Influence of Sea Ice on Protist Community Structure in the Central Arctic Ocean
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2016/096923 Al 23 June 2016 (23.06.2016) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/096923 Al 23 June 2016 (23.06.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/82 (2006.01) C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/113 (2010.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP20 15/079893 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 15 December 2015 (15. 12.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 14307040.7 15 December 2014 (15. 12.2014) EP kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicants: PARIS SCIENCES ET LETTRES - TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, QUARTIER LATIN [FR/FR]; 62bis, rue Gay-Lussac, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 75005 Paris (FR). -
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
Biology and Systematics of Heterokont and Haptophyte Algae1
American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed. -
Metagenomic Characterization of Unicellular Eukaryotes in the Urban Thessaloniki Bay
Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay George Tsipas SCHOOL OF ECONOMICS, BUSINESS ADMINISTRATION & LEGAL STUDIES A thesis submitted for the degree of Master of Science (MSc) in Bioeconomy Law, Regulation and Management May, 2019 Thessaloniki – Greece George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ Student Name: George Tsipas SID: 268186037282 Supervisor: Prof. Dr. Savvas Genitsaris I hereby declare that the work submitted is mine and that where I have made use of another’s work, I have attributed the source(s) according to the Regulations set in the Student’s Handbook. May, 2019 Thessaloniki - Greece Page 2 of 63 George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ 1. Abstract The present research investigates through metagenomics sequencing the unicellular protistan communities in Thermaikos Gulf. This research analyzes the diversity, composition and abundance in this marine environment. Water samples were collected monthly from April 2017 to February 2018 in the port of Thessaloniki (Harbor site, 40o 37’ 55 N, 22o 56’ 09 E). The extraction of DNA was completed as well as the sequencing was performed, before the downstream read processing and the taxonomic classification that was assigned using PR2 database. A total of 1248 Operational Taxonomic Units (OTUs) were detected but only 700 unicellular eukaryotes were analyzed, excluding unclassified OTUs, Metazoa and Streptophyta. In this research-based study the most abundant and diverse taxonomic groups were Dinoflagellata and Protalveolata. Specifically, the most abundant groups of all samples are Dinoflagellata with 190 OTUs (27.70%), Protalveolata with 139 OTUs (20.26%) Ochrophyta with 73 OTUs (10.64%), Cercozoa with 67 OTUs (9.77%) and Ciliophora with 64 OTUs (9.33%). -
BES-‐AG Meeting July 2014
BES-AG Meeting July 2014 – Charles Darwin House, London Information Document A) INFORMATION, CONTACTS AND HELPERS Details of registration, contact points, instructions etc. B) TIMETABLE Mon: Early Career Researchers Workshops; Tue: Horizon-scanning; Wed-Fri: Detrital Dynamics (Sat: “Silfest” – see point E!) C) ORAL ABSTRACTS 100-word abstracts for talks on Tue-Fri, inc. D) POSTERS Details on hardcopy and e-posters E) SOCIAL (Monday – Friday + Saturday) Evening mixers and local pub venue + Saturday “Silfest” at Imperial College’s Silwood Park Campus F) APPENDIX: DOCUMENT FOR DISCUSSION SESSIONS Document produced as a draft, with a view to submission to NERC to direct future strategic funding 1 British Ecological Society Aquatic Ecology Group A) INFORMATION, SESSON CHAIRS, CONTACTS AND HELPERS Please sign in at the registration desk in the morning that you arrive – if you arrive after the desk has closed, ask for one of the helpers in the table below. The people listed below will be helping out as local points of contact at the registration desk and for the evening mixers etc. Name of Helper e-mail contact Mobile number Joe Huddart [email protected] 07969374483 Marie-Claire Danner [email protected] 07835263486 Manon [email protected] 07749246135 Stessy Nepert [email protected] 07858901812 Xueke Lu [email protected] 07598498997 Gavin Williams [email protected] Lydia Bach [email protected] 2 B) TIMETABLE (Monday – Friday) British Ecological Society Aquatic Ecology Group Early Career Researcher Training Day Date: Monday 21st July 2014 Time: 10:00 – 17:30 Location: Charles Darwin House 12 Roger Street London, WC1N 2JU. -
New Records for the Turkish Freshwater Algal Flora
Turkish Journal of Water Science & Management Research Article ISSN: 2536 474X / e-ISSN: 2564-7334 Setting Measures for TacklingVolume: 5 Issue: Agricultural 2 Year: 2021 Diffuse Pollution of Küçük Menderes Basin ResearchKüçük Article Menderes Havzası’nda Tarımsal Kaynaklı Yayılı Kirlilikle New Records Mücadelefor the Turkish Tedbirlerinin Freshwater Belirlenmesi Algal Flora in Twenty Five River Basins of Turkey, Part IV: Ochrophyta Ayşegül Tanık1, Asude Hanedar*2, Emine Girgin3, Elçin Güneş2, Erdem Görgün1,3, Nusret Karakaya4, Gökçen Gökdereli5, Burhan Fuat Çankaya 5, Taner Kimence5, Yakup Karaaslan5 1Türkiye’dekiİstanbul Technical University25 Nehir (ITU), Havzasından Faculty of Civil Engineering, Türkiye DepartmentTatlı Su of Alg Environmental Florası İçin YeniEngineering, Kayıtlar, 34469, BölümMaslak-Istanbul/TURKEY IV: Ochrophyta [email protected] (0000-0002-0319-0298) 2 Namk Kemal University,1 Çorlu 2Faculty of Engineeri3 ng, Department of Environmental4 Engineering,5 Nilsun Demir , Burak Öterler , 59860Haşim Çorlu-Sömek Tekirda, Tuğbağ /TurkeyOngun Sevindik *, Elif Neyran Soylu , 6 6 7 1 8 [email protected] Karaaslan , Tolga (0000-0003-4 Çetin , Abuzer827-5954), Çelekli [email protected], Tolga Coşkun , Cüneyt (0000-0002-1457-1504) Nadir Solak , Faruk 3io EnvironmentalMaraşlioğlu Solutions,9, Murat Re şParlakitpaşa1 ,Mah., Merve Katar Koca Cd.1, Doğan Ar Teknokent Can Manavoğlu 1 2/5 D:2 12, 34469 1Ankara University, Faculty of Agriculture,Saryerİstanbul/Turkey Fisheries and Aquaculture Engineering, 06120, [email protected], -
Chapter 6.2-Assessment of Harmful Algae Bloom
Maryland’s Coastal Bays: Ecosystem Health Assessment Chapter 6.2 Chapter 6.2 Assessment of harmful algae bloom species in the Maryland Coastal Bays Catherine Wazniak Maryland Department of Natural Resources, Tidewater Ecosystem Assessment, Annapolis, MD 21401 Abstract Thirteen potentially harmful algae taxa have been identified in the Maryland Coastal Bays: Aureococcus anophagefferens (brown tide), Pfiesteria piscicida and P. shumwayae, Chloromorum/ Chattonella spp., Heterosigma akashiwo, Fibrocapsa japonica, Prorocentrum minimum, Dinophysis spp., Amphidinium spp., Pseudo-nitzchia spp., Karlodinium micrum and two macroalgae genera (Gracilaria, Chaetomorpha). Presence of potentially toxic species is richest in the polluted tributaries of St. Martin River and Newport Bay. Approximately 5% of the phytoplankton species identified for Maryland’s Coastal Bays represent potentially harmful algal bloom (HAB) species. The HABs are recognized for their potentially toxic properties and, in some cases, their ability to produce large blooms negatively affecting light and dissolved oxygen resources. Brown tide (Aureococcus anophagefferens) has been the most widespread and prolific HAB species in the area in recent years, producing growth impacts to juvenile clams in test studies and potential impacts to sea grass distribution and growth (see Chapter 7.1). Macroalgal fluctuations may be evidence of a system balancing on the edge of a eutrophic (nutrient- enriched) state (see chapter 4). No evidence of toxic activity has been detected among the Coastal Bays phytoplankton. However, species such as Pseudo-nitzschia seriata, Prorocentrum minimum, Pfiesteria piscicida, Dinophysis acuminata and Karlodinium micrum have produced positive toxic bioassays or generated detectable toxins in Chesapeake Bay. Pfiesteria piscicida was retrospectively considered as the likely causative organism in a large historical fish kill on the Indian River, Delaware. -
Ebriid Phylogeny and the Expansion of the Cercozoa
ARTICLE IN PRESS Protist, Vol. 157, 279—290, May 2006 http://www.elsevier.de/protis Published online date 26 May 2006 ORIGINAL PAPER Ebriid Phylogeny and the Expansion of the Cercozoa Mona Hoppenrath1, and Brian S. Leander Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4 Submitted November 30, 2005; Accepted March 4, 2006 Monitoring Editor: Herve´ Philippe Ebria tripartita is a phagotrophic flagellate present in marine coastal plankton communities worldwide. This is one of two (possibly four) described extant species in the Ebridea, an enigmatic group of eukaryotes with an unclear phylogenetic position. Ebriids have never been cultured, are usually encountered in low abundance and have a peculiar combination of ultrastructural characters including a large nucleus with permanently condensed chromosomes and an internal skeleton composed of siliceous rods. Consequently, the taxonomic history of the group has been tumultuous and has included a variety of affiliations, such as silicoflagellates, dinoflagellates, ‘radiolarians’ and ‘neomonads’. Today, the Ebridea is treated as a eukaryotic taxon incertae sedis because no morphological or molecular features have been recognized that definitively relate ebriids with any other eukaryotic lineage. We conducted phylogenetic analyses of small subunit rDNA sequences from two multi-specimen isolations of Ebria tripartita. The closest relatives to the sequences from Ebria tripartita are environmental sequences from a submarine caldera floor. This newly recognized Ebria clade was most closely related to sequences from described species of Cryothecomonas and Protaspis. These molecular phylogenetic relationships were consistent with current ultrastructural data from all three genera, leading to a robust placement of ebriids within the Cercozoa. -
Biosketch CV.Umces
BIOGRAPHICAL SKETCH - DIANE K. STOECKER University of Maryland Center for Environmental Science, Horn Point Laboratory P.O. Box 775 Cambridge, MD 21613-0775 Tel: 410 221-8407 [email protected] Professional Preparation: University of New Hampshire, Botany, BS l969 University of Hawaii, Microbiology, MS l970 State University of New York at Stony Brook, Ecology & Evolution, Ph.D. 1979 Woods Hole Oceanographic Institution, Biological Oceanography, Postdoctoral Scholar l979-l980 Appointments: Professor, University of Maryland Center for Environmental Science 1995-present Associate Professor, Center for Environmental & Estuarine Science, Univ. of Maryland System, 1991-1995 Associate Scientist, Woods Hole Oceanographic Institution, 1984-1991 Assistant Scientist, Woods Hole Oceanographic Institution, l980-1984 Publications –Last three years: Stoecker DK, Long A, Suttles SE, Sanford LP. 2006. Effect of small-scale shear on grazing and growth of the dinoflagellate Pfiesteria piscicida. Harmful Algae 5: 407-418 Stoecker DK, Tillman U, Granéli E. 2006. Chaper 18. Phagotrophic Harmful Algae. Pp. 177-187 in Granéli E and Turner J (eds) Ecology of Harmful Algae, Springer-Verlag, Berlin. Adolf JE, Stoecker DK, Harding LW. 2006. The balance of autotrophy and heterotrophy during mixotrophic growth of Karlodinium micrum (Dinophyceae). J Plankton Res 28: 737-751 Hood, RR, Zhang X, Glibert PM, Roman MR, Stoecker, DK. 2006. Modeling the influence of nutrients, turbulence and grazing on Pfiesteria population dynamics. Harmful Algae 5: 459-479 Johnson MD, Tengs T, Oldach D, Stoecker DK. 2006. Sequestration, performance and functional control of cryptophyte plastids in the ciliate Myrionecta rubra (Ciliophora). J Phycol 42: 1235-1246 Johnson MD, Oldach D, Delwiche CF, Stoecker DK. -
Morphological Studies of the Dinoflagellate Karenia Papilionacea in Culture
MORPHOLOGICAL STUDIES OF THE DINOFLAGELLATE KARENIA PAPILIONACEA IN CULTURE Michelle R. Stuart A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Biology and Marine Biology University of North Carolina Wilmington 2011 Approved by Advisory Committee Alison R. Taylor Richard M. Dillaman Carmelo R. Tomas Chair Accepted by __________________________ Dean, Graduate School This thesis has been prepared in the style and format consistent with the journal Journal of Phycology ii TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iv ACKNOWLEDGMENTS .............................................................................................................. v DEDICATION ............................................................................................................................... vi LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ..................................................................................................................... viii INTRODUCTION .......................................................................................................................... 1 MATERIALS AND METHODS .................................................................................................... 5 RESULTS -
Culturable Diversity of Arctic Phytoplankton During Pack Ice
bioRxiv preprint doi: https://doi.org/10.1101/642264; this version posted May 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Culturable diversity of Arctic phytoplankton during pack ice 2 melting 1;2∗ 3;2 4 3 Catherine Gérikas Ribeiro , Adriana Lopes dos Santos , Priscillia Gourvil , 1 1 1 4 4 Florence Le Gall , Dominique Marie , Margot Tragin , Ian Probert , Daniel 1;3 5 Vaulot 1 6 Sorbonne Université, CNRS, UMR7144, Team ECOMAP, Station Biologique de Roscoff, 7 Roscoff, France 2 8 GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La 9 Pirámide, 5750, Huechuraba, Santiago, Chile 3 10 Nanyang Technological University, Asian School of the Environment, Singapore. 4 11 Sorbonne Université, CNRS, FR2424, Roscoff Culture Collection, Station Biologique de 12 Roscoff, Roscoff, France * 13 [email protected] 14 Abstract 15 Massive phytoplankton blooms develop at the Arctic ice edge, sometimes extend- 16 ing far under the pack ice. An extensive culturing effort was conducted before and 17 during a phytoplankton bloom in Baffin Bay between April and July 2016. Differ- 18 ent isolation strategies were applied, including flow cytometry cell sorting, man- 19 ual single cell pipetting and serial dilution. Although all three techniques yielded 20 the most common organisms, each technique retrieved specific taxa, highlight- 21 ing the importance of using several methods to maximize the number and diver- 22 sity of isolated strains.