WO 2016/096923 Al 23 June 2016 (23.06.2016) W P O P C T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
Number of Living Species in Australia and the World
Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure. -
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
Biology and Systematics of Heterokont and Haptophyte Algae1
American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed. -
BES-‐AG Meeting July 2014
BES-AG Meeting July 2014 – Charles Darwin House, London Information Document A) INFORMATION, CONTACTS AND HELPERS Details of registration, contact points, instructions etc. B) TIMETABLE Mon: Early Career Researchers Workshops; Tue: Horizon-scanning; Wed-Fri: Detrital Dynamics (Sat: “Silfest” – see point E!) C) ORAL ABSTRACTS 100-word abstracts for talks on Tue-Fri, inc. D) POSTERS Details on hardcopy and e-posters E) SOCIAL (Monday – Friday + Saturday) Evening mixers and local pub venue + Saturday “Silfest” at Imperial College’s Silwood Park Campus F) APPENDIX: DOCUMENT FOR DISCUSSION SESSIONS Document produced as a draft, with a view to submission to NERC to direct future strategic funding 1 British Ecological Society Aquatic Ecology Group A) INFORMATION, SESSON CHAIRS, CONTACTS AND HELPERS Please sign in at the registration desk in the morning that you arrive – if you arrive after the desk has closed, ask for one of the helpers in the table below. The people listed below will be helping out as local points of contact at the registration desk and for the evening mixers etc. Name of Helper e-mail contact Mobile number Joe Huddart [email protected] 07969374483 Marie-Claire Danner [email protected] 07835263486 Manon [email protected] 07749246135 Stessy Nepert [email protected] 07858901812 Xueke Lu [email protected] 07598498997 Gavin Williams [email protected] Lydia Bach [email protected] 2 B) TIMETABLE (Monday – Friday) British Ecological Society Aquatic Ecology Group Early Career Researcher Training Day Date: Monday 21st July 2014 Time: 10:00 – 17:30 Location: Charles Darwin House 12 Roger Street London, WC1N 2JU. -
Mannitol Biosynthesis in Algae : More Widespread and Diverse Than Previously Thought
This is a repository copy of Mannitol biosynthesis in algae : more widespread and diverse than previously thought. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/113250/ Version: Accepted Version Article: Tonon, Thierry orcid.org/0000-0002-1454-6018, McQueen Mason, Simon John orcid.org/0000-0002-6781-4768 and Li, Yi (2017) Mannitol biosynthesis in algae : more widespread and diverse than previously thought. New Phytologist. pp. 1573-1579. ISSN 1469-8137 https://doi.org/10.1111/nph.14358 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Mannitol biosynthesis in algae: more widespread and diverse than previously thought. Thierry Tonon1,*, Yi Li1 and Simon McQueen-Mason1 1 Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK. * Author for correspondence: tel +44 1904328785; email [email protected] Key words: Algae, primary metabolism, mannitol biosynthesis, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, haloacid dehalogenase, histidine phosphatase, evolution of metabolic pathways. -
Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts. -
Harmful Algal Blooms in Coastal Waters of New Jersey Include Red Tides, Green Tides, Brown Tides and Other Harmful Species As Listed in Appendix I
Brown Tide Alga, Aureococcus anophagefferens HARMFUL ALGAL BLOOMS IN COASTAL WATERS OF NEW JERSEY BY Mary Downes Gastrich, Ph.D. May, 2000 NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION Division Of Science, Research and Technology Leslie McGeorge, Director Table of Contents Executive Summary iii Foreward v I. Background 1 II. National Assessment of Harmful Algal Blooms (HABs) 1 A. National Assessment of HABs 1 B. National Perspective on the Causes of HABs 2 III. Sources of Current and Historical Data on HABs 2 A. Sources of Historical Data 2 B. Sources of Current Information 3 IV. Health and Ecological Implications 6 A. Human health impacts 6 B. Ecological impacts 8 C. Aesthetic/Economic Impacts 11 V. Extent, Severity and Duration of HABs 11 A. Summary of Historic and Recent HABs in NJ 11 B. Summary of the 1999 HABs in NJ coastal waters 13 VI. Research and Indicator Development 17 A. General Research and Indicator Development: HABs 18 B. Specific Brown Tide Bloom Research Needs 20 VII. References 24 List of Figures Figure 1. Historical perspective of major phytoplankton blooms 32 causing red tides in the New York Bight and adjacent New Jersey coastal region Figure 2. New Jersey’s Coastal Phytoplankton Monitoring Network 33 List of Tables Table 1. Listing of documented algal blooms from 1957-1995 34 In NY Harbor and NY Bight VIII. Appendix I: Documented occurrences of harmful algae in New Jersey waters 1-4 Acknowledgements: The following people are gratefully acknowledged for their review and input to this report: Paul Olsen for his expertise and information on the NJ Phytoplankton Network and his comprehensive reviews, Eric Feerst, Bob Connell, Bill Eisele, Jim Mumman, Tom Atherholt and to Alan Stern, Dr.P.H. -
Molecular Tools for the Study of Marine Microbial Diversity - L.K
BIOTECHNOLOGY –Vol. IX - Molecular Tools for the Study of Marine Microbial Diversity - L.K. Medlin, K. Valentin, K. Metfies, K. Töbe, R. Groben MOLECULAR TOOLS FOR THE STUDY OF MARINE MICROBIAL DIVERSITY L.K. Medlin, K. Valentin, K. Metfies and K. Töbe Department of Biological Oceanography, Alfred Wegener Institute for Polar and Marine Research, Germany R. Groben Lake Ecosystem Group, Centre for Ecology & Hydrology, United Kingdom Keywords: AFLP, algae, biodiversity, clone library, DGGE, DNA fingerprinting, DNA microarrays, FISH, Fluorescence In Situ Hybridization, microsatellites, molecular marker, molecular probes, oligonucleotide probes, PCR, phylogeny, phytoplankton, RAPD, RFLP, rRNA, solid-phase cytometry, SSCP, TGGE. Contents 1. The Importance of Biodiversity Research in the Marine Environment 2. What Questions can be Answered Using Molecular Biology Techniques? 3. Evaluating Marine Biodiversity by Sequence Analysis and Fingerprinting Methods 3.1. Sequence Analysis 3.1.1. Which Genes to Select? 3.1.2. How to Generate Sequence Data? 3.1.3. Determining Biodiversity in an Environmental Sample by Sequence Analysis 3.1.4. Analysing Sequences for Determining Phylogenies and Biodiversity 3.1.5. DNA Barcoding 3.2. Fingerprinting Methods 4. Analysis of Population Structure Using Molecular Markers 5. Molecular Probes for Identification and Characterisation of Marine Phytoplankton 5.1. Introduction 5.2. Probe Design 5.3. Detection Methods 6. Conclusions Acknowledgements Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS Marine photosynthetic microbial organisms are the major, sustaining components of ecosystem processes and are responsible for biogeochemical reactions that drive our climate changes. Despite this, many marine microorganisms are poorly described and little is known of broad spatial and temporal scale trends in their abundance and distribution. -
Characterization and Phylogenetic Position of the Enigmatic Golden Alga Phaeothamnion Confervicola: Ultrastructure, Pigment Composition and Partial Ssu Rdna Sequence1
J. Phycol. 34, 286±298 (1998) CHARACTERIZATION AND PHYLOGENETIC POSITION OF THE ENIGMATIC GOLDEN ALGA PHAEOTHAMNION CONFERVICOLA: ULTRASTRUCTURE, PIGMENT COMPOSITION AND PARTIAL SSU RDNA SEQUENCE1 Robert A. Andersen,2 Dan Potter 3 Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine 04575 Robert R. Bidigare, Mikel Latasa 4 Department of Oceanography, 1000 Pope Road, University of Hawaii at Manoa, Honolulu, Hawaii 96822 Kingsley Rowan School of Botany, University of Melbourne, Parkville, Victoria 3052, Australia and Charles J. O'Kelly Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine 04575 ABSTRACT coxanthin, diadinoxanthin, diatoxanthin, heteroxanthin, The morphology, ultrastructure, photosynthetic pig- and b,b-carotene as well as chlorophylls a and c. The ments, and nuclear-encoded small subunit ribosomal DNA complete sequence of the SSU rDNA could not be obtained, (SSU rDNA) were examined for Phaeothamnion con- but a partial sequence (1201 bases) was determined. Par- fervicola Lagerheim strain SAG119.79. The morphology simony and neighbor-joining distance analyses of SSU rDNA from Phaeothamnion and 36 other chromophyte of the vegetative ®laments, as viewed under light micros- È copy, was indistinguishable from the isotype. Light micros- algae (with two Oomycete fungi as the outgroup) indicated copy, including epi¯uorescence microscopy, also revealed that Phaeothamnion was a weakly supported (bootstrap the presence of one to three chloroplasts in both vegetative 5,50%, 52%) sister taxon to the Xanthophyceae rep- cells and zoospores. Vegetative ®laments occasionally trans- resentatives and that this combined clade was in turn a formed to a palmelloid stage in old cultures. An eyespot weakly supported (bootstrap 5,50%, 67%) sister to the was not visible in zoospores when examined with light mi- Phaeophyceae. -
Seven Gene Phylogeny of Heterokonts
ARTICLE IN PRESS Protist, Vol. 160, 191—204, May 2009 http://www.elsevier.de/protis Published online date 9 February 2009 ORIGINAL PAPER Seven Gene Phylogeny of Heterokonts Ingvild Riisberga,d,1, Russell J.S. Orrb,d,1, Ragnhild Klugeb,c,2, Kamran Shalchian-Tabrizid, Holly A. Bowerse, Vishwanath Patilb,c, Bente Edvardsena,d, and Kjetill S. Jakobsenb,d,3 aMarine Biology, Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway bCentre for Ecological and Evolutionary Synthesis (CEES),Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway cDepartment of Plant and Environmental Sciences, P.O. Box 5003, The Norwegian University of Life Sciences, N-1432, A˚ s, Norway dMicrobial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway eCenter of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA Submitted May 23, 2008; Accepted November 15, 2008 Monitoring Editor: Mitchell L. Sogin Nucleotide ssu and lsu rDNA sequences of all major lineages of autotrophic (Ochrophyta) and heterotrophic (Bigyra and Pseudofungi) heterokonts were combined with amino acid sequences from four protein-coding genes (actin, b-tubulin, cox1 and hsp90) in a multigene approach for resolving the relationship between heterokont lineages. Applying these multigene data in Bayesian and maximum likelihood analyses improved the heterokont tree compared to previous rDNA analyses by placing all plastid-lacking heterotrophic heterokonts sister to Ochrophyta with robust support, and divided the heterotrophic heterokonts into the previously recognized phyla, Bigyra and Pseudofungi. Our trees identified the heterotrophic heterokonts Bicosoecida, Blastocystis and Labyrinthulida (Bigyra) as the earliest diverging lineages. -
Xanthophyta (Allorge Ex Fritsch 1935) and Bacillariophyta (Haeckel 1878)
Euglena: 2013 Xanthophyta (Allorge ex Fritsch 1935) and Bacillariophyta (Haeckel 1878) are basal groups within Ochrophyta (Cavalier-Smith 1986) Hannah Airgood, Jason Long, Kody Hummel, Alyssa Cantalini, DeLeila Schriner Department of Biology, Susquehanna University, Selinsgrove, PA 17870. Abstract Xanthophyta and Bacillariophyta are phyla within Heterokontae. Our focus was to examine the topology of Ochrophyta, the photosynthetic heterokonts, especially the position of Xanthophyta and Bacillariophyta. Two similar 28S rRNA genes and a third 18S rRNA gene were used for molecular analysis, by maximum likelihood. Fucoxanthin in chloroplasts, symmetry, and number of flagella were the characters used for morphological analysis. We concluded that Xanthophyta is a basal group in Ochrophyta. Bacillariophyta were also shown to be basal within Ochrophyta after Xanthophyta. In our study we found a misidentified species. A third gene was used to confirm this misidentification. Please cite this article as: Airgood, H., J. Long, K. Hummel, A. Cantalini, and D. Schriner. 2013. Xanthophyta (Allorge ex Fritsch 1935) and Bacillariophyta (Haeckel 1878) are basal broups within Ochrophyta (Cavalier-Smith 1986). Euglena. doi:/euglena. 1(2): 43-51. Introduction phaeophytes as they state that they are sister groups Heterokontae (Cavalier-Smith 1986) based on fossil analysis of xanthophytes and includes the phylum Ochrophyta, which is a phaeophytes. Riisberg et al. (2009) show evidence of monophyletic group of photosynthetic taxa. The the diatoms being basal to all the groups analyzed united group is further divided into Xanthophyta and that xanthophyte was more recently derived. It is (Allorge ex Fritsch 1935), Phaeophyta (Kjellman important that there are some diatoms that have radial 1891), Raphidiophyta (Chadefaud 1950), symmetry, but the evolution of bilateral symmetry in Chrysophyta (Pascher 1914), Eustigmatophyta this group is significant (Holt and Iudica 2012).