Kong Hawii 0085O 10931.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Kong Hawii 0085O 10931.Pdf VIRAL DISEASES OF CROTALARIA IN HAWAII THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IIN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT PATHOLOGY MAY 2021 By Alexandra Kong Thesis Committee: Michael Melzer, Chairperson John Hu Koon-Hui Wang ACKNOWLEDGEMENTS I would like to start off by thanking my committee members Dr. Michael Melzer, Dr. John Hu, and Dr. Koon-hui Wang for their patience and mentorship during my time here at the University of Hawaii at Manoa. I would also like to thank my family and fellows in tropical plant pathology for their unwavering support during these past couple of years. I’m very thankful for the members of the Agrosecurity lab, past and present, for their kindness and putting up with me for the past 4 years. This includes Dr. Michael Melzer, Dr. Shizu Watanabe, Miriam Long, Tomie Vowell, Asoka de Silva, Alejandro Olmedo Velarde, Brandi-Leigh Adams, Jarin Loristo, Cheyenne Barela, Nelson Masang Jr., and Lisa Lowe. The biggest thanks to Dr. Michael Melzer for being an outstanding mentor and giving me the opportunity to work in his lab as both an undergraduate and graduate student; his kindness and leadership being a true inspiration during my years working in his lab. Thanks to Flora Samis and Dr. Koon-hui Wang for collecting the infected sunn hemp material from the Poamoho Research Station and to the extension agent Alton Aragaki for finding and collecting infected Crotalaria samples from the Big Island. Dr. John Hu, Dr. Wayne Borth, and the Spring 2019 PEPS602 class that helped with the purification of SHMoV virus particles that were later used in the transmission electron microscopy. Additional thanks to Miriam Long, a previous member of the Argosecurity Lab, whose work served as a foundation upon which this thesis was built. ii ABSTRACT Sunn hemp (Crotalaria juncea) is a leguminous cover crop valued for its ability to rapidly accumulate biomass and fix nitrogen. In October 2016, farmers in Maui County noticed symptoms of leaf mottle, reduced seed pod numbers, and a reduction in seed yield of their sunn hemp crop. Although these symptoms are indicative of Sunn hemp mosaic virus (SHMV) infection, next generation sequencing of a dsRNA-based library revealed the presence of two viruses not yet reported in Hawaii. The first, Tobacco streak virus (TSV) is Ilarvirus previously reported in the continental United States, but not in Hawaii. The second virus is a novel viral species with notable homology to members of the genus Tobamovirus and most similar in sequence identity to SHMV. In 2018 sunn hemp samples from Poamoho with symptoms of leaf chlorosis were also sampled. Next generation sequencing of a dsRNA-based library revealed the presence of another virus not yet reported in Hawaii, the Fabavirus Broad bean wilt virus 2. A weedy sunn hemp relative, Crotalaria micans was also sampled from the Big Island and was found to be infected with the potyvirus Bean common mosaic virus. The presence of these new viruses could cause potential problems not only to the sunn hemp industry in Hawaii, but may potentially impact local agriculture. The purpose of this study was to identify the pathogen(s) responsible for the observed symptoms on C. juncea and other Crotalaria species as well as better characterize this new tobamovirus. iii Table of Contents Acknowledgements………………………………………………………………………………..ii Abstract…………………………………………………………………………………………...iii List of Tables……………………………………...….………………………………………….vii List of Figures………………………………………………………………………...…………viii Preface……………………………………………………………………………………………..x Chapter 1: Literature Review…………………………………………………………………...…1 Crotalaria juncea…………………………..…………………………………………...…1 Tobamoviruses…………………………………………………………………………….5 Sunn-hemp mosaic virus…………………………………………………………………..5 Seed Transmission of Tobamoviruses……………………...……………………………..6 Chapter 2: Molecular and Physical Characterization of a Tobamovirus Infecting Sunn Hemp in Hawaii……………………………………………………………………………………………..8 Introduction………………………………………………………………………………..8 Materials and Methods…………………………………………………………………...10 Viral Source and Maintenance…………………………………………………...10 Sequencing and Phylogenetic Analyses………..………………………………...11 Molecular Detection of sunn-hemp mottle virus………………………………...12 Transmission Electron Microscopy……………………………………………...14 Results……………………………………………………………………………………15 Sequencing and Phylogenetic Analyses………..………………………………...15 Molecular Detection of sunn-hemp mottle virus……………………………...…26 Transmission Electron Microscopy……………………………………………...29 iv Discussion………………………………………………………………………………..32 Chapter 3: Biological Characterization of sunn-hemp mottle virus……………………………..34 Introduction………………………………………………………………………………34 Materials and Methods………………………………………………………...…………35 Virus Source and Maintenance……………………………………………..……36 Effects of sunn-hemp mottle virus Infection on Plant Development……….……36 Experimental Host Range……………………………………………………..…37 Seed Contamination and Transmission………………………………………..…37 Plant to Plant Transmission………………………...……………………………38 Results……………………………………………………………………………………41 Effects of sunn-hemp mottle virus Infection on Plant Development………….…41 Experimental Host Range……………………………………………………..…43 Seed Contamination and Transmission………………………………………..…47 Plant to Plant Transmission………………………...……………………………47 Discussion………………………………………………………………………………..52 Chapter 4: Characterization of Other Viruses Infecting Crotalaria………………………...……55 Introduction………………………………………………………………………………55 Materials and Methods…………………………………………………….……………..55 Tobacco streak virus in Crotalaria juncea ‘Tropic Sun’………………………...55 Big Island Crotalaria micans……………………...………….…………………56 Poamoho Crotalaria juncea…………………………………...…………………56 Results……………………………………………………………………………………60 Tobacco streak virus in Crotalaria juncea ‘Tropic Sun’……………….………..60 v Big Island Crotalaria micans………...……………………………….…………60 Poamoho Crotalaria juncea……………………………………..………………60 Discussion………………………………………………………………..………………61 Chapter 5: Conclusion and Future Studies……………………………………….………………63 Literature Cited……………………………………………………………………..……………65 vi List of Tables 1. Percent identity matrix of the tobamovirus genomes and proteomes……………………18 2. Primers used in this study……………………………………………………………..…31 3. Inoculation rates and symptoms observed on experimental host range for SHMoV……42 vii List of Figures 1. Immature sunn hemp (Crotalaria juncea) plants in the field……………………………..2 2. Foliar mottle on sunn hemp plants in Maui County in 2016 and on inoculated sunn hemp plants grown in the greenhouse……………………………………………………………9 3. Genome organization of sunn-hemp mottle virus (SHMoV), sunn-hemp mosaic virus (SHMV), and tobacco mosaic virus (TMV)……………………………………………..17 4. Neighbor joining and maximum likelihood trees generated from the amino acid sequence of the movement and coat proteins………………………………………………………21 5. Amplification plot and standard curve generated from serial 10-fold dilutions of cDNA made from the total nucleic acids extracted from symptomatic sunn hemp plants grown in a greenhouse inoculated with sunn-hemp mottle virus…………………………………..28 6. Transmission electron micrograph of purified sunn-hemp mottle virus particles extracted from Crotalaria juncea leaf and stem tissue……………………………………………..30 7. 98-cone setup used in transmission experiments………………………………………...39 8. Barplots of comparing sunn hemp grown for 90 days in greenhouse conditions measuring height (A), days till first flower (B), above-ground biomass (C), and below- ground biomass (D) …………………………………………………………………..….40 9. Symptoms of mottle and shoestringing observed on the leaves of an inoculated C. pallida plants grown in the greenhouse…………………………………………………………..43 10. Spatial pattern maps of SHMoV transmission in a greenhouse setting with no wind…...44 11. Spatial pattern maps of SHMoV transmission in a greenhouse setting with an average wind speed of 0.16kph and gusts averaging 0.48kph during the day…………………46 viii 12. Spatial pattern maps of SHMoV transmission in a greenhouse setting with an average wind speed of 1.28kph and gusts averaging 2.31kph during the day…………………47 13. Line graph showing the average and standard deviations of plants infected (%) over an 8 week period………………………………………………………………………………48 14. Left: Mosaic symptoms on C. micans collected from the Big Island. Right: Chlorosis seen on infected sunn hemp on Oahu……………………………………………………56 ix PREFACE Many species of Crotalaria are considered weeds; however, there is one species of significant agronomical importance, Crotalaria juncea, more commonly known as sunn hemp. Sunn hemp originates in India where it was commonly cultivated as a fiber crop. In the United States sunn hemp has gained popularity as a cover crop due to its ability to rapidly accumulate biomass and its ability to fix nitrogen as it grows. In 2016 a sunn hemp farmer noticed virus-like symptoms of leaf mottle and stunting on his sunn hemp crop. Though these symptoms are reminiscent of infection by SHMV initial sequencing data showed infection by a tobamovirus of about 80% nucleotide homology to SHMV. Since the cutoff for new tobamovirus species is less than 90% nucleotide homology these results suggest that the virus infecting these sunn hemp plants could be a new species of tobamovirus. Work was done to better characterize this new tobamovirus. Additionally, at Poamoho Research Station symptoms of leaf chlorosis were observed on cultivated sunn hemp. These plants were sampled and processed for high throughput sequencing to identify viruses
Recommended publications
  • COVID-19: Perspective, Patterns and Evolving Strategies
    COVID-19: Perspective, Patterns and Evolving strategies Subject Category: Clinical Virology Vinod Nikhra* Department of Medicine, Hindu Rao Hospital & NDMC Medical College, New Delhi, India Submitted: 02 June 2020 | Approved: 06 July 2020 | Published: 09 July 2020 Copyright: © 2020 Nikhra V. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. DOI: https://dx.doi.org/10.29328/ebook1003 ORCID: https://orcid.org/0000-0003-0859-5232 *Corresponding author: Dr. Vinod Nikhra, M.D. Consultant and Faculty, Department of Medicine, Hindu Rao Hospital & NDMC Medical College, New Delhi, India, Tel: 91-9810874937; Email: [email protected]; drvinodnikhra@rediff mail.com Open Access COVID-19: Perspective, Patterns and Evolving strategies Table of Contents - 7 Chapters Sl No Chapters Title Pages The Trans-Zoonotic Virome Interface: Measures to 1 Chapter 1 003-011 Balance, Control and Treat Epidemics Exploring Pathophysiology of COVID-19 Infection: Faux 2 Chapter 2 012-020 Espoir and Dormant Therapeutic Options The Agent and Host Factors in COVID-19: Exploring 3 Chapter 3 021-036 Pathogenesis and Therapeutic Implications Adverse Outcomes for Elderly in COVID-19: Annihilation 4 Chapter 4 037-047 of the Longevity Dream Identifying Patterns in COVID-19: Morbidity, Recovery, 5 Chapter 5 048-058 and the Aftermath The New Revelations: Little-known Facts about COVID-19 6 Chapter 6 059-068 and their Implications Fear, Reaction and Rational Behaviour to COVID-19 in 7 Chapter 7 069-076 Public, Health Professionals and Policy Planners La Confusion: Caring for COVID-19 patients 8 Postscript 077-079 and the raging, engulfi ng and debilitating pandemic 9 Acknowledgement 080-080 *Corresponding HTTPS://WWW.HEIGHPUBS.ORG author: Dr.
    [Show full text]
  • Ictvdb the Universal Virus Database of the International Committee on Taxonomy of Viruses Virus Infection Is Host Specific
    ICTVdB the Universal Virus Database of the International Committee on Taxonomy of Viruses on the web since 1993 http://phene.cpmc.columbia.edu/ Cornelia Büchen-Osmond Australian National University Columbia University Viruses coming to TaiBNET How might ICTVdB assist construction of a virus database for TaiBNET? • briefly introduce viruses, potentially the 8th kingdom of life (Mimivirus) • describe ICTV, the International Committee on Taxonomy of Viruses that decides on virus nomenclature and classification • outline distinctive functions of ICTVdB • show how ICTVdB could be used to add viruses to TaiBNET. What is a virus ? Viruses are found in all forms of life – subcellular entities consisting of •protein capsids in remarkable diversity •may have a lipid envelope •nucleoprotein/genome – dsDNA, ssDNA, dsDNA-RT, dsRNA, ssRNA, ssRNA-RT – totally dependent on the host •for genome transcription and replication •for assembly, maturation and egression Taichung Aug 2008 ICTVdB the Universal Virus Database of the International Committee on Taxonomy of Viruses Virus infection is host specific Viruses usually • infect specific hosts – host from one or more families – species specific (Influenza B virus) – Influenza A viruses have a wide-spread host range (birds, fish, reptiles, mammals) • have a high mutation rates • recombine in the host cell • can acquire genes from the host • can transfer genes to another host Although much reduced forms of life, viruses have been called “master explorers of evolutionary space” and perhaps are a driving force
    [Show full text]
  • Effectiveness of Seed Treatments in Reducing TMV Infection Tanner A
    Effectiveness of Seed Treatments in Reducing TMV Infection Tanner A. Robison Mentor: Claudia Nischwitz Department of Biology, Utah State University, Logan, Utah, USA Abstract Germination Rate Tobacco mosaic virus (TMV), named for the plant it was first discovered in, 1 can infect hundreds of different species. It has no known invertebrate 0.9 vectors, but TMV is spread mechanically through contact with other plants, 0.8 clothes, tools, contaminated soil and seedborne. While TMV is known to be 0.7 exceptionally stable, it has been reported that treatment of tools with 0.6 powdered milk can significantly reduce the infection rate of the virus. While 0.5 there is a seed treatment available for conventional agriculture, there is no 0.4 seed treatment available for organic production. Organic growers, who grow 0.3 heirloom tomatoes experience the highest rates of TMV infection. Since 0.2 powdered milk has been reported as an effective means of treatment in 0.1 tools, the purpose of this research is to determine whether it can be an 0 Almond Soy Rinsed Unrinsed Control effective seed treatment. To test this, tomato seeds were treated with powdered milk, soy milk, almond milk and water. A grow out test was then Results/Discussion conducted in a greenhouse and plants were tested for infection using In the grow out trial little effect was seen. The infection rate for Polymerase Chain Reaction and antibody based ELISA testing. In the first grow powdered milk, almond milk, soy milk and control treatments out trial treatment little effect was seen, with infection rate for the powdered were 61%, 34%, 32% and 47%, respectively.
    [Show full text]
  • Induction of Plant Resistance Against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces Cellulosae Isolate Actino 48
    agronomy Article Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae Isolate Actino 48 Gaber Attia Abo-Zaid 1 , Saleh Mohamed Matar 1,2 and Ahmed Abdelkhalek 3,* 1 Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt; [email protected] (G.A.A.-Z.); [email protected] (S.M.M.) 2 Chemical Engineering Department, Faculty of Engineering, Jazan University, Jazan 45142, Saudi Arabia 3 Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab city, Alexandria 21934, Egypt * Correspondence: [email protected] Received: 8 September 2020; Accepted: 19 October 2020; Published: 22 October 2020 Abstract: Viral plant diseases represent a serious problem in agricultural production, causing large shortages in the production of food crops. Eco-friendly approaches are used in controlling viral plant infections, such as biocontrol agents. In the current study, Streptomyces cellulosae isolate Actino 48 is tested as a biocontrol agent for the management of tobacco mosaic virus (TMV) and inducing tomato plant systemic resistance under greenhouse conditions. Foliar application of a cell pellet suspension of Actino 48 (2 107 cfu. mL 1) is performed at 48 h before inoculation with TMV. Peroxidase activity, × − chitinase activity, protein content, and the total phenolic compounds are measured in tomato leaves at 21 dpi. On the other hand, the TMV accumulation level and the transcriptional changes of five tomato defense-related genes (PAL, PR-1, CHS, PR-3, and PR-2) are studied.
    [Show full text]
  • Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
    www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs.
    [Show full text]
  • Inspection Guidelines Tomato Brown Rugose Fruit Virus United States Department of Agriculture Animal and Plant Health Inspection Service (Tobrfv)
    Inspection Guidelines Tomato Brown Rugose Fruit Virus United States Department of Agriculture Animal and Plant Health Inspection Service (ToBRFV) Target Pest Affected Commodities Tomato brown rugose fruit virus (ToBRFV or Solanum lycopersicum (tomato) TBRFV) (Tobamovirus: Virgaviridae) Capsicum spp. (peppers, including chili peppers) 1 2 3 Distribution Signs and Symptoms: ToBRFV has been reported in Mexico, England, Producers and packing houses should thoroughly Germany, Greece, Italy, Netherlands, Jordan, Israel, inspect tomato and pepper shipments for ToBRFV Palestine, Turkey, and China. symptoms. • Fruit: Patterns of yellow/green spots and rough, brown, wrinkled patches appear on tomato fruits. There can also be green stripes and brown spots on green tomato fruits. Tomato fruit may appear deformed and/or discolored with various marbling combinations of brown, yellow, red and green. Tomato variety can affect symptom expression. In pepper, fruits display similar symptoms, but can also exhibit green grooves. • Leaves: Tomato leaves could appear discolored or “mottled”, wrinkled, yellowed, and lacking color uniformity. • Other plant parts: This virus causes a pattern 4 5 of yellow/green spots to develop on the calyx. Peduncle, sepals, petioles, and stems could develop necrotic spots. Version 1.0 For Official Government Use Only Updated: 11/21/2019 Pest Alert Tomato Brown Rugose Fruit Virus United States Department of Agriculture Animal and Plant Health Inspection Service (ToBRFV) 6 7 8 Refer to PPQ’s Fruit and Vegetables Import Additional Information Requirements (FAVIR) for other general inspection Specific guidelines are available in the Federal Order. guidelines. To prevent cross-contamination, gloves should be worn when handling fruit, changed between Photo Credits inspections, and discarded to prevent spread.
    [Show full text]
  • The Cell Biology of Tobacco Mosaic Virus Replication and Movement
    REVIEW ARTICLE published: 11 February 2013 doi: 10.3389/fpls.2013.00012 The cell biology ofTobacco mosaic virus replication and movement Chengke Liu and Richard S. Nelson* Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, OK, USA Edited by: Successful systemic infection of a plant by Tobacco mosaic virus (TMV) requires three Jean-François Laliberté, Institut processes that repeat over time: initial establishment and accumulation in invaded cells, National de la Recherche Scientifique, Canada intercellular movement, and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and Reviewed by: Xueping Zhou, Zhejiang University, host proteins and virus RNA during a dynamic process that can be visualized. Multiple China membranes appear to assist TMV accumulation, while membranes, microfilaments and Yule Liu, Tsinghua University, China microtubules appear to assist TMV movement. Here we review cell biological studies *Correspondence: that describe TMV-membrane, -cytoskeleton, and -other host protein interactions which Richard S. Nelson, Plant Biology influence virus accumulation and movement in leaves and callus tissue. The importance Division, The Samuel Roberts Noble Foundation, Inc., 2510 Sam Noble of understanding the developmental phase of the infection in relationship to the observed Parkway, Ardmore, OK 73401, USA. virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations e-mail: [email protected] of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model forTMV accumulation and intracellular spread in a cell biological context is provided. Keywords: membrane transport, microfilaments, microtubules, plant virus, vesicle trafficking, tobamovirus INTRODUCTION of the observed outcome on the mechanism of virus movement is Viruses, as obligate organisms, utilize host factors to accumu- noted.
    [Show full text]
  • Diversity of Plant Virus Movement Proteins: What Do They Have in Common?
    processes Review Diversity of Plant Virus Movement Proteins: What Do They Have in Common? Yuri L. Dorokhov 1,2,* , Ekaterina V. Sheshukova 1, Tatiana E. Byalik 3 and Tatiana V. Komarova 1,2 1 Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; [email protected] (E.V.S.); [email protected] (T.V.K.) 2 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia 3 Department of Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; [email protected] * Correspondence: [email protected] Received: 11 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function.
    [Show full text]
  • Tomato, Tobacco Mosaic Virus
    Problem: Tobacco Mosaic Virus of Tomato Host Plants: Tomato, pepper, eggplant, tobacco, spinach, petunia, marigold. Description: Several virus diseases to tomato occur in Kansas, although they generally are not as prevalent as the wilt and foliar diseases. Three of the more common virus diseases are tobacco mosaic, cucumber mosaic, and spotted wilt. The tobacco mosaic virus can attack a wide range of plants, including tomato, pepper, eggplant, tobacco, spinach, petunia and marigold. On tomato, virus infection causes light and dark green mottled areas on the leaves. The dark green areas tend to be somewhat thicker than the lighter portions of the leaf. The leaf mottling is seen more easily if the affected plant surface is partially shaded. Stunting of young plants is common and often is accompanied by a distortion and fern-like appearance of the leaves. Older leaves curl downward and may be slightly distorted. Certain strains of the virus can cause a mottling, streaking and necrosis of the fruits. Infected plants are not killed, but they produce poor quality fruit and low yields. Tobacco mosaic, is incited by a virus. The tobacco mosaic virus is very stable and can persist in contaminated soil, in infected tomato debris, on or in the seed coat, and in manufactured tobacco products. The virus is transmitted readily from plant to plant by mechanical means. This may simply involve picking up the virus while working with infected plant material, then inoculating healthy plants by rubbing or brushing against them with contaminated tools, clothing, or hands. Aphids are not vectors of the virus, although certain chewing insects may transmit the pathogen.
    [Show full text]
  • The Isolation and Properties of Crystalline Tobacco Mosaic Virus
    W ENDELL M . S T A N L E Y The isolation and properties of crystalline tobacco mosaic virus Nobel Lecture, December 12, 1946 Although the idea that certain infectious diseases might be caused by in- visible living agents was expressed by Varro and Columella about 100 B. C., there was no experimental proof and the idea was not accepted. The cause of infectious disease remained a mystery for hundreds of years. Even the won- derful work of Leeuwenhoek and his description of small animals and bacte- ria during the years from 1676 to 1683 failed to result in proof of the relation- ship between bacteria and infectious disease. There was, of course, much speculation and during the latter half of the 19th century great controversies arose over the germ theory of disease. Then, through the brilliant work of Pasteur, Koch, Cohn, Davaine and others, it was proved experimentally, for the first time, that microorganisms caused infectious diseases. The Golden Era of bacteriology followed and the germ theory of infectious disease was accepted so completely that it became heresy to hold that such diseases might be caused in any other way. Thus, when, in 1892 Iwanowski discovered that the juice of a plant diseased with tobacco mosaic remained infectious after being passed through a filter which retained all known living organisms, he was willing to conclude that the disease was bacterial in nature, despite the fact that he could not find the causative bacteria. As a result, his observations failed to attract attention. However, six years later, the filtration experiment was repeated and extended, independently, by Beijerinck, who immediately recognized the significance of the results and referred to the infectious agent, not as being bacterial in nature, but as a contugium vivum fluidum.
    [Show full text]
  • Corona and Other Virus: Their Useful and Harmful Aspects
    Current Trends on Biotechnology & Microbiology DOI: ISSN: 2641-6875 10.32474/CTBM.2020.02.000129Review Article Corona and Other Virus: Their Useful and Harmful Aspects Birhanu Gizaw* Microbial Biodiversity Directorate, Ethiopian Biodiversity Institute, Ethiopia *Corresponding author: Birhanu Gizaw, Microbial Biodiversity Directorate, Ethiopian Biodiversity Institute, P.O. Box 30726, Addis Ababa, Ethiopia Received: June 15, 2020 Published: September 22, 2020 Abstract How the single virus is forceful and shakes the world is eyewitness during this contemporary COVID 19 pandemic time. People primarily think of viruses such as HIV, Ebola, Zika, Influenza, Tobacco mosaic virus or whatever new outbreak like SARS, Corona are Understandingall viruses worst the and microbial non-beneficial. world isHowever, very critical not all and viruses crucial are thing detrimental that they and are influential driving force to human, and governing animal and the plantphysical health. world In fact, some viruses have beneficial properties for their hosts in a symbiotic relationship and scientific research in many disciplines. industry,and biosphere agriculture, at all. Thehealth virus and and environment other microbial are the life application those of bacteria, of microbes fungi, andprion, their viroid, products virion are are too requiring high for great human attention being and researchenvironment. to enhance Without their microbes utilization all lifefrom would majority be cease of useful on earth.aspects However, of microbial some genetic microbes resource. are very The dangerous secret behind like of Corona every virus, HIV, Ebola, Mycobacterium and others that destroy human life, but majority of microorganisms are too useful to promote virusdevelopment. in respect Through with health, building environment, and strengthening agriculture microbial and biotechnological culture collection application centers during and through this Covid19 strong pandemic conservation time strategy, to raise awarenessit is possible about to exploit virus atmore all.
    [Show full text]
  • Beijerinck's Work on Tobacco Mosaic Virus: Historical Context and Legacy
    Beijerinck's work on tobacco mosaic virus: historical context and legacy L. Bos DLO Research Institute for Plant Protection (IPO-DLO), PO Box 9060, 6700 GW Wageningen,The Netherlands Beijerinck's entirely new concept, launched in 1898, of a ¢lterable contagium vivum £uidum which multiplied in close association with the host's metabolism and was distributed in phloem vessels together with plant nutrients, did not match the then prevailing bacteriological germ theory. At the time, tools and concepts to handle such a new kind of agent (the viruses) were non-existent. Beijerinck's novel idea, therefore, did not revolutionize biological science or immediately alter human understanding of contagious diseases. That is how bacteriological dogma persisted, as voiced by Loe¥er and Frosch when showing the ¢lter- ability of an animal virus (1898), and especially by Ivanovsky who had already in 1892 detected ¢lterability of the agent of tobacco mosaic but kept looking for a microbe and ¢nally (1903) claimed its multiplication in an arti¢cial medium. The dogma was also strongly advocated by Roux in 1903 when writing the ¢rst review on viruses, which he named `so-called ``invisible'' microbes', unwittingly including the agent of bovine pleuropneumonia, only much later proved to be caused by a mycoplasma. In 1904, Baur was the ¢rst to advocate strongly the chemical view of viruses. But uncertainty about the true nature of viruses, with their similarities to enzymes and genes, continued until the 1930s when at long last tobacco mosaic virus particles were isolated as an enzyme-like protein (1935), soon to be better character- ized as a nucleoprotein (1937).
    [Show full text]