Translocation of Southern Sunnhemp Mosaic Virus in Crotalaria Juncea L

Total Page:16

File Type:pdf, Size:1020Kb

Translocation of Southern Sunnhemp Mosaic Virus in Crotalaria Juncea L Proc. Indian Aead. Sei. (PI. Sci.), Vol. 89, Number 1, January 1980, pp. 5%60. 9 Printed in India. Translocation of Southern sunnhemp mosaic virus in Crotalaria juncea L. J J SOLOMON and C B SULOCHANA Centre for Advanced Studies in Botany, University of Madras, Madras 600 005 MS received 17 February 1979 Abstract. The translccation of Southern sunnhemp mosaic virus (SSMV) in its primary host Crotalariajuncea was studied by local lesion assay. The systemic spread of the virus was rapid and efficient; 24 hr after inoculation of the primary leaves, the virus could be recoveredfrom the developing stem and leaves as well as the hypo- cotyls showing movement and multiplication of the virus in the stem axis in both directions of the primary node. In the roots, the multiplication of Southern sunnhemp mosaic virus was delayed but the titre reached a 1 igh level by the fifth day. The pattern of movement of Southern sunnhemp mosaic virus in vivo differed from those of TMV and other plant viruses. Keywords. Translccation; Southern sunnhemp mosaic virus; Crotalaria juncea. 1. Introduction Southern sunnhemp mosaic disease of Crotalaria juncea L. (Capoor 1962) is of economic importance. This crop is raised extensively for green manuring of fields in rotation with cereals and sugarcane, and as a fibre crop in Bengal. When seed- lings of sunnhemp were manually inoculated with the Southern sunahemp mosaic virus (SSMV), there was invariably cent percent infection; the virus titre in vivo reached the maximum level 10 days after inoculation and remained high till the emergence of the inflorescence pdmordia (Solomon 1972). These observations prompted us to study the pattern of translocation and the systemic spread of SSMV in sunnhemp plants and the results are presented in this paper. 2. Materials and methods Sunnhemp seedlings (vat K 12 yellow) were raised in washed river sand in earthen- ware pots. The primary leaves of 6-7 day-old plants were inoculated ~ith SSMV inoculum. The seed'ings were subjected to 24 hr dark treatment prior to inocu- lation. 2.1. Inoculum One gram of SSMV infected tissue ground in 1 ml of distilled water plus 7 mg of celite 503 per ml was used as standard inoculum, 57 58 J J Solomon and C B Sulochana Following inoculation, plants were carefully uprooted from the pots at 24 hr intervals and washed thoroughly; sap inocula were prepared from roots, hypo- cotyls, inoculated leaves, emerging stem and leaves and assayed on the primary leaves of Cyamopsis tetragonoloba Taub. (cluster beans). The results are presented in figure 1. 3. Results One day after the inoculation, the presence of SSMV outside the inoculated leaves was recorded in the hypocotyls as well as in the emerging stem and leaves, indi- cating movement of the virus particles from the site of inoculation on the lamina of the primary leaves through the petioles to the stem, the spread of the virus in the stem in both upward and downward directions and viral multiplication in these tissues in 24 hr. Up to the third day, viral multiplication ~as greater in hypo- cotyl region than in the stem and emerging leaves in which the rate of increase enhanced from the fourth day. Despite the quick movement of the virus into the hypocotyl, SSMV could not be detected in the roots until the tt, ird day, but there- after the rate of increase of the virus particles was the 1-,ighest in the roots. Five days after the inoculation, the virus concentration in the various plant parts assayed reached comparable levels establishing an equilibrium of the virus titre in vivo. 4. Discussion The most striking feature about ~MV infection of its primary host, C. juncea, is the rapidity with which it becomes systemic (figure 1). There is a quick move- ment of ~,VIV from the mechanically inoculated leaf through its petiole to the stem in the downward direction to the hypocotyl and upwards to the stem and emerging, le~. It is noteworthy that the movement of SSMV in the sunnhemp seedlings is found to be faster than what has been recorded in literature for TMV, PVX, tomato aucuba rriosaic strain of TMV by Samuel (1934), and Capoor 0949) in experiments done with mature plants. It was thought that with the mechanically inoculated viruses there was considerable delay before the v~rus particles left the inoculated leaves and this is attributed to slow cell-to-cell movement through the parenchyma. While it took no longer than 24 hr for some particles of TMV (Bennett 1956), and Southern bean mosaic virus (Worley and Schneider 1963) to spread from the inoculated epidermis to the other epidermal layer, yet it required more than 24 hr for the virus particles to egress from the inoculated leaves (Beemster 1958). In the case of tobacco ratt.le virus, it was shown by Zoeten (1966) that it could be detected in the axillary buds two days after inoculation. The delayed entry of ~kSM'V into the root system, more possibly the delay in the initiation of viral multiplication in sunnhemp roots is contrary to the general observation that systemic viruses first move to the root system. For instance, TMV remained in the root system or moved into the tips only after an interval (Bennett 1940; Fulton 1941). It was explained by Bax~den (1964) that viruse~ de not usually reach high concentration in the roots and the movement out of the roots is slow. In contrast to these earlier observations and explanations, it was Translocation of sunnhemp mosaic virus in C. juncea 59 160 / 120 "5 o 80 -6 ,,J 40 / / l I ~ I ___/i 1 2 3 4 5 Days after inoculation Figure 1. Systemic infection of C. juncea by SSMV as measured by relative infecti- vity of roots (O), hypocot~ls (,t,), stem and leaves (O) following inoculation of the primary leaves (A). found in the present study that there was an initial lag phase in the occurrence of infectious virus particles in the roots but the virus concentration did reach high levels quickly. Thus the pattern of translocation of SSMV in its systemic host differed markedly from those recorded for TMV and other plant viruses. Acknowledgement The authors thank the University of Madsas for permission to publish this work. References Bawden F C 1964 Plant viruses and virus diseases 4th ed. (New York : Ronald Press) p 361 Beemster A B R 1958 Translocation of virus X in the potato (Solanum tuberosum L.) in primarily infected plants (Wageningen : Veeman and Zinen) 1-98 Bennett C W 1940 Acquisition and transmission of viruses by dGdder (Cuscuta subinclusa); Phyto- pathology 30 2 Bennett CW 1956 Biological reactions of plant viruses; Annu. Rev. PI. Physiol. 7 143-170 Capoor S P 1949 The movement of tobacco mosaic viiaases and potato virus X through tomato plants; Ann. Appl. Biol. 36 307-31~ 60 J J Solomon and C B Sulochana Capoor S P 1962 Southern surmhemp mosaic virus: A strain of tobacco mosaic virus; Phyto- pathology 52 393-397 Fulton R W 1941 The behaviour of certain viruses in plant roots; Phytopathology31 575-594 Samuel G 1934 The movement of tobacco mosaic virus within the plant; Ann. Appl. Biol. 21 90- 111 Solomon J J 1972 Studies on Southern sunnhemp mosaic virus; Doctoral Thesis, University of Madras, Madras Worley J F and Schneider 1 R 1963 Progressive distribution of Southern bean mosaic virus antigen in bean leaves determined with a fluorescent antibody stain; Phytopathology 53 1255-1257 Zoeten C A de 1966 California tobacco rattle virus, its inter-cellular appearance and the cytology of the infected cell; Phytopathology 56 744-754 .
Recommended publications
  • Effectiveness of Seed Treatments in Reducing TMV Infection Tanner A
    Effectiveness of Seed Treatments in Reducing TMV Infection Tanner A. Robison Mentor: Claudia Nischwitz Department of Biology, Utah State University, Logan, Utah, USA Abstract Germination Rate Tobacco mosaic virus (TMV), named for the plant it was first discovered in, 1 can infect hundreds of different species. It has no known invertebrate 0.9 vectors, but TMV is spread mechanically through contact with other plants, 0.8 clothes, tools, contaminated soil and seedborne. While TMV is known to be 0.7 exceptionally stable, it has been reported that treatment of tools with 0.6 powdered milk can significantly reduce the infection rate of the virus. While 0.5 there is a seed treatment available for conventional agriculture, there is no 0.4 seed treatment available for organic production. Organic growers, who grow 0.3 heirloom tomatoes experience the highest rates of TMV infection. Since 0.2 powdered milk has been reported as an effective means of treatment in 0.1 tools, the purpose of this research is to determine whether it can be an 0 Almond Soy Rinsed Unrinsed Control effective seed treatment. To test this, tomato seeds were treated with powdered milk, soy milk, almond milk and water. A grow out test was then Results/Discussion conducted in a greenhouse and plants were tested for infection using In the grow out trial little effect was seen. The infection rate for Polymerase Chain Reaction and antibody based ELISA testing. In the first grow powdered milk, almond milk, soy milk and control treatments out trial treatment little effect was seen, with infection rate for the powdered were 61%, 34%, 32% and 47%, respectively.
    [Show full text]
  • Induction of Plant Resistance Against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces Cellulosae Isolate Actino 48
    agronomy Article Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae Isolate Actino 48 Gaber Attia Abo-Zaid 1 , Saleh Mohamed Matar 1,2 and Ahmed Abdelkhalek 3,* 1 Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt; [email protected] (G.A.A.-Z.); [email protected] (S.M.M.) 2 Chemical Engineering Department, Faculty of Engineering, Jazan University, Jazan 45142, Saudi Arabia 3 Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab city, Alexandria 21934, Egypt * Correspondence: [email protected] Received: 8 September 2020; Accepted: 19 October 2020; Published: 22 October 2020 Abstract: Viral plant diseases represent a serious problem in agricultural production, causing large shortages in the production of food crops. Eco-friendly approaches are used in controlling viral plant infections, such as biocontrol agents. In the current study, Streptomyces cellulosae isolate Actino 48 is tested as a biocontrol agent for the management of tobacco mosaic virus (TMV) and inducing tomato plant systemic resistance under greenhouse conditions. Foliar application of a cell pellet suspension of Actino 48 (2 107 cfu. mL 1) is performed at 48 h before inoculation with TMV. Peroxidase activity, × − chitinase activity, protein content, and the total phenolic compounds are measured in tomato leaves at 21 dpi. On the other hand, the TMV accumulation level and the transcriptional changes of five tomato defense-related genes (PAL, PR-1, CHS, PR-3, and PR-2) are studied.
    [Show full text]
  • The Cell Biology of Tobacco Mosaic Virus Replication and Movement
    REVIEW ARTICLE published: 11 February 2013 doi: 10.3389/fpls.2013.00012 The cell biology ofTobacco mosaic virus replication and movement Chengke Liu and Richard S. Nelson* Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, OK, USA Edited by: Successful systemic infection of a plant by Tobacco mosaic virus (TMV) requires three Jean-François Laliberté, Institut processes that repeat over time: initial establishment and accumulation in invaded cells, National de la Recherche Scientifique, Canada intercellular movement, and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and Reviewed by: Xueping Zhou, Zhejiang University, host proteins and virus RNA during a dynamic process that can be visualized. Multiple China membranes appear to assist TMV accumulation, while membranes, microfilaments and Yule Liu, Tsinghua University, China microtubules appear to assist TMV movement. Here we review cell biological studies *Correspondence: that describe TMV-membrane, -cytoskeleton, and -other host protein interactions which Richard S. Nelson, Plant Biology influence virus accumulation and movement in leaves and callus tissue. The importance Division, The Samuel Roberts Noble Foundation, Inc., 2510 Sam Noble of understanding the developmental phase of the infection in relationship to the observed Parkway, Ardmore, OK 73401, USA. virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations e-mail: [email protected] of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model forTMV accumulation and intracellular spread in a cell biological context is provided. Keywords: membrane transport, microfilaments, microtubules, plant virus, vesicle trafficking, tobamovirus INTRODUCTION of the observed outcome on the mechanism of virus movement is Viruses, as obligate organisms, utilize host factors to accumu- noted.
    [Show full text]
  • Diversity of Plant Virus Movement Proteins: What Do They Have in Common?
    processes Review Diversity of Plant Virus Movement Proteins: What Do They Have in Common? Yuri L. Dorokhov 1,2,* , Ekaterina V. Sheshukova 1, Tatiana E. Byalik 3 and Tatiana V. Komarova 1,2 1 Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; [email protected] (E.V.S.); [email protected] (T.V.K.) 2 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia 3 Department of Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; [email protected] * Correspondence: [email protected] Received: 11 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function.
    [Show full text]
  • Tomato, Tobacco Mosaic Virus
    Problem: Tobacco Mosaic Virus of Tomato Host Plants: Tomato, pepper, eggplant, tobacco, spinach, petunia, marigold. Description: Several virus diseases to tomato occur in Kansas, although they generally are not as prevalent as the wilt and foliar diseases. Three of the more common virus diseases are tobacco mosaic, cucumber mosaic, and spotted wilt. The tobacco mosaic virus can attack a wide range of plants, including tomato, pepper, eggplant, tobacco, spinach, petunia and marigold. On tomato, virus infection causes light and dark green mottled areas on the leaves. The dark green areas tend to be somewhat thicker than the lighter portions of the leaf. The leaf mottling is seen more easily if the affected plant surface is partially shaded. Stunting of young plants is common and often is accompanied by a distortion and fern-like appearance of the leaves. Older leaves curl downward and may be slightly distorted. Certain strains of the virus can cause a mottling, streaking and necrosis of the fruits. Infected plants are not killed, but they produce poor quality fruit and low yields. Tobacco mosaic, is incited by a virus. The tobacco mosaic virus is very stable and can persist in contaminated soil, in infected tomato debris, on or in the seed coat, and in manufactured tobacco products. The virus is transmitted readily from plant to plant by mechanical means. This may simply involve picking up the virus while working with infected plant material, then inoculating healthy plants by rubbing or brushing against them with contaminated tools, clothing, or hands. Aphids are not vectors of the virus, although certain chewing insects may transmit the pathogen.
    [Show full text]
  • The Isolation and Properties of Crystalline Tobacco Mosaic Virus
    W ENDELL M . S T A N L E Y The isolation and properties of crystalline tobacco mosaic virus Nobel Lecture, December 12, 1946 Although the idea that certain infectious diseases might be caused by in- visible living agents was expressed by Varro and Columella about 100 B. C., there was no experimental proof and the idea was not accepted. The cause of infectious disease remained a mystery for hundreds of years. Even the won- derful work of Leeuwenhoek and his description of small animals and bacte- ria during the years from 1676 to 1683 failed to result in proof of the relation- ship between bacteria and infectious disease. There was, of course, much speculation and during the latter half of the 19th century great controversies arose over the germ theory of disease. Then, through the brilliant work of Pasteur, Koch, Cohn, Davaine and others, it was proved experimentally, for the first time, that microorganisms caused infectious diseases. The Golden Era of bacteriology followed and the germ theory of infectious disease was accepted so completely that it became heresy to hold that such diseases might be caused in any other way. Thus, when, in 1892 Iwanowski discovered that the juice of a plant diseased with tobacco mosaic remained infectious after being passed through a filter which retained all known living organisms, he was willing to conclude that the disease was bacterial in nature, despite the fact that he could not find the causative bacteria. As a result, his observations failed to attract attention. However, six years later, the filtration experiment was repeated and extended, independently, by Beijerinck, who immediately recognized the significance of the results and referred to the infectious agent, not as being bacterial in nature, but as a contugium vivum fluidum.
    [Show full text]
  • Beijerinck's Work on Tobacco Mosaic Virus: Historical Context and Legacy
    Beijerinck's work on tobacco mosaic virus: historical context and legacy L. Bos DLO Research Institute for Plant Protection (IPO-DLO), PO Box 9060, 6700 GW Wageningen,The Netherlands Beijerinck's entirely new concept, launched in 1898, of a ¢lterable contagium vivum £uidum which multiplied in close association with the host's metabolism and was distributed in phloem vessels together with plant nutrients, did not match the then prevailing bacteriological germ theory. At the time, tools and concepts to handle such a new kind of agent (the viruses) were non-existent. Beijerinck's novel idea, therefore, did not revolutionize biological science or immediately alter human understanding of contagious diseases. That is how bacteriological dogma persisted, as voiced by Loe¥er and Frosch when showing the ¢lter- ability of an animal virus (1898), and especially by Ivanovsky who had already in 1892 detected ¢lterability of the agent of tobacco mosaic but kept looking for a microbe and ¢nally (1903) claimed its multiplication in an arti¢cial medium. The dogma was also strongly advocated by Roux in 1903 when writing the ¢rst review on viruses, which he named `so-called ``invisible'' microbes', unwittingly including the agent of bovine pleuropneumonia, only much later proved to be caused by a mycoplasma. In 1904, Baur was the ¢rst to advocate strongly the chemical view of viruses. But uncertainty about the true nature of viruses, with their similarities to enzymes and genes, continued until the 1930s when at long last tobacco mosaic virus particles were isolated as an enzyme-like protein (1935), soon to be better character- ized as a nucleoprotein (1937).
    [Show full text]
  • Tobacco Mosaic Virus (TMV)
    Tobacco mosaic virus (TMV) Tobacco mosaic virus is the type member of the genus Tobamovirus, family Virgaviridae: consisting of rigid rods with single-stranded positive-sense RNA, and monomeric coat protein. Symptoms: TMV can cause symptoms including: stunting, mosaic, malformation of leaves and growing points, rugosity, yellow streaking (especially in monocots), yellow spotting, vein-clearing, and necrotic leaf spots. Many hosts are symptomless. TMV is systemic in many hosts, with particles found in roots as well as aerial portions of plant, often at very high titres. Host Range: Over 200 plant species in 11 families known to be hosts. Hosts include: tobacco, tomato, potato, pepper, other Solanaceae, Chenopodium, beet, melon, cucumber, squash, lettuce, horsenettle, Anemone, Begonia, Calibrachoa, Chrysanthemum, Coleus, Delphinium, Geranium, Impatiens, Lobelia, marigold, Petunia, plantain, poppy and Verbena. Many hosts (including several Petunia varieties) are symptomless. Epidemiology: TMV is transmitted mechanically by handling plants, as well as by tools (as many as 20 plants after cutting an infected one). Historically, tobacco products often contained TMV particles, less in flue-cured products; workers were thought to introduce and spread throughout plantings on contaminated hands. Though not considered transmissible by insects, chewing insects such as grasshoppers or flea beetles may very rarely spread by contaminated mouthparts. Is not seed transmitted, but can infect from contaminated seed coats or soil. Root fragments left in soil and leaf litter can serve as an inoculum source. TMV is graft transmissible. Virus particles are very stable, even in unpurified sap. There are records of dried leaf material remaining infectious for 30 to 50 years at room temperature.
    [Show full text]
  • The Discovery of the Causal Agent of the Tobacco Mosaic Disease
    From the book Discoveries in Plant Biology, 1998, pp.: 105-110. S.D Kung and S. F. Yang (eds). Reprinted with permission from the World Publishing Co., Ltd. Hong Kong. Chapter 7 The Discovery of the Causal Agent of the Tobacco Mosaic Disease Milton Zaitlin Cornell University Ithaca, New York 14853, USA ABSTRACT The discovery of the causal agent of the disease causing mosaic and distortion on tobacco plants, with the concomitant realization that the etiologic agent was something unique - a virus - came at the end of the 19th century. This marked the beginning of the science of virology, although many diseases now known to be caused by viruses were described much earlier. This review documents the contributions of the three men who were the pioneers in this work, namely, Adolph Mayer, Dmitrii Iwanowski and Martinus Beijerinck. To appreciate the discovery of the new infectious agent, the virus, at the end of the 19th century, we must think within the context of what was known about disease etiology at that time. It had only been appreciated for a short time that many diseases were caused by infectious entities. The work of pioneers like Pasteur, Lister and Koch had brought an appreciation of the causal agents of anthrax and tuberculosis. The dogma of the day was firmly entrenched in the postulates of Koch, who described in detail what was essential in order to establish the causal organism for a disease: 1) The organism must be associated with the pathological relationship to the disease and its symptoms; 2) The organism must be isolated and obtained in pure culture; 3) Inoculation of the organism from the pure culture must reproduce the disease; and 4) The organism must be recovered once again from the lesions of the host.
    [Show full text]
  • Tobamoviruses-Tobacco Mosaic Virus
    Agri-Science Queensland Employment, Economic Development and Innovation and Development Economic Employment, Tobamoviruses—tobacco mosaic virus, tomato mosaic virus and pepper mild mottle virus Department of Departmentof Integrated virus disease management Tobamoviruses—tobacco mosaic virus (TMV), tomato mosaic virus (ToMV) and pepper mild mottle virus Key points (PMMV)—are stable and highly infectious viruses • Tobacco, tomato and pepper mild mottle that are very easily spread from plant to plant by viruses (tobamoviruses) are highly infectious contact. These viruses can survive for long periods and are easily spread by contact (leaves in crop debris and on contaminated equipment. touching and people handling plants). Although these viruses affect field crops, they are • The viruses can be carried on seed. more often a problem in greenhouse crops where • The viruses survive in crop debris, including plants are generally grown at a higher density and roots in soil and on contaminated equipment handled more frequently. and clothing. • Healthy seedlings and strict hygiene form Host plants and symptoms the basis of effective management. TMV infects a wide range of hosts, including crop plants, weeds and ornamentals. ToMV also infects a wide range of host plants, but is most frequently Survival and spread found in tomato and capsicum. PMMV is largely restricted to capsicums, including chilli types. Unlike most plant viruses, tobamoviruses are not transmitted by insects. The symptoms caused by TMV and ToMV can vary considerably with the strain of virus, time of Tobamoviruses are very stable in the environment infection, variety, temperature, light intensity and and can survive on implements, trellis wires, stakes, other growing conditions.
    [Show full text]
  • Preventing Tobacco Mosaic Virus Infection
    Tom Ford [email protected] Volume 8 Number # 15 March 2019 Preventing Tobacco Mosaic 2019 Sponsors Virus Infection Tobacco Mosaic Virus (TMV) outbreaks are frequently blamed on the shipment of infected plugs or cuttings into area greenhouses. While this may be accurate in some cases, there are many more instances of localized TMV outbreaks that can be linked to our employees and growing practices. While it now seems like a century ago, I once served as an assistant grower for a mid-sized wholesale/retail greenhouse operation in the Maryland area. We had approximately 20 full time employees on the books, but over 200 workers would pass through our operation in a given year. The vast majority of these employees were tobacco users and even though we had defined break areas and handwashing facilities we would frequently catch our best workers using tobacco products in and around our greenhouse facilities. Tobacco Mosaic Virus is a very stable virus that can exist in its infectious state for 40 years or longer. During my tenure as assistant grower, workers would wear sweatshirts and jackets to and from the various greenhouse ranges. Because of employee turnover, sweatshirts and jackets would remain behind in the breakroom and in the greenhouse for years after an employee left our operation. Any jacket or sweatshirt left in a greenhouse or breakroom was deemed community property and was considered fair game to be worn by anyone that currently worked at the operation. Unfortunately, the innocently hanging jacket in the corner of the greenhouse that was once worn by a tobacco user could now serve as the source of TMV inoculum from a non-smoker who grabbed the coat on their way to the lower greenhouse range.
    [Show full text]
  • Tomato Virus Diseases: Various Introduction Lettuce, Pepper) and Ornamentals (E.G
    Plant Disease Diagnostic Clinic Plant Pathology and Plant‐Microbe Biology Section 334 Plant Science Building Ithaca, NY 14853‐5904 Tomato Virus Diseases: Various Introduction lettuce, pepper) and ornamentals (e.g. Delphinium, Fresh tomatoes are a hallmark of summer and a staple Geranium, Petunia, Zinnia). These alternate hosts in many home gardens. Identification and may serve as a source of inoculum for tomato management of tomato diseases is an important step infection. Symptoms on tomato may vary depending in obtaining a successful tomato harvest. Viral on severity and time of infection but typically include diseases can negatively affect tomatoes by drastically plant stunting and yellowing and/or mottling of reducing yield and/or fruit quality. This fact sheet leaves. The most characteristic feature of this disease is highlights 3 viral diseases of tomato that are wrinkling of leaves such that stems appear prominent, commonly encountered by home gardeners: forming a ‘shoestring’ appearance. Cucumber Mosaic Virus (CMV), Tobacco Mosaic Virus (TMV) and Tomato Spotted Wilt Virus Tobacco Mosaic and Tomato Mosaic Viruses are (TSWV). Information designed to aid in diagnosis closely related viruses causing similar symptoms and and management of these viral diseases is provided. so will be covered together. These viruses are common in home gardens, affecting a number of flowers, weeds, and vegetables such as tomato, pepper, and eggplant. Infected tomato plants are characterized by a light- and dark-green mottling and possibly upward curling and malformation of leaves. Mottling is best viewed by partially shading a leaf. Other symptoms may include plant stunting, uneven fruit ripening, and reduced fruit set.
    [Show full text]