Uncorrected Proof
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity. -
Distribution Records of Aphids (Hemiptera: Phylloxeroidea, Aphidoidea) Associated with Main Forest-Forming Trees in Northern Europe
© Entomologica Fennica. 5 December 2012 Distribution records of aphids (Hemiptera: Phylloxeroidea, Aphidoidea) associated with main forest-forming trees in Northern Europe Andrey V. Stekolshchikov & Mikhail V. Kozlov Stekolshchikov, A. V.& Kozlov, M. V.2012: Distribution records of aphids (He- miptera: Phylloxeroidea, Aphidoidea) associated with main forest-forming trees in Northern Europe. — Entomol. Fennica 23: 206–214. We report records of 25 species of aphids collected from four species of woody plants (Pinus sylvestris, Picea abies, Betula pubescens and B. pendula)at50 study sites in Northern Europe, located from 59° to 70° N and from 10° to 60° E. Critical evaluation of earlier publications demonstrated that in spite of the obvi- ous limitations of our survey, the obtained information substantially contributed to the knowledge of the distribution of aphids in North European Russia, includ- ing Murmansk oblast (103 species recorded to date), Republic of Karelia (58 spe- cies), Arkhangelsk oblast (37 species), Vologda oblast (17 species) and Republic of Komi (29 species). We confirm the occurrence of Cinara nigritergi in South- ern Karelia; Pineus cembrae, Cinara pilosa and Monaphis antennata are for the first time recorded in Norway. A. V.Stekolshchikov, Zoological Institute, Russian Academy of Sciences, Univer- sitetskaya nab. 1, St. Petersburg 199034, Russia; E-mail: [email protected] M. V. Kozlov, Section of Ecology, University of Turku, FI-20014 Turku, Finland; E-mail: [email protected] Received 2 February 2012, accepted 5 April 2012 1. Introduction cades (e.g., Albrecht 2012), no comparable data (with rare exceptions) exist for the northern parts Species distributions and, consequently, spatial of the European Russia. -
Wildlife Review Cover Image: Hedgehog by Keith Kirk
Dumfries & Galloway Wildlife Review Cover Image: Hedgehog by Keith Kirk. Keith is a former Dumfries & Galloway Council ranger and now helps to run Nocturnal Wildlife Tours based in Castle Douglas. The tours use a specially prepared night tours vehicle, complete with external mounted thermal camera and internal viewing screens. Each participant also has their own state- of-the-art thermal imaging device to use for the duration of the tour. This allows participants to detect animals as small as rabbits at up to 300 metres away or get close enough to see Badgers and Roe Deer going about their nightly routine without them knowing you’re there. For further information visit www.wildlifetours.co.uk email [email protected] or telephone 07483 131791 Contributing photographers p2 Small White butterfly © Ian Findlay, p4 Colvend coast ©Mark Pollitt, p5 Bittersweet © northeastwildlife.co.uk, Wildflower grassland ©Mark Pollitt, p6 Oblong Woodsia planting © National Trust for Scotland, Oblong Woodsia © Chris Miles, p8 Birdwatching © castigatio/Shutterstock, p9 Hedgehog in grass © northeastwildlife.co.uk, Hedgehog in leaves © Mark Bridger/Shutterstock, Hedgehog dropping © northeastwildlife.co.uk, p10 Cetacean watch at Mull of Galloway © DGERC, p11 Common Carder Bee © Bob Fitzsimmons, p12 Black Grouse confrontation © Sergey Uryadnikov/Shutterstock, p13 Black Grouse male ©Sergey Uryadnikov/Shutterstock, Female Black Grouse in flight © northeastwildlife.co.uk, Common Pipistrelle bat © Steven Farhall/ Shutterstock, p14 White Ermine © Mark Pollitt, -
Coccinellidae)
ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology. -
Additions, Deletions and Corrections to An
Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe. -
Desktop Biodiversity Report
Desktop Biodiversity Report Land at Balcombe Parish ESD/14/747 Prepared for Katherine Daniel (Balcombe Parish Council) 13th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Balcombe Parish 13/02/2014 Prepared for Katherine Daniel Balcombe Parish Council ESD/14/74 The following information is included in this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI M12 - Sedgy & Scott's Gills; M22 - Balcombe Lake & associated woodlands; M35 - Balcombe Marsh; M39 - Balcombe Estate Rocks; M40 - Ardingly Reservior & Loder Valley Nature Reserve; M42 - Rowhill & Station Pastures. SSSI Worth Forest. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; National Trust Property. Habitats Ancient tree; Ancient woodland; Ghyll woodland; Lowland calcareous grassland; Lowland fen; Lowland heathland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry. -
Birch Aphid Areas
Throughout most of south-central and interior on the largest leaf veins of Silver Birch (Betula CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, Alaska, birch (Betula spp.) trees are commonly pendula Roth), thereby tapping the maximum and fish or other wildlife—if they are not handled encountered in the forest and are one of the flow of phloem sap in a leaf (Hajek and Dahlston or applied properly. Use all pesticides selectively most widely used ornamentals in residential 1986). In spring adults feed on new leaves and and carefully. Since approved uses of a pesticide Birch Aphid areas. Alaskan homeowners have encountered in the fall on senescent leaves. Aphid feeding may change frequently, it is important to check greenish aphids (Euceraphis betulae (Koch.)) in causes a loss in plant vigor and, at times, tree the label for current approved and legal use. the summer on birch (Figure 1). death. Associated with high aphid populations Follow recommended practices for the disposal is honeydew, a sticky substance excreted by of surplus pesticides and pesticide containers. the aphids. Honeydew is nothing more than Mention of a pesticide in this publication does excess plant juices, mostly water and sugars not constitute a recommendation for use by that the aphids secrete. This sticky material the USDA, nor does it imply registration of a is quite attractive to ants and other insects, product under Federal Insecticide, Fungicide, and it forms a medium for the growth of a and Rodenticide Act, as amended. Mention of a proprietary product does not constitute an fungus known as sooty mold. -
POPULATION DYNAMICS of the SYCAMORE APHID (Drepanosiphum Platanoidis Schrank)
POPULATION DYNAMICS OF THE SYCAMORE APHID (Drepanosiphum platanoidis Schrank) by Frances Antoinette Wade, B.Sc. (Hons.), M.Sc. A thesis submitted for the degree of Doctor of Philosophy of the University of London, and the Diploma of Imperial College of Science, Technology and Medicine. Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. August 1999 1 THESIS ABSTRACT Populations of the sycamore aphid Drepanosiphum platanoidis Schrank (Homoptera: Aphididae) have been shown to undergo regular two-year cycles. It is thought this phenomenon is caused by an inverse seasonal relationship in abundance operating between spring and autumn of each year. It has been hypothesised that the underlying mechanism of this process is due to a plant factor, intra-specific competition between aphids, or a combination of the two. This thesis examines the population dynamics and the life-history characteristics of D. platanoidis, with an emphasis on elucidating the factors involved in driving the dynamics of the aphid population, especially the role of bottom-up forces. Manipulating host plant quality with different levels of aphids in the early part of the year, showed that there was a contrast in aphid performance (e.g. duration of nymphal development, reproductive duration and output) between the first (spring) and the third (autumn) aphid generations. This indicated that aphid infestation history had the capacity to modify host plant nutritional quality through the year. However, generalist predators were not key regulators of aphid abundance during the year, while the specialist parasitoids showed a tightly bound relationship to its prey. The effect of a fungal endophyte infecting the host plant generally showed a neutral effect on post-aestivation aphid dynamics and the degree of parasitism in autumn. -
Forest Health Conditions in Alaska 2020
Forest Service U.S. DEPARTMENT OF AGRICULTURE Alaska Region | R10-PR-046 | April 2021 Forest Health Conditions in Alaska - 2020 A Forest Health Protection Report U.S. Department of Agriculture, Forest Service, State & Private Forestry, Alaska Region Karl Dalla Rosa, Acting Director for State & Private Forestry, 1220 SW Third Avenue, Portland, OR 97204, [email protected] Michael Shephard, Deputy Director State & Private Forestry, 161 East 1st Avenue, Door 8, Anchorage, AK 99501, [email protected] Jason Anderson, Acting Deputy Director State & Private Forestry, 161 East 1st Avenue, Door 8, Anchorage, AK 99501, [email protected] Alaska Forest Health Specialists Forest Service, Forest Health Protection, http://www.fs.fed.us/r10/spf/fhp/ Anchorage, Southcentral Field Office 161 East 1st Avenue, Door 8, Anchorage, AK 99501 Phone: (907) 743-9451 Fax: (907) 743-9479 Betty Charnon, Invasive Plants, FHM, Pesticides, [email protected]; Jessie Moan, Entomologist, [email protected]; Steve Swenson, Biological Science Technician, [email protected] Fairbanks, Interior Field Office 3700 Airport Way, Fairbanks, AK 99709 Phone: (907) 451-2799, Fax: (907) 451-2690 Sydney Brannoch, Entomologist, [email protected]; Garret Dubois, Biological Science Technician, [email protected]; Lori Winton, Plant Pathologist, [email protected] Juneau, Southeast Field Office 11175 Auke Lake Way, Juneau, AK 99801 Phone: (907) 586-8811; Fax: (907) 586-7848 Isaac Dell, Biological Scientist, [email protected]; Elizabeth Graham, Entomologist, [email protected]; Karen Hutten, Aerial Survey Program Manager, [email protected]; Robin Mulvey, Plant Pathologist, [email protected] State of Alaska, Department of Natural Resources Division of Forestry 550 W 7th Avenue, Suite 1450, Anchorage, AK 99501 Phone: (907) 269-8460; Fax: (907) 269-8931 Jason Moan, Forest Health Program Coordinator, [email protected]; Martin Schoofs, Forest Health Forester, [email protected] University of Alaska Fairbanks Cooperative Extension Service 219 E. -
Database of Irish Lepidoptera. 1 - Macrohabitats, Microsites and Traits of Noctuidae and Butterflies
Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Irish Wildlife Manuals No. 35 Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Ken G.M. Bond and Tom Gittings Department of Zoology, Ecology and Plant Science University College Cork Citation: Bond, K.G.M. and Gittings, T. (2008) Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies. Irish Wildlife Manual s, No. 35. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland. Cover photo: Merveille du Jour ( Dichonia aprilina ) © Veronica French Irish Wildlife Manuals Series Editors: F. Marnell & N. Kingston © National Parks and Wildlife Service 2008 ISSN 1393 – 6670 Database of Irish Lepidoptera ____________________________ CONTENTS CONTENTS ........................................................................................................................................................1 ACKNOWLEDGEMENTS ....................................................................................................................................1 INTRODUCTION ................................................................................................................................................2 The concept of the database.....................................................................................................................2 The structure of the database...................................................................................................................2 -
Pathways Analysis of Invasive Plants and Insects in the Northwest Territories
PATHWAYS ANALYSIS OF INVASIVE PLANTS AND INSECTS IN THE NORTHWEST TERRITORIES Project PM 005529 NatureServe Canada K.W. Neatby Bldg 906 Carling Ave., Ottawa, ON, K1A 0C6 Prepared by Eric Snyder and Marilyn Anions NatureServe Canada for The Department of Environment and Natural Resources. Wildlife Division, Government of the Northwest Territories March 31, 2008 Citation: Snyder, E. and Anions, M. 2008. Pathways Analysis of Invasive Plants and Insects in the Northwest Territories. Report for the Department of Environment and Natural Resources, Wildlife Division, Government of the Northwest Territories. Project No: PM 005529 28 pages, 5 Appendices. Pathways Analysis of Invasive Plants and Insects in the Northwest Territories i NatureServe Canada Acknowledgements NatureServe Canada and the Government of the Northwest Territories, Department of Environment and Natural Resources, would like to acknowledge the contributions of all those who supplied information during the production of this document. Canada : Eric Allen (Canadian Forest Service), Lorna Allen (Alberta Natural Heritage Information Centre, Alberta Community Development, Parks & Protected Areas Division), Bruce Bennett (Yukon Department of Environment), Rhonda Batchelor (Northwest Territories, Transportation), Cristine Bayly (Ecology North listserve), Terri-Ann Bugg (Northwest Territories, Transportation), Doug Campbell (Saskatchewan Conservation Data Centre), Suzanne Carrière (Northwest Territories, Environment & Natural Resources), Bill Carpenter (Moraine Point Lodge, Northwest -
Early Embryonic Development and External Features of Developing Embryos in the Primitive Moth, Eriocrania Sp
Recent Advances in Insect Embryology in Japan and Poland 159 Edited by H. Ando and Cz. Jura Arthropod. EmbryoL. Soc. Jpn. (lSEBU Co. Ltd., Tsukuba) 1987 Early Embryonic Development and External Features of Developing Embryos in the Primitive Moth, Eriocrania sp. (Lepidoptera, Eriocraniidae) * Yukimasa KOBAYASHI and Hiroshi ANDO Synopsis The early embryonic development and external features of the developing embryo of an eriocranid moth, Eriocrania sp. (suborder Dacnonypha), are described. The eggs of this species are laid in the tissue of leaf buds of Alnus inokumae. The newly laid egg is elongated and ovoid, about 0.48 by 0.23 mm in size and later it progressively increases to about 0.62 by 0.35 mm. The egg period is about 7 days at the temperature of 15-20·C. The periplasm is thicker than that of the most primitive lepidopteran Neomicropteryx nip- ponensis (suborder Zeugloptera), .but thinner than that of the advanced ditrysian Lepidoptera. The thick blastoderm is formed by the occurence of cleavage furrows between the energids mi- grated into the periplasm as in observed in most lepidopteran species. The germ disk is very large, as in the case of the ditrysian species, and differentiates into large germ band in situ. The invagination of the germ disk into the yolk, as observed in the zeuglopteran and exoporian Lepi- doptera, does not occur. Embryonic membranes are formed by the fusion of amnioserosal folds: this situation is assumed to be an archetype of the fault type in the ditrysian embryo. Yolk cleav- age does not occur. The germ band develops on the yolk surface, as in the case of the zeuglopter- an and exoporian eggs, but does not sinks into the yolk as in the ditrysian eggs.