Mid-Permian Khuff Sequence KS6: Paleorelief-Influenced Facies and Sequence Patterns in the Lower Khuff Time-Equivalent Strata, Oman Mountains, Sultanate of Oman

Total Page:16

File Type:pdf, Size:1020Kb

Mid-Permian Khuff Sequence KS6: Paleorelief-Influenced Facies and Sequence Patterns in the Lower Khuff Time-Equivalent Strata, Oman Mountains, Sultanate of Oman GeoArabia, 2013, v. 18, no. 3, p. 135-178 Gulf PetroLink, Bahrain Mid-Permian Khuff Sequence KS6: Paleorelief-influenced facies and sequence patterns in the Lower Khuff time-equivalent strata, Oman Mountains, Sultanate of Oman Daniel Bendias, Bastian Koehrer, Michael Obermaier and Thomas Aigner ABSTRACT Khuff Sequence KS6 was studied in the Al Jabal al-Akhdar, Oman Mountains, in an area of 30 x 50 square kilometers by means of detailed sedimentological logging of five time-equivalent outcrop sections of the Saiq Formation. KS6 represents one transgressive-regressive, third-order sequence, and is composed of four facies associations each representing particular environments of deposition (backshoal, shoal, foreshoal and offshoal) with distinct sedimentological characteristics. Facies stack to form cycles and cycle sets that were used for correlation at a subregional scale and to reveal the KS6 stratigraphic architecture. During the initial phase of basin-fill, clastic sediments (“Basal Saiq Clastics”) were deposited in paleolows above the “Sub-Saiq Unconformity”. In contrast to younger Upper Khuff sequences KS4 to KS1, the underlying paleorelief strongly affects the thickness and facies composition of KS6. The correlation strategy to follow paleolandscape surfaces using all available sedimentological, biostratigraphic and lithostratigraphic data resulted in a stratigraphic architecture with subtle shingle geometries. Sequence KS6 shows a strong facies partitioning resulting in the necessity of two separate facies models for the transgressive (crinoidal ramp) versus regressive hemisequence (oolitic/peloidal carbonate ramp). This study revealed potential reservoir units in KS6, commonly regarded as non-reservoir in the subsurface of Oman and other parts of the Gulf region. The abundance, nature and lateral extent of reservoir facies strongly varies with stratigraphic position. In the transgressive part of KS6, crinoidal grainstones are concentrated around the margin of a gentle paleohigh. They might have the best reservoir potential, although early diagenetic cementation is common in most settings. Oolitic/peloidal grainstones in the upper regressive part have a much higher diagenetic reservoir potential and are laterally much more widespread. Thus, Khuff Sequence KS6 differs profoundly in its stratigraphic architecture from the more “layer-cake”-like KS4 to KS1 sequences. Facies and thickness patterns are controlled by a marked paleohigh to paleolow configuration, resulting from the antecedent uneven topography during the Neo-Tethyan syn-rift setting, in contrast to the post-rift setting with low tectonic activity during KS4 to KS1. INTRODUCTION The Khuff Formation represents one of the most important carbonate reservoir units across the Middle East (Figure 1). Six sequences, KS1 to KS6 in descending order, have been identified in Khuff- equivalent strata in the Oman Mountains (Figures 2 and 3; Koehrer et al., 2010). The Upper Khuff sequences KS1 and KS4 contain several reservoir zones and are well explored across the Gulf region. The lower sequences KS5 and KS6 are so far only very sparsely investigated, and fewer penetrations leave these units relatively underexplored. This study on Sequence KS6 is part of a larger research project on Khuff time-equivalent strata in the Al Jabal al-Akhdar area (Oman Mountains) in the Sultanate of Oman (Figures 1 and 2). Its aim is to unravel the geometries and distribution of Khuff grainstones as potential reservoir bodies. Initially a one-dimensional (1-D) facies and sequence-stratigraphic framework was proposed by Koehrer et al. (2010) for the Khuff time-equivalent strata at a type locality on the Saiq Plateau. Subsequently, 135 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/18/3/135/4567666/bendias.pdf by guest on 25 September 2021 Bendias et al. LATE PERMIAN (CHANGHSINGIAN) PALEOGEOGRAPHY 45°E 50° Inner shelf 55° carbonates IRAQ 30° 30°N N KUWAIT Middle and outer 0 250 shelf carbonates Kuh-i-Mand km Dalan North Pars Kangan SAUDI ARABIA Karan IRAN Khursaniyah Abu Sa'fah Zagros South Berri Pars High Abqaiq BAHRAIN North Field Ghawar AbuAl Bukhoosh Nasr 25° Khurais Awali Zakum 25° QATAR Gulf of Oman Riyadh Hail Study Area Harmaliyah UAE Muscat Arzanah Umm Arabian Shaif Shield Yibal Marginal-marine/ OMAN deltaic deposits Erosional limit 20° 20° 45° 50° 55° Figure 1: Paleogeographic map of the Arabian Gulf area during the Late Permian showing location of the study area and major hydrocarbon fields within the Khuff reservoir (red) (modified from Maurer et al., 2009, after Ziegler, 2001). The study area (Al Jabal al-Akhdar) is located about 130 km west of Muscat. Khuff grainstone geometries were documented on the Saiq Plateau from near-well-scale (< 2 km) by Zeller et al. (2011) to field-scale (< 10 km) by Koehrer et al. (2011), and to subregional scale (< 60 km) by Koehrer et al. (2012). These studies revealed an overall “layer-cake”-type geometry of shoal grainstone bodies in Upper Khuff sequences KS4 to KS1. Only subtle lateral heterogeneity of facies associations is observed in Khuff sequences KS1 to KS4 on a subregional-scale (60 x 40 km) in the Al Jabal al-Akhdar by Koehrer et al. (2012). Cycle sets and sequences were found to be highly correlatable, pointing towards a rather uniform gross depositional environment and absence of significant tectonic activity in this area during the post-rift phase of the Neo-Tethys Ocean. Post-depositional sediment deformations and structurally-related breccias and discontinuity surfaces are however described in sequences KS1 to KS4 from the Saih Hatat Window (Figure 2), paleogeographically located more proximally to the Arabian platform margin (e.g. Chauvet et al., 2009; Weidlich and Bernecker, 2011; Weidlich and Bernecker, 2012). However, heterogeneities markedly increase in KS5 and KS6, possibly due to deposition during a syn-rift phase. Walz and Aigner (2012) and Walz et al. (2013) report significant thickness variations and apparent downlaps on cycle and cycle set scale, which are interpreted to result either from differential subsidence or initial topography. This paper focuses on the architecture of the grainstones in Khuff Sequence KS6 on a scale of 30 x 50 sq km. It aims at assessing the possible influence of paleotopography on potential reservoir facies distribution and continuity. It follows a systematic 1-D/2-D/3-D approach: after a detailed documentation of 1-D outcrop sections, 2-D stratigraphic cross-sections are constructed, leading to 3-D geocellular models. 136 136 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/18/3/135/4567666/bendias.pdf by guest on 25 September 2021 Mid-Permian Khuff Sequence KS6, Oman OUTCROP MAP, OMAN MOUNTAINS 57°E 57°30' 58°558°30' 9° Gulf of Oman Q Jabal N Bawshar 0 25 Muscat km Semail Wadi Ophiolite S Tt Aday 23°30'N J Wadi Hulw 23°30' Wadi Bani Awf PTr Mayh PTr Wadi Sahtan Jabal Jabal Abu Da’vd Tayin Pc Wadi Mistal J Wadi CO CO Mijlas Tt P Al Jabal al-Akhdar JK Semail Ja ba Jabal Pc Ophiolite l J Ab Aswad Wadi Bani Hajir ya J d 23° JK 23° Saiq Plateau Semail Ophiolite Tt Tt Jabal S Hamrat ad Duru H Range am m S ah Hawasina Q Jabal Nappes Safra 57° 57°30' 58°558°30' Q 9° BAHRAIN 54° 58° (Q) Quaternary Kawr Group (Triassic – Cretaceous) 26° QATAR Gulf of Oman (Tt) Tertiary Al Aridh Group Abu (Triassic – Late Cretaceous) Dhabi Location UAE (J) Sahtan Group (Jurassic) Umar Group (Triassic – Cretaceous) Muscat (JK) Kahmah Group Hamrat Duru Group 22° OMAN 22° (end Jurassic – mid-Cretaceous) (Late Permian – Late Cretaceous) SAUDI Baid Formation Wasia Group (mid-Cretaceous) N ARABIA (Late Permian – Jurassic) 0 200 (PTr) Akhdar Group Muti Formation (mid-Late Cretaceous) km (Late Permian – Triassic) Arabian Sea (CO) Haima Group Aruma Group (end Cretaceous) (Cambrian – Ordovician) 18° 18° (S) Semail Ophiolite (P) upper Huqf Group YEMEN (Proterozoic – Cambrian) (mid-Late Cretaceous) 54° 58° Metamorphic sole (Pc) lower Huqf Group (Proterozoic) (mid-Late Cretaceous) Correlation lines (Figs. 28 to 30) Figure 2: Geological map of the Oman Mountains showing location of the studied sections. Note that the Saiq and Mahil formations of the Akhdar Group are shown together (PTr) (after Béchennec et al., 1993). GEOLOGICAL SETTING The study area is located in the Oman Mountains, about 130 km west of Muscat (Figures 1 and 2). The northern Oman region experienced several phases of long-term subaerial exposure between the Proterozoic and Early Permian, which resulted in times of non-deposition and erosion (e.g. Forbes et al., 2010). In the Oman Mountains, a distinctive angular unconformity between Neo-Proterozoic and Middle Permian strata is preserved, which is here termed as the “Sub-Saiq Unconformity” (Figures 3 and 4). The initial deposition of Khuff sediments started as a result of the drift of Cimmerian terranes away from Gondwana and the accompanying opening of the Neo-Tethys Ocean (e.g. Pillevuit, 1993; Stampfli and Borel, 2002). Subsequent flooding of the Arabian Plate resulted in the development of an epeiric carbonate ramp and the unconformable deposition of Khuff and equivalent sediments on folded Proterozoic strata (e.g. Glennie et al., 1974; Rabu et al., 1993; Searle, 2007). 137 137 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/18/3/135/4567666/bendias.pdf by guest on 25 September 2021 Bendias et al. According to the paleogeographic reconstructions of the Permian–Triassic by Konert et al. (2001a, b) the Arabian Plate drifted northwards, from 30° to 15° south. Sea-level oscillations of moderate amplitude and wavelength, and a transitional icehouse to greenhouse climate (Al-Jallal, 1995), created conditions very similar to those observed along the present-day Arabian Gulf coast (Strohmenger et al., 2006). According to paleogeographic reconstructions from Ziegler (2001), the deposition of Khuff strata took place on a shallow-marine to open-marine epeiric carbonate ramp (Figure 1). Stratigraphic Framework Permian–Triassic strata in the Oman Mountains (Al Jabal al-Akhdar) are subdivided into two formations by Glennie et al.
Recommended publications
  • Holocene Progradation and Retrogradation of the Central Texas Coast Regulated by Alongshore and Cross-Shore Sediment Flux Variability
    Received: 4 May 2020 | Revised: 8 October 2020 | Accepted: 15 October 2020 DOI: 10.1002/dep2.130 ORIGINAL RESEARCH ARTICLE Holocene progradation and retrogradation of the Central Texas Coast regulated by alongshore and cross-shore sediment flux variability Christopher I. Odezulu1 | Travis Swanson2 | John B. Anderson1 1Department of Earth, Environmental and Planetary Science, Rice University, Abstract Houston, TX, USA Fifteen transects of sediment cores located off the central Texas coast between 2Department of Geology and Geography, Matagorda Peninsula and North Padre Island were investigated to examine the off- Georgia Southern University, Statesboro, shore record of Holocene evolution of the central Texas coast. The transects extend GA, USA from near the modern shoreline to beyond the toe of the shoreface. Lithology, grain *Correspondence size and fossil content were used to identify upper shoreface, lower shoreface, ebb- Christopher I. Odezulu, Department tidal delta and marine mud lithofacies. Interpretations of these core transects show of Earth, Environmental and Planetary Science, Rice University, Houston, TX, a general stratigraphic pattern across the study area that indicates three major epi- USA. sodes of shoreface displacement. First, there was an episode of shoreface prograda- Email: [email protected] tion that extended up to 5 km seaward. Second, an episode of landward shoreline Funding information displacement is indicated by 3–4 km of marine mud onlap. Third, the marine muds Rice University Shell Center for Sustainability. are overlain by shoreface sands, which indicates another episode of shoreface pro- gradation of up to 5 km seaward. Radiocarbon ages constrain the onset of the first episode of progradation to ca 6.5 ka, ending at ca 5.0 ka when the rate of sea-level rise slowed from an average rate of 1.6–0.5 mm/yr.
    [Show full text]
  • Resilience of River Deltas in the Anthropocene
    manuscript submitted to JGR: Earth Surface 1 Resilience of river deltas in the Anthropocene 1 2 3 4 2 A.J.F. Hoitink , J.A. Nittrouer , P. Passalacqua , J.B. Shaw , E.J. 5 6 6 3 Langendoen , Y. Huismans & D.S. van Maren 1 4 Wageningen University & Research, Wageningen, The Netherlands 2 5 Rice University, Houston, Texas USA 3 6 University of Texas at Austin, Austin, Texas USA 4 7 Department of Geosciences, University of Arkansas, Fayetteville, Arkansas USA 5 8 National Sedimentation Laboratory, United States Department of Agriculture, Oxford, Mississippi USA 6 9 Deltares, Delft, The Netherlands 10 Key Points: 11 • The predictive capacity of morphodynamic models needs to improve to better an- 12 ticipate global change impacts on deltas 13 • Information theory and dynamical system theory offer complementary analysis frame- 14 works to improve understanding of delta resilience 15 • The sediment balance in a delta channel network needs to be closed such that pre- 16 dictions match with independent observations Corresponding author: Ton Hoitink, [email protected] {1{ manuscript submitted to JGR: Earth Surface 17 Abstract 18 At a global scale, delta morphologies are subject to rapid change as a result of direct and 19 indirect effects of human activity. This jeopardizes the ecosystem services of deltas, in- 20 cluding protection against flood hazards, facilitation of navigation and biodiversity. Di- 21 rect manifestations of delta morphological instability include river bank failure, which 22 may lead to avulsion, persistent channel incision or aggregation, and a change of the sed- 23 imentary regime to hyperturbid conditions. Notwithstanding the in-depth knowledge de- 24 veloped over the past decades about those topics, existing understanding is fragmented, 25 and the predictive capacity of morphodynamic models is limited.
    [Show full text]
  • The Stratigraphic Architecture and Evolution of the Burdigalian Carbonate—Siliciclastic Sedimentary Systems of the Mut Basin, Turkey
    The stratigraphic architecture and evolution of the Burdigalian carbonate—siliciclastic sedimentary systems of the Mut Basin, Turkey P. Bassanta,*, F.S.P. Van Buchema, A. Strasserb,N.Gfru¨rc aInstitut Franc¸ais du Pe´trole, Rueil-Malmaison, France bUniversity of Fribourg, Switzerland cIstanbul Technical University, Istanbul, Turkey Received 17 February 2003; received in revised form 18 November 2003; accepted 21 January 2004 Abstract This study describes the coeval development of the depositional environments in three areas across the Mut Basin (Southern Turkey) throughout the Late Burdigalian (early Miocene). Antecedent topography and rapid high-amplitude sea-level change are the main controlling factors on stratigraphic architecture and sediment type. Stratigraphic evidence is observed for two high- amplitude (100–150 m) sea-level cycles in the Late Burdigalian to Langhian. These cycles are interpreted to be eustatic in nature and driven by the long-term 400-Ka orbital eccentricity-cycle-changing ice volumes in the nascent Antarctic icecap. We propose that the Mut Basin is an exemplary case study area for guiding lithostratigraphic predictions in early Miocene shallow- marine carbonate and mixed environments elsewhere in the world. The Late Burdigalian in the Mut Basin was a time of relative tectonic quiescence, during which a complex relict basin topography was flooded by a rapid marine transgression. This area was chosen for study because it presents extraordinary large- scale 3D outcrops and a large diversity of depositional environments throughout the basin. Three study transects were constructed by combining stratal geometries and facies observations into a high-resolution sequence stratigraphic framework. 3346 m of section were logged, 400 thin sections were studied, and 145 biostratigraphic samples were analysed for nannoplankton dates (Bassant, P., 1999.
    [Show full text]
  • 1 Cyclical Shoreline Erosion: the Impact of a Jettied River Mouth on the Downdrift Barrier Island
    CYCLICAL SHORELINE EROSION: THE IMPACT OF A JETTIED RIVER MOUTH ON THE DOWNDRIFT BARRIER ISLAND ANDREW R. FALLON1, CHRISTOPHER J. HEIN2, PETER S. ROSEN3, HALEY L. GANNON4 1. Virginia Institute of Marine Science, College of William and Mary, 1375 Greate Rd, Gloucester Point, Virginia 23062, [email protected] 2. Virginia Institute of Marine Science, College of William and Mary, 1375 Greate Rd, Gloucester Point, Virginia 23062, [email protected] 3. Northeastern University, 360 Huntington Ave, Boston Massachusetts, 02115, [email protected] 4. College of William and Mary, 200 Stadium Drive, Williamsburg, VA 23186, [email protected] Abstract: Beaches and inlets throughout the U.S. have been stabilized for purposes of navigation, erosion mitigation, and economic resilience, commonly leading to changes in shoreline dynamics and downdrift erosion/accretion patterns. The developed beach of Plum Island, Massachusetts is highly dynamic, experiencing regular complex erosion / accretion patterns along much of the shoreline. We analyzed > 100 years of high-water line positions derived from satellite imagery, t-sheets, historical maps, and aerial photography. Unlike most beaches, the river-proximal sections of Plum Island are not uniformly retreating. Rather, the beach undergoes short-term erosion, followed by periods of accretion and return to a long-term mean stable shoreline position. These cycles occur over different timeframes and in different segments of the beach, creating an ephemeral erosion ‘hotspot’ lasting as briefly as one year. The highly dynamic and spatially diverse nature of erosion along Plum Island provides insight into the complex nature of coupled inlet-beach dynamics over multiple timescales. Introduction Coastlines throughout the world have been highly developed, creating high risk areas due to the dynamic nature of beaches, tidal inlets and barrier islands.
    [Show full text]
  • Published Version
    PUBLISHED VERSION Lewis, Megan Mary; White, Davina Cherie; Gotch, Travis Bruce (eds.) 2013, Allocating water and maintaining springs in the Great Artesian Basin. Volume IV. Spatial survey and remote sensing of artesian springs of the western Great Artesian Basin, Canberra, National Water Commission © Commonwealth of Australia 2013 This work is copyright. The Copyright Act 1968 permits fair dealing for study, research, news reporting, criticism or review and the National Water Commission supports and encourages the dissemination and exchange of its information. Selected passages, tables or diagrams may be reproduced for such purposes provided you attribute the National Water Commission as the source. Reproduction for commercial use or sale requires prior written permission from the National Water Commission. Requests and enquiries concerning reproduction and rights should be addressed to the Communication Director, National Water Commission, 95 Northbourne Avenue, Canberra ACT 2600 or email [email protected] PERMISSIONS This document is made available with special permission from the National Water Commission. 14.05.2013. The full report is available at the National Water Commission’s Archive site: http://archive.nwc.gov.au/library/topic/groundwater/allocating-water-and-maintaining- springs-in-the-great-artesian-basin ‘Allocating Water and Maintaining Springs in the GAB’ http://hdl.handle.net/2440/77601 Volume IV: Spatial Survey and Remote Sensing of Artesian Springs of the Western Great Artesian Basin Allocating Water and Maintaining Springs 6 in the Great Artesian Basin Evaluation of remote sensing approaches Megan M Lewis School of Earth and Environmental Sciences, The University of Adelaide Davina White School of Earth and Environmental Sciences, The University of Adelaide Volume IV: Spatial Survey and Remote Chapter 6: Evaluation of Sensing of Artesian Springs of the remote sensing approaches Western Great Artesian Basin Allocating Water and Maintaining Springs in the Great Artesian Basin 6 6.
    [Show full text]
  • Zellman Mines 0052E 11720.Pdf (6.993Mb)
    INVESTIGATING LINKS BETWEEN CLIMATE PERTURBATIONS, RIVER DISCHARGE VARIABILITY AND FLUVIAL FANS IN THE PALEOGENE SAN JUAN BASIN, NEW MEXICO, USA by Kristine L. Zellman © Copyright by Kristine L. Zellman, 2019 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology). Golden, Colorado Date Signed: Kristine L. Zellman Signed: Dr. Piret Plink-Bj¨orklund Thesis Advisor Golden, Colorado Date Signed: Dr. M. Stephen Enders Professor and Head Department of Geology and Geological Engineering ii ABSTRACT The San Juan Basin in New Mexico preserves the southernmost sedimentary record of the Paleocene and early-Eocene in North America, and thus represents a critical point for comparison for climatic and biotic change during the Paleogene. This dissertation combines basin-scale 3D outcrop analyses of fluvial architecture and preliminary stable carbon isotope records from the Paleocene upper Nacimiento Formation and the early-Eocene San Jose Formation to investigate the link between Paleogene climate perturbations and depositional trends. Through these investigations, we 1) identify the succession as deposits of variable dis- charge river systems, 2) observe a long-term stratigraphic trend toward increasingly well- drained floodplain deposits, and thus successively more arid conditions from Paleocene into the early-Eocene that we suggest may indicate a long-term shift from a monsoonal climate in the Paleocene to fluctuating humid and arid subtropical and then semi-arid/arid conditions in the early Eocene, 3) identify the Paleocene uppermost Nacimiento Formation and early- Eocene Cuba Mesa and Regina Members of the San Jose Formation as deposits of a large fluvial fan and identify at least two vertical packages of fan progradation, and 4) identify at least two negative carbon isotope excursions that may record the Paleocene-Eocene Thermal Maximum (PETM) and one or more post-PETM hyperthermal events.
    [Show full text]
  • Deciphering the Origin of Cyclical Gravel Front and Shoreline Progradation and Retrogradation in the Stratigraphic Record
    Deciphering the origin of cyclical gravel front and shoreline progradation and retrogradation in the stratigraphic record John J. Armitage1, Peter A. Burgess2, Gary J. Hampson3, and Philip A. Allen3 1Department of Earth Science, Royal Holloway, University of London, Egham, UK; Now at Institut de Physique du Globe de Paris, 1 rue Jussieu, Paris, 75005, France; e-mail: [email protected] 2Department of Earth Science, Royal Holloway, University of London, Egham, UK 3Department of Earth Science and Engineering, Imperial College London, London, UK May 4, 2016 1 1 Abstract 2 Nearly all successions of near-shore strata exhibit cyclical movements of the shoreline, which 3 have commonly been attributed to cyclical oscillations in relative sea level (combining eustasy 4 and subsidence) or, more rarely, to cyclical variations in sediment supply. It has become accepted 5 that cyclical change in sediment delivery from source catchments may lead to cyclical movement 6 of boundaries such as the gravel front, particularly in the proximal segments of sediment routing 7 systems. In order to quantitatively assess how variations in sediment transport as a consequence 8 of change in relative sea-level and surface run-off control stratigraphic architecture, we develop a 9 simple numerical model of sediment transport and explore the sensitivity of moving boundaries 10 within the sediment routing system to change in upstream (sediment flux, precipitation rate) and 11 downstream (sea level) controls. We find that downstream controls impact the shoreline and sand 12 front, while the upstream controls can impact the whole system depending on the amplitude of 13 change in sediment flux and precipitation rate.
    [Show full text]
  • Little Ambergris Cay, a Case Study for Ooid Rich Island Development on the Turks and Caicos Carbonate Platform
    Little Ambergris Cay, a Case Study for Ooid Rich Island Development on the Turks and Caicos Carbonate Platform By Drew G. Brown Geological Sciences, University of Colorado at Boulder Defense Date (November 4th, 2020) Thesis Advisor: Dr. Elizabeth Trower, Geology Defense Committee: Dr. Elizabeth Trower, Geological Sciences Dr. Brian Hynek, Geological Sciences Dr. Julia Moriarty, Atmospheric and Oceanic Sciences 1 Abstract: Little Ambergris Cay (LAC) within the Turks and Caicos is a useful field site to examine the accumulation of a carbonate island, within a typical carbonate platform environment, because it does not follow the typically accepted modes of island accretion. There are several methods used to describe carbonate island formation after Schlager (2003), who described carbonate “factories” in reference to the modern analogues of Florida and the Bahamas. The Turks and Caicos, and specifically Little Ambergris Cay, offers a field side that differs from the comparison analogues in sediment composition, energy flux, and Holocene development. Little Ambergris Cay is unusual in that it formed during a period of sea level rise (Figure 2, Toscano & Macintyre, 2003), and thus presents an opportunity for research on how modern carbonate platform environments accumulate through time. This paper presents an argument for eastward direction of island accumulation of Little Ambergris Cay. Based on the research of Trower et al. (2018), Dravis & Wanless (2008), and Schlager (2003), I interpret that Little Ambergris Cay formed via eastward accumulation based on the influence of wind-wave current energy as means of supplying ample sediment to a zone of accumulation; in other words, in this system, sediment supply outpaces accommodation space.
    [Show full text]
  • Sea Level Change
    Sea Level Change Outline Causes of sea level change Temporal (time) scales of sea level changes Climate-related sealevel change and oxygen isotope stages Eustatic and relative sea levels Evidence of sealevel change Sedimentary records of sealevel changes Causes of sea level change Why does the sea level change? Changes in the relative volumes of seawater and polar ice caps and ice sheets a) Formation and melting of ice caps e.g., if Antarctic ice cap and Greenland ice sheets melted completely the sealevel would rise 60-80 m. b) Thermal expansion of seawater 10ºC increase in seawater temperature would cause 10 m increase in sea level These processes are a function of climate: external earth process Changes in the volume of ocean basins containing seawater The ocean basins changing in size and shape: Increase in length of the ocean ridges and rate of seafloor spreading would decrease the volume of ocean basins, causing a sealevel rise. The main process is Plate Tectonics (internal forces) Temporal scale of sea level change Sealevel fluctuations occur on time scales of: Millions of years Thousands of years Diurnal variations: Tides and weather Tides: Diurnal variations is the result of gravitational attraction between Earth, Moon, Sun and rotation of Earth. The times and amplitude of tides at a locale are influenced by: • Alignment of Sun and Moon, • Pattern of tides in the deep ocean • The amphidromic (zero amplitude) systems of the oceans creating waves, tidal currents • The shape of the coastline and near-shore bathymetry Tides Neap tides occur during quarter Moon Spring tides occur during full and new Moon Tidal amplitude Mid-spring range: 14.5 m Extreme range: 16.3 m Amphidromic system and points These occur because of the Coriolis effect and interference within oceanic basins, seas and bays creating a wave pattern Tide amplitude indicated by color.
    [Show full text]
  • Carbonate Platform Evolution: from a Bioconstructed Platform Margin to a Sand-Shoal System (Devonian, Guilin, South China)
    Sedimentology (2002) 49, 737–764 Carbonate platform evolution: from a bioconstructed platform margin to a sand-shoal system (Devonian, Guilin, South China) DAIZHAO CHEN*, MAURICE E. TUCKER , JINGQUAN ZHU* and MAOSHENG JIANG* *Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029, China (E-mail: [email protected]) Department of Geological Sciences, University of Durham, Durham DH1 3LE, UK (E-mail: [email protected]) ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike-slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand-shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre-scale depositional cyclicity occurs in most facies associations, except in the platform-margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block-tilting effect) caused large-scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity-flow deposits.
    [Show full text]
  • Unusual Development of Sandur Sedimentary Succession, an Example from the Pleistocene of S Poland
    Geologos, 2010, 16 (2): 83–99 doi: 10.2478/v10118-009-0007-9 Unusual development of sandur sedimentary succession, an example from the Pleistocene of S Poland Tomasz Salamon1, Tomasz Zieliński2 1 Department of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200 Sosnowiec, Poland; e-mail: [email protected] 2 Institute of Geology, Adam Mickiewicz University, Maków Polnych Str. 16, 61-606 Poznań, Poland; e-mail: [email protected] Abstract An atypical lithological development of outwash deposits in the Carpathians Foreland (S Poland) shows lower and middle parts of the sedimentary succession that are characterized by sinuous palaeochannels. This channel facies con- sists of laterally accreted sands derived from side bars. The sedimentary environment was a proglacial system of ana- branching channels, presumably of anastomosed type. The outwash channel pattern was most probably controlled by the raising base level of the fluvial system. Both proglacial and extraglacial waters were dammed by a sandur within a small upland valley. Aggradation and progradation of the glaciofluvial deposits resulted in progressive rising of the dammed lake level. The low hydraulic gradient of the outwash streams resulted in a sinuous planform as well as a low- energy style of deposition. Afterwards, the rising lake water was drained off through a low watershed and the entire valley became filled with outwash sediments. The bedrock morphology thus became buried and a typical unconfined sandur with a braided channel network developed during the last phase of the glaciomarginal sedimentation (upper part of the sedimentary succession under study). Keywords: outwash deposits, sedimentology, Pleistocene, Poland Introduction ser, 1993; Marren, 2005) worked this out into a depositional model: the sandur is nowadays Sandurs (outwash plains) are, as a rule, rec- the best example of a braided fluvial system.
    [Show full text]
  • Controls on Turbidite Sedimentation: Insights from a Quantitative Approach of Submarine Channel and Lobe Architecture (Late Quaternary Congo Fan)
    1 Marine and Petroleum Geology Achimer April 2016, Volume 72, Pages 423-446 http://dx.doi.org/10.1016/j.marpetgeo.2016.02.004 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00312/42285/ © 2016 Elsevier Ltd. All rights reserved. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo fan) Picot Marie 1, *, Droz Laurence 1, Marsset Tania 2, Dennielou Bernard 2, Bez M. 3 1 Laboratoire Domaines Océaniques, UMR6538, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, 29280 Plouzané, France 2 Laboratoire Environnements Sédimentaires, UR GM, IFREMER, BP 70, 29280 Plouzané, France 3 Centre Scientifique et Technique Jean Feger, Total, Avenue Larribau, 64018 Pau, France * Corresponding author : Marie Picot, Tel.: +33 (0)2 98 49 87 17 ; email address : [email protected] [email protected] ; [email protected] ; [email protected] ; [email protected] Abstract : The role of internal and external forcing of sedimentation in turbidite systems remains a subject of debate. Here we propose new insights from the quantitative analysis of architectural parameters of the Congo Axial Fan. Fifty-two channel-levee-lobe systems, spanning the last ca. 200 ka, are visible on the seafloor, most of them having slightly elongated lobe complexes at their termination. Volumes of lobe complexes (usually 3 to 196 km3) are highly variable in time and space. The cumulative volume of the lobe complexes represents approximately 30% of the volume of the Axial Fan. The Axial Fan is sequentially divided into periods of increasing/decreasing channel lengths and basinward/landward migrations of avulsion points, representing successive prograding/retrograding architectural patterns called architectural cycles.
    [Show full text]