked out by Austrian specialists. (1) The Cephalopoda were entrusted to Dr. E. Mojsisovics, who has done so much work on the Cephalopoda of the Austrian Trias; and he at once saw that by far the larger number of the specimens came from the lower portion of the Trias, and that the upper beds were represented by only a few specimens. Kecognizing the scientific interest which a more detailed knowledge of the Himalayan Trias would have, in some " Preliminary Eemarks on the Cephalopoda of the Himalayan Trias," which Dr.
    [Show full text]
  • Steam-Water Relative Permeability
    Hydrochemical properties of deep carbonate aquifers, SW-German Molasse Basin Ingrid Stober Karlsruhe Institute of Technology KIT, Institute of Applied Geosciences, Adenauerring 20b, D-76131 Karlsruhe, Germany [email protected] Keywords: Karstified limestone aquifer, deep seated fluids, hydrochemistry, geothermal energy ABSTRACT The Upper Jurassic (Malm) limestone and the middle Triassic Muschelkalk limestone are the major thermal aquifers in the southwest German alpine foreland. The aquifers are of interest for production of geothermal energy and for balneological purposes. The hydrochemical properties of the two aquifers differ in several aspects. The total amounts of dissolved solids (TDS) are much higher within the Upper Muschelkalk aquifer than within the Upper Jurassic. Water composition data reflect the origin and hydrochemical evolution of deep water. Rocks and their minerals control the chemical signature of the water. With increasing depth, the total of dissolved solids increases. In both aquifers, the water evolve to a NaCl-dominated fluid regardless of the aquifer rock. The salinity of the aquifers has different sources. In the case of the Upper Muschelkalk it is linked to deep circulation-systems, while the hydrochemical properties in the Upper Jurassic developed due to changing overburden and hydraulic potential. 1. INTRODUCTION The deep Upper Jurassic carbonates are the most important reservoir rocks for hydrothermal energy use in Southern Germany. Especially in the Munich area of Bavaria (Germany), several geothermal power plants and district heating systems were installed since 2007. In Baden-Württemberg (SW-Germany), the Upper Jurassic thermal aquifer is of shallower depth (Fig.1), therefore colder and the thermal water is rather used for balneological purposes including heating of nearby buildings.
    [Show full text]
  • A New Species of Cyclotosaurus (Stereospondyli, Capitosauria) from the Late Triassic of Bielefeld, NW Germany, and the Intrarelationships of the Genus
    Foss. Rec., 19, 83–100, 2016 www.foss-rec.net/19/83/2016/ doi:10.5194/fr-19-83-2016 © Author(s) 2016. CC Attribution 3.0 License. A new species of Cyclotosaurus (Stereospondyli, Capitosauria) from the Late Triassic of Bielefeld, NW Germany, and the intrarelationships of the genus Florian Witzmann1,2, Sven Sachs3,a, and Christian J. Nyhuis4 1Department of Ecology and Evolutionary Biology, Brown University, Providence, G-B204, RI 02912, USA 2Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany 3Naturkundemuseum Bielefeld, Abteilung Geowissenschaften, Adenauerplatz 2, 33602 Bielefeld, Germany 4Galileo-Wissenswelt, Mummendorferweg 11b, 23769 Burg auf Fehmarn, Germany aprivate address: Im Hof 9, 51766 Engelskirchen, Germany Correspondence to: Florian Witzmann (fl[email protected]; fl[email protected]) Received: 19 January 2016 – Revised: 11 March 2016 – Accepted: 14 March 2016 – Published: 23 March 2016 Abstract. A nearly complete dermal skull roof of a capi- clotosaurus is the sister group of the Heylerosaurinae (Eo- tosaur stereospondyl with closed otic fenestrae from the mid- cyclotosaurus C Quasicyclotosaurus). Cyclotosaurus buech- dle Carnian Stuttgart Formation (Late Triassic) of Bielefeld- neri represents the only unequivocal evidence of Cycloto- Sieker (NW Germany) is described. The specimen is as- saurus (and of a cyclotosaur in general) in northern Germany. signed to the genus Cyclotosaurus based on the limited con- tribution of the frontal to the orbital margin via narrow lat- eral processes. A new species, Cyclotosaurus buechneri sp. nov., is erected based upon the following unique combina- 1 Introduction tion of characters: (1) the interorbital distance is short so that the orbitae are medially placed (shared with C.
    [Show full text]
  • Palaeomagnetic Poles from the Germanic Basin (Winterswijk, the Netherlands) Lars P
    van Hinsbergen et al. Journal of Palaeogeography (2019) 8:30 https://doi.org/10.1186/s42501-019-0046-2 Journal of Palaeogeography ORIGINAL ARTICLE Open Access Triassic (Anisian and Rhaetian) palaeomagnetic poles from the Germanic Basin (Winterswijk, the Netherlands) Lars P. P. van Hinsbergen1, Douwe J. J. van Hinsbergen2*, Cor G. Langereis2, Mark J. Dekkers2, Bas Zanderink2,3 and Martijn H. L. Deenen2 Abstract In this paper, we provide two new Triassic palaeomagnetic poles from Winterswijk, the Netherlands, in the stable interior of the Eurasian plate. They were respectively collected from the Anisian (~ 247–242 Ma) red marly limestones of the sedimentary transition of the Buntsandstein Formation to the dark grey limestones of the basal Muschelkalk Formation, and from the Rhaetian (~ 208–201 Ma) shallow marine claystones that unconformably overlie the Muschelkalk Formation. The magnetization is carried by hematite or magnetite in the Anisian limestones, and iron sulfides and magnetite in the Rhaetian sedimentary rocks, revealing for both a large normal polarity overprint with a recent (geocentric axial dipole field) direction at the present latitude of the locality. Alternating field and thermal demagnetization occasionally reveal a stable magnetization decaying towards the origin, interpreted as the Characteristic Remanent Magnetization. Where we find a pervasive (normal polarity) overprint, we can often still determine well-defined great-circle solutions. Our interpreted palaeomagnetic poles include the great-circle solutions. The Anisian magnetic pole has declination D ± ΔDx =210.8±3.0°, inclination I±ΔIx = − 26.7 ± 4.9°, with a latitude, longitude of 45.0°, 142.0° respectively, K = 43.9, A95 =2.9°, N = 56.
    [Show full text]
  • Flora Und Fauna
    Flora und Fauna Flora und Fauna Elemente der Floren und Faunen des Letten keupers sind seit 200 Jahren Ge- genstand wissenschaftlicher Untersuchun- gen, und doch gelingen gerade in jüngs- ter Zeit immer wieder spektakuläre Funde, die wesentlich zur Rekonstruktion des Ge- samtbildes von einer Lebewelt zwischen dem marinen Muschelkalk und dem weit- gehend terrestrischen Keuper beitragen. Die reichen Pfl anzenfunde, die insbeson- dere zu Zeiten des Handabbaus in den vie- len Sandsteinbrüchen geborgen wurden, fanden mehrfach moderne zusammenfas- Das Lettenkeuper-Diorama im Stuttgarter sende Bearbeitungen. Anders ist dies bei Naturkundemuseum. Grafi k C. Winter. den Wirbellosen, die seit den Arbeiten von SCHAUROTH und ZELLER aus dem vorletzten und letzten Jahrhundert nicht zusammenfas- send revidiert wurden. In noch höherem Maß gilt das für die Wirbeltiere. Und gerade zu den Amphibien und Reptilien, aber auch zu den verschiedenen Gruppen der Fische, wur- den zahlreiche Spezialabhandlungen verfasst, die meist in internationalen Zeitschriften erschienen und für Sammler und Nichtspezialisten nicht ohne Weiteres zugänglich sind. Diese Lücke sollen die folgenden Kapitel schließen, doch bleiben diese Übersichtsdarstel- lungen angesichts des ständigen Fortschritts und zu erwartender künftiger – und bereits geglückter, aber noch nicht publizierter – Funde naturgemäß zeitgebunden und können schnell überholt sein. Wie lückenhaft die Vorstellung von den Lettenkeuper-Floren und -Faunen immer noch ist, zeigt sich allein schon daran, dass manche Pfl anzenteile nach Zerfall und Transport iso- liert gefunden werden und immer noch Rätsel aufgeben, wie sie zusammen gehören, aber auch daran, dass immer wieder völlig unerwartete Entdeckungen gelingen. Erst besonde- re Glücksfunde erlauben es auch, Palynomorphe mit bestimmten Makropfl anzen in Ver- bindung zu bringen.
    [Show full text]
  • Cyclotosaurus Buechneri – Ein Neuer Riesenlurch Aus Der Oberen Trias Von Erhältlich Unter Bielefeld, In: Der Steinkern – Heft 27 (4/2016), S
    Cyclotosaurus buechneri – ein neuer Riesen- lurch aus der oberen Trias von Bielefeld Florian Witzmann, Sven Sachs & Christian Nyhuis Mehrere Meter große, entfernt an Krokodile erinnernde Lurche, die sogenann- ten Capitosaurier, beherrschten in der Trias die limnischen Ökosysteme in wei- ten Teilen der Welt. Ein Vertreter der Capitosaurier, der aufgrund seiner rund- um geschlossenen Ohröffnung zu den Rundohrlurchen (Cyclotosaurier) gezählt werden kann, wurde vor über 40 Jahren im Schilfsandstein der oberen Trias von Bielefeld entdeckt – ein Novum für Norddeutschland, findet man die Überreste solcher Riesen doch zumeist in triassischen Sedimenten Süddeutschlands. Der Fund wurde jetzt erstmals wissenschaftlich ausgewertet und es zeigte sich, dass es sich um eine neue Art der Gattung Cyclotosaurus handelt. Obwohl heutige Lurche oder Amphibi- Jahren erlangte der Schädel als „Bielefel- en (Frosch- und Schwanzlurche sowie der Urlurch“ einige Berühmtheit in Biele- die beinlosen Blindwühlen) wichtige Be- feld und Umgebung. So ist beispielsweise standteile limnischer und terrestrischer seit 2006 ein detailgetreuer Abguss des Ökosysteme darstellen, sind sie für uns Schädels in einer Bodenvitrine der unterir- Menschen doch unscheinbar und wir be- dischen Stadtbahnhaltestelle Rudolf-Oet- kommen sie eher selten zu Gesicht. Das ker-Halle in Bielefeld ausgestellt. Trotz liegt zum einen an ihrer verborgenen, oft seiner regionalen Bekanntheit blieb der nachtaktiven Lebensweise und zum ande- Schädel für Jahrzehnte wissenschaftlich ren an ihrer meist geringen Körpergröße. unbearbeitet. Die Bearbeitung wurde nun Insbesondere aus dem Perm und der Trias von den Autoren vorgenommen, die eine kennen wir jedoch Lurche, die mehrere genaue Beschreibung des Schädels sowie Meter groß werden konnten und die Top- der Verwandtschaftsverhältnisse des Bie- Prädatoren ihrer jeweiligen Lebensräu- lefelder Individuums zu anderen Lurchen me darstellten (SCHOCH & MILNER, 2000).
    [Show full text]
  • Redalyc.Diagenesis and Geochemistry of Upper Muschelkalk
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Tucker, Maurice; Marshall, Jim Diagenesis and Geochemistry of Upper Muschelkalk (Triassic) Buildups and Associated Facies in Catalonia (NE Spain): a paper dedicated to Francesc Calvet Geologica Acta: an international earth science journal, vol. 2, núm. 4, 2004, pp. 257-269 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50520402 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.2, Nº4, 2004, 257-269 Available online at www.geologica-acta.com Diagenesis and Geochemistry of Upper Muschelkalk (Triassic) Buildups and Associated Facies in Catalonia (NE Spain): a paper dedicated to Francesc Calvet 1 2 MAURICE TUCKER and JIM MARSHALL 1 Department of Earth Sciences University of Durham Durham DH1 3RL, UK. E-mail: [email protected] 2 Department of Earth Sciences, University of Liverpool Brownlow Street, Liverpool L69 3GP, UK. E-mail: [email protected] ABSTRACT Carbonate buildups are well developed in the Triassic Upper Muschelkalk of eastern Spain in the La Riba Unit, but they are completely dolomitised. These mud-mounds with reefal caps have well-developed fibrous and botry- oidal marine cements which were probably high-Mg calcite and aragonite originally. The dolomite is fabric retentive indicating an early origin, but the ␦18O values are quite negative (average -3.‰), interpreted as indicat- ing recrystallisation during shallow burial, but without fabric destruction.
    [Show full text]
  • THE Geologlcal SURVEY of INDIA Melvioirs
    MEMOIRS OF THE GEOLOGlCAL SURVEY OF INDIA MElVIOIRS OF THE GEOLOGICAL SURVEY OF INDIA VOLUME XXXVI, PART 3 THE TRIAS OF THE HIMALAYAS. By C. DIENER, PH.0., Professor of Palceontology at the Universz'ty of Vienna Published by order of the Government of India __ ______ _ ____ __ ___ r§'~-CIL04l.~y_, ~ ,.. __ ..::-;:;_·.•,· ' .' ,~P-- - _. - •1~ r_. 1..1-l -. --~ ·~-'. .. ~--- .,,- .'~._. - CALCU'l"l'A: V:/f/ .. -:-~,_'."'' SOLD AT THE Ol<'FICE OF THE GEOLOGICAL SURVEY o'U-1kI>i'A,- 27, CHOWRINGHim ROAD LONDON: MESSRS. KEGAN PAUT,, TRENCH, TRUBNER & CO. BERLIN : MESSRS. FRIEDLANDEH UND SOHN 1912. CONTENTS. am I• PA.GE, 1.-INTBODUCTION l 11.-LJ'rERA.TURE • • 3· III.-GENERAL DE\'ELOPMEKT OF THE Hrn:ALAYA.K TRIAS 111 A. Himalayan Facies 15 1.-The Lower Trias 15 (a) Spiti . Ip (b) Painkhanda . ·20 (c) Eastern Johar 25 (d) Byans . 26 (e) Kashmir 27 (/) Interregional Correlation of fossiliferous horizons 30 (g) Correlation with the Ceratite beds of the Salt Range 33 (Ti) Correlation with the Lower Trias of Europe, Xorth America and Siberia . 36 (i) The Permo-Triassic boundary . 42 II.-The l\Iiddle Trias. (Muschelkalk and Ladinic stage) 55 (a) The Muschelkalk of Spiti and Painkhanda v5 (b) The Muschelkalk of Kashmir . 67 (c) The llluschelka)k of Eastern Johar 68 (d) The l\Iuschelkalk of Byans 68 (e) The Ladinic stage.of Spiti 71 (f) The Ladinic stage of Painkhanda, Johar and Byans 75 (g) Correl;i.tion "ith the Middle Triassic deposits of Europe and America . 77 III.-The Upper Trias (Carnie, Korie, and Rhretic stages) 85 (a) Classification of the Upper Trias in Spiti and Painkhanda 85 (b) The Carnie stage in Spiti and Painkhanda 86 (c) The Korie and Rhretic stages in Spiti and Painkhanda 94 (d) Interregional correlation and homotaxis of the Upper Triassic deposits of Spiti and Painkhanda with those of Europe and America 108 (e) The Upper Trias of Kashmir and the Pamir 114 A.-Kashmir .
    [Show full text]