At Bimini, Bahamas

Total Page:16

File Type:pdf, Size:1020Kb

At Bimini, Bahamas SPATIAL AND TEMPORAL VARIATION IN DIET AND PREY PREFERENCE OF NURSERY-BOUND JUVENILE LEMON SHARKS (Negapri011 brevirostris) AT BIMINI, BAHAMAS. By STEVEN PAUL NEWMAN A thesis submitted to the University of Plymouth In partial fulfilment for the degree of DOCTOR OF PIDLOSPHY Department of Biological Sciences Faculty of Science In collaboration with Bimini Biological Field Station, Bahamas October 2003 Ill ,. I l!JNIVEF.tSITY ()F ,PLVM0llJliH: UeniNo.. ~j00·58} ~84-4 I pate I 0~5; MAY 2004 I • !Class No. -T+IESIS 9\Rik-~li ,.u; . ' w. I 'coR I. No. I' I Pll'ZMOUi'H LIB!=IAAV: I I Abstract Spatial and temporal variation in the diet and prey preference of juvenile lemon sharks Prey selection has never been determined in an elasmobranch, primarily because of the large home ranges possessed by adults making accurate quantification of prey in the environment problematic. Juvenile lemon sharks spend their first few years of life within protected nursery grounds, enabling the first quantification of prey selection due to the restricted area that they inhabit. Growth and survival of juvenile lemon sharks strongly influences adult fitness and recruitment, and therefore prey selection may play an important role in the life history of lemon sharks. The selection of a preferred species or size of prey by juvenile lemon sharks was determined by comparing the proportions of prey in the diet with proportions of prey in the environment at Bimini, Bahamas, between March 2000 and March 2003. The diet of lemon sharks was quantitatively described from the analysis of 642 shark stomachs (54.7 ± 0.3 cm precaudal length PCL, mean ± S.E., range 43.5 to 90.0 cm), of which 396 (62 %) contained food items. The main prey of juvenile lemon sharks at Bimini were mojarras (69% index of relative importance, IRI), parrotfish (5.5 % IRI), swimming crabs (5.1 %) and barracuda (3.1 % IRI). The yellowfin mojarra Gen·es cinereus was the main prey of lemon sharks regardless of location, season, shark size or sex. Contingency table analysis revealed the diet of juvenile lemon sharks to be specific to location et = 65.54, p < 0.0001), but homogeneous with season eX: = 17.91, p = 0.118), shark size et = 64.36, p = 0.057) and 2 shark sex (X = 13.21, P = 0.354). Prey sizes were measured where possible, or calculated using least squares linear regression equations relating bone or carapace dimensions with original size. Original size was obtained for 350 dietary items, with 85 % calculated using bone regressions. Juvenile lemon sharks demonstrated no significant spatial or temporal variation in the size of prey consumed (Kolmogorov-Smimov and Student's /-tests, P > 0.05), but juveniles over 60.0 cm PCL conswned significantly larger prey than smaller sharks (ANOVA, P < 0.001). Bone-length regressions also enabled a more accurate estimate of meal size (2.17 ± 0.17 % BW, mean± S.E., range 0.0 I to 21.4 % BW, n = 407) and subsequently daily ration, 1.31 - 1.80% BW (depending on shark size), in comparison to traditional back­ calculation techniques. Forty-three blocknets, 540 seine nets and 498 trawls were closed to sample mangrove and seagrass communities, resulting in the capture, identification and measurement of 216,150 fish and macro invertebrates. Catches were extrapolated over the entire study area providing an estimate of population sizes. Prey preference was estimated using chi-square residuals and a traditional electivity index. Values and rankings of selection varied with technique, but both revealed similar trends in prey preference. Proportions of prey families and prey sizes in the diet of lemon sharks from Bimini were significantly different to those found in the environment Ci, P < 0.001 and Kolmogorov-Smirnov test, P < 0.001 respectively). Lemon sharks demonstrated a preference for slower moving prey that were easier to capture (e.g. mojarras, toadfish, parrotfish and filefish), while avoiding larger, faster and harder to catch prey. Yellowfin mojarra were consumed in proportion to the distribution of fish lengths in the environment, suggesting that their importance in the diet may be due to preferred sizes in the environment as well as their ease of capture. Lemon shark diet was closely correlated with mangrove communities, demonstrating the importance of mangroves and the need for their protection in the Bahamas. The degree of selection exhibited by juvenile lemon sharks was greatest when prey were more abundant (off South Bimini and in the wet season), suggesting that lemon sharks conform to the optimal foraging theory. iv CONTENTS Page number Copyright statement Dedication ii Title page iii Abstract iv Contents V List of Figures 1 List of Tables 3 Acknowledgements 6 Authors declaration 8 Work in support of this thesis 9 CHAPTER ONE GENERAL INTRODUCTION TO PREY SELECTION IN SHARKS l Introduction 11 1.1 What is prey selection and why is it important? 11 1.2 Prey selection and the Optimal Foraging Theory 12 1.3 How is prey selection quantified? 13 1.4 Introduction to elasmobranchs 14 1.5 Introduction to the lemon shark 14 1.6 Diet of juvenile lemon sharks 15 1.7 Prey selection in sharks 16 1.8 Shark nurseries 16 1.9 Potential of prey selection in juvenile lemon sharks 18 I . I 0 General hypothesis 19 I. 11 Aims and objectives 19 V CHAPTER TWO GENERAL MATERIALS AND METHODS 2.1 Study site 21 2.1.1 Bimini 21 2.1.2 North Sound shark nursery 24 2.1.3 South Bimini shark nursery 24 2. 1.4 Nursery demarcation 25 2.2 Collection techniques 25 2.2. I Shark collection techniques 25 2.2.2 Shark stomach content collection 26 2.2.3 Prey collection techniques 26 2.2.4 Weighing, measuring and sorting of catches 28 2.3 Nursery description 29 2.3.1 Methodology 29 2.3.2 Abiotic variables 30 2.3.3 Biotic variables 30 2.3.4 Seagrass coverage and macroalgae diversity 30 2.3.5 Coverage with distance from the mangrove fringe 31 2.3.6 Seagrass densities 33 2.3.7 Seagrass standing crop 33 2.3.8 Discussion of nursery description 36 2.4 Statistics 38 2.4.1 Routine statistics 38 2.4.2 Index of relative importance (IRI) 39 2.4.3 Measures of overlap and similarity 39 CHAPTER THREE SPATIAL AND TEMPORAL VARIATION IN THE DIET OF NURSERY-BOUND JUVENILE LEMON SHARKS, Negaprio11 brevirostris, AT BIMINI, BAHAMAS. 3.1 Introduction 43 3.2 Materials and methods 44 3.2.1 Dietary analysis 44 VI 3.2.2 Statistics 44 3.2.2.1 Variation in dietary composition 44 3.2.2.2 Dietary overlap 44 3.2.2.3 Diet breadth 44 3.3 Results 46 3.3.1 Lemon shark stomach contents 46 3.3.1.1 Lemon shark diet- teleosts 46 3.3 .1.2 Lemon shark diet- crustacea, cephalopoda and annelid a 49 3.3.2 Spatial variation in lemon shark diet 49 3.3.3 Seasonal variation in lemon shark diet 52 3.3.4 Ontogenetic variation in lemon shark diet 53 3.3.5 Variation in lemon shark diet with shark sex 57 3.4 Discussion 60 3.4.1 Lemon shark diet 60 3.4.2 Spatial variation in lemon shark diet 63 3.4.3 Seasonal variation in lemon shark diet 64 3.4.4 Ontogenetic variation in lemon shark diet 65 3.4.5 Conclusion 66 CHAPTER FOUR SPATIAL AND TEMPORAL VARIATION IN FISH AND MACRO-INVERTEBRATE COMMUNITIES AT BIMJNI, BAHAMAS. 4.1 Introduction 68 4.2 Materials and methods 69 4.2.1 Study area 70 4.2.2 Collection techniques 70 4.2.3 Statistics 70 4.2.3.1 Data preparation and transformation 71 4.2.3.2 Analysis of community composition 71 4.2.3.3 Analysis of catch diversity and biomass 71 4.2.3.4 Analysis of size distributions 72 4.3 Results 72 4.3.1 Total catch summary, all sites 72 4.3.2 Mangrove communities 72 4.3.3 Seagrass communities 73 4.3.3.1 Seine and trawl catches 73 vii 4.3.3.2 Gillnet catches 80 4.3.4 Spatial and temporal variation in mangrove and seagrass communities 80 4.3.5 Spatial variation in species catch 83 4.3.6 Temporal variation in species catch 85 4.3.7 Spatial and temporal variation in catch diversity and biomass 86 4.3. 7.1 Spatial variation in species diversity 86 4.3. 7.2 Temporal variation in species diversity 86 4.3. 7.3 Spatial variation in catch biomass 89 4.3.7.4 Temporal variation in catch biomass 89 4.3.8 Community size structure 92 4.4 Discussion 95 4.4.1 Comparison of mangrove and seagrass catches at Bimini with other regions 95 4.4.2 North Sound I South Bimini comparison 96 4.4.3 Trends in community size structure 98 4.4.4 Sampling critique 98 4.4.5 Implications on prey selection by juvenile lemon sharks 99 4.4.6 Conclusion I 00 CHAPTER FIVE LENGTH-WEIGHT AND BONE-TOTAL LENGTH REGRESSION EQUATIONS FOR ESTIMATING ORIGINAL SIZE OF PARTIALLY DIGESTED PREY ITEMS 5.1 Introduction 102 5.2 Materials and methods 103 5.2.1 Specimen collection 103 5.2.2 Specimen preparation 103 5.2.3 Bone and carapace measurements 104 5.2.3.1 Fish bone measurements 104 5.2.3.2 Shrimp measurements 107 5.2.3.3 Crab carapace measurements 107 5.2.4. Statistical analysis 107 5.3 Results 110 5.3.1 Length-weight regressions 110 5.3.2 Bone-length regressions 110 5.3.3 Teleost bone-length regressions 115 5.3.3.1 Skull measurements 115 5.3.3.2 Spine and vertebrae measurements 115 VIII 5.3.3.3 Otolith measurements liS 5.3.3.4 Pharyngeal teeth measurements 123 5.3.4 Crustacean carapace-length regressions 123 5.4 Discussion 126 5.4.1 Novelty of this study 126 5.4.2 Regression choice 126 5.4.3 Teleost measurements 127 5.4.4 Crustacean measurements 128 5.4.5 Use of internal measurements 128 5.4.6 Use of total length in this study 129 5.4.7 Considerations/use of bone-length regressions 129 5.4.8 Conclusion 130 CHAPTER SIX PREY SIZE, MEAL SIZE AND DAILY RATION ESTIMATES OF JUVENILE LEMON SHARKS 6.1 Introduction 132 6.2 Materials and methods 133 6.2.1 Study site
Recommended publications
  • Caribbean Reef Squid)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Sepioteuthis sepioidea (Caribbean Reef Squid) Order: Teuthida (Squid) Class: Cephalopoda (Octopuses, Squid and Cuttlefish) Phylum: Mollusca (Molluscs) Fig. 1. Caribbean reef squid, Sepioteuthis sepioidea. [http://www.arkive.org/caribbean-reef-squid/sepioteuthis-sepioidea/image-G76785.html, downloaded 10 March 2016] TRAITS. The mantle (body mass) is wide and relatively flattened, with a length of 114mm in adult males and 120 mm in adult females (Moynihan and Rodaniche, 1982). A skeleton is absent but a cartilaginous layer is normally found beneath the surface of the mantle which enables movement (Mather et al., 2010).Two fins span the length of the lateral mantle margins (Fig. 1). The head is slightly pointed to its anterior end, with eight arms and two tentacles which encircle the mouth (Mather et al., 2010). Suckers are positioned along the inner region of arms and tentacle clubs. The mantle is fleshy when relaxed and the skin is very fragile (Moynihan and Rodaniche, 1982). The colour patterns of the skin can change periodically, due to the existence of light-reflective and iridescence-inducing cells (Mather, 2010). DISTRIBUTION. Distributed throughout the West Indian islands, including Trinidad and Tobago; widespread along the Central and South American coasts adjacent to the Caribbean Sea and also found in Bermuda and Florida (Moynihan and Rodaniche, 1982). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Found in highly saline, clear waters of marine habitats at varying depths and distances from shoreline (Wood et al., 2008). The depth and habitat they are observed at depends on their growth stage (Mather et al., 2010).
    [Show full text]
  • St. Kitts Final Report
    ReefFix: An Integrated Coastal Zone Management (ICZM) Ecosystem Services Valuation and Capacity Building Project for the Caribbean ST. KITTS AND NEVIS FIRST DRAFT REPORT JUNE 2013 PREPARED BY PATRICK I. WILLIAMS CONSULTANT CLEVERLY HILL SANDY POINT ST. KITTS PHONE: 1 (869) 765-3988 E-MAIL: [email protected] 1 2 TABLE OF CONTENTS Page No. Table of Contents 3 List of Figures 6 List of Tables 6 Glossary of Terms 7 Acronyms 10 Executive Summary 12 Part 1: Situational analysis 15 1.1 Introduction 15 1.2 Physical attributes 16 1.2.1 Location 16 1.2.2 Area 16 1.2.3 Physical landscape 16 1.2.4 Coastal zone management 17 1.2.5 Vulnerability of coastal transportation system 19 1.2.6 Climate 19 1.3 Socio-economic context 20 1.3.1 Population 20 1.3.2 General economy 20 1.3.3 Poverty 22 1.4 Policy frameworks of relevance to marine resource protection and management in St. Kitts and Nevis 23 1.4.1 National Environmental Action Plan (NEAP) 23 1.4.2 National Physical Development Plan (2006) 23 1.4.3 National Environmental Management Strategy (NEMS) 23 1.4.4 National Biodiversity Strategy and Action Plan (NABSAP) 26 1.4.5 Medium Term Economic Strategy Paper (MTESP) 26 1.5 Legislative instruments of relevance to marine protection and management in St. Kitts and Nevis 27 1.5.1 Development Control and Planning Act (DCPA), 2000 27 1.5.2 National Conservation and Environmental Protection Act (NCEPA), 1987 27 1.5.3 Public Health Act (1969) 28 1.5.4 Solid Waste Management Corporation Act (1996) 29 1.5.5 Water Courses and Water Works Ordinance (Cap.
    [Show full text]
  • Belonidae Bonaparte 1832 Needlefishes
    ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft).
    [Show full text]
  • Cruise Report W-48 Scientific Activities Undertaken Aboard R/V Westward Woods Hole
    Cruise Report W-48 Scientific Activities Undertaken Aboard R/V Westward Woods Hole - St. Thomas 10 October - 21 November 1979 ff/lh Westward (R.Long) • Sea Education Association - Woods Hole, Massachusetts " CRUISE REPORT W-48 Scientific Activities Woods Hole - Antigua - St. Lucia - Bequia - St. Thomas 10 October 1979 - 21 November 1979 R/V Westward Sea Education Association ',,, Woods Hole, Massachusetts .. SHIPBOARD DRAFT .. ----------------------- - ( PREFACE This Cruise Report is written in an attempt to accomplish two objectives. Firstly, and more importantly, it presents a brief outline of the scientific research completed aboard R/V Westward during W-48. Reports of the status of on-going projects and of the traditional academic program are presented. In addition, abstracts from the research projects of each student are included. Secondly, for those of us that participated, it represents the product of our efforts and contains a record of other events that were an important part of the trip, in particular the activities during port stops. Once again, lowe special thanks to Abby Ames, who was in charge of the shipboard laboratory, and upon whom I was able to depend through­ out the cruise. Her effectiveness and perseverance under the difficult working conditions at sea, and her cheerful attitude and enthusiasm were greatly appreciated by us all. Rob Nawojchik, who participated as an Assistant Scientist, added a new field of interest to the cruise with his vast knowledge of ichthyology. The energy with which he pursued his interest and his enthusiasm for the subject, set an example for us all. Two visiting scholars participated in different legs of this cruise.
    [Show full text]
  • Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an Assessment of Macaronesian and Cape Verde Biogeographic Marine Ecoregions
    Zootaxa 4413 (3): 401–448 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4413.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:2DF9255A-7C42-42DA-9F48-2BAA6DCEED7E Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an assessment of Macaronesian and Cape Verde biogeographic marine ecoregions JOSÉ A. GONZÁLEZ University of Las Palmas de Gran Canaria, i-UNAT, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain. E-mail: [email protected]. ORCID iD: 0000-0001-8584-6731. Abstract The complete list of Canarian marine decapods (last update by González & Quiles 2003, popular book) currently com- prises 374 species/subspecies, grouped in 198 genera and 82 families; whereas the Cape Verdean marine decapods (now fully listed for the first time) are represented by 343 species/subspecies with 201 genera and 80 families. Due to changing environmental conditions, in the last decades many subtropical/tropical taxa have reached the coasts of the Canary Islands. Comparing the carcinofaunal composition and their biogeographic components between the Canary and Cape Verde ar- chipelagos would aid in: validating the appropriateness in separating both archipelagos into different ecoregions (Spalding et al. 2007), and understanding faunal movements between areas of benthic habitat. The consistency of both ecoregions is here compared and validated by assembling their decapod crustacean checklists, analysing their taxa composition, gath- ering their bathymetric data, and comparing their biogeographic patterns. Four main evidences (i.e. different taxa; diver- gent taxa composition; different composition of biogeographic patterns; different endemicity rates) support that separation, especially in coastal benthic decapods; and these parametres combined would be used as a valuable tool at comparing biotas from oceanic archipelagos.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • Lac Bay: Then and Now… a Historical Interpretation of Environmental Change During the 1900S
    Lac Bay: Then and Now… A Historical Interpretation of Environmental Change During the 1900s A Site Characterization of Lac Bay for Resource Managers and Naturalists prepared for Bonaire Marine Park by Environics, N.V. Cynthia E. Lott, Environmental Consultant Final Edition October 2001 Lac Bay Then and Now A Historical Interpretation of Environmental Change During the 1900s A Site Characterization of Lac Bay For Resource Managers and Naturalists By Cynthia E. Lott Environmental Consultant Bonaire, Netherlands Antilles Final Edition October 2001 Copyright 2001 All rights reserved Title Page Map Credits: Top: Year 1866, Year 1911 (Hummelinck en Roos 1969); Middle: Year 1949, Year 1967 (Hummelinck en Roos 1969); Bottom left: Year 1961 (Hummelinck en Roos 1969); Bottom right: Year 1998 (Wing Group, N.V. 1998/Dec.) This Work is dedicated… In the fondest memory of My beloved friend, Dick Harrison, who encouraged me to believe in myself. God Bless Us Every One…. Lac Bay: Then and Now…A Historical Interpretation of Environmental Change During the 1900s A Site Characterization for Resource Managers and Naturalists Foreword by Boi Antoin, Editor of EXTRA, Bonaire's Daily Newspaper, and respected local historian LAC No tin duda ku Lac ta un sitio, un bahia, ku nos mester trata na protehá i konservá na tur manera. E historia, kultura i naturalesa di Lac hamas por bai pèrdí. Asina importante e lugá aki tabata I ta pa Boneiru. Despues di investigashonnan arkeológiko i ekológiko ku a tuma lugá di Lac, tabata nesesario, na mi konsepto, pa a bini ku un investigashon mas profundo i sientífiko di e área bunita aki.
    [Show full text]
  • Checklist of Philippine Chondrichthyes
    CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 Checklist of Philippine chondrichthyes. Bibliography. ISBN 1 876996 95 1. 1. Chondrichthyes - Philippines. 2. Sharks - Philippines. 3. Stingrays - Philippines. I. Compagno, Leonard Joseph Victor. II. CSIRO. Marine Laboratories. (Series : Report (CSIRO. Marine Laboratories) ; 243). 597.309599 1 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V.1, Last, P.R.2, Stevens, J.D.2, and Alava, M.N.R.3 1 Shark Research Center, South African Museum, Iziko–Museums of Cape Town, PO Box 61, Cape Town, 8000, South Africa 2 CSIRO Marine Research, GPO Box 1538, Hobart, Tasmania, 7001, Australia 3 Species Conservation Program, WWF-Phils., Teachers Village, Central Diliman, Quezon City 1101, Philippines (former address) ABSTRACT Since the first publication on Philippines fishes in 1706, naturalists and ichthyologists have attempted to define and describe the diversity of this rich and biogeographically important fauna. The emphasis has been on fishes generally but these studies have also contributed greatly to our knowledge of chondrichthyans in the region, as well as across the broader Indo–West Pacific. An annotated checklist of cartilaginous fishes of the Philippines is compiled based on historical information and new data. A Taiwanese deepwater trawl survey off Luzon in 1995 produced specimens of 15 species including 12 new records for the Philippines and a few species new to science.
    [Show full text]
  • Etyfish Orectolobifo
    ORECTOLOBIFORMES (Carpet Sharks) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 7.0 - 15 Oct. 2019 Order ORECTOLOBIFORMES Carpet Sharks 7 families · 13 genera · 45 species Family PARASCYLLIIDAE Collared Carpet Sharks 2 genera · 8 species Cirrhoscyllium Smith & Radcliffe 1913 cirrus, curl or tendril, referring to barbels on throat; skylion, Greek for dogfish or small shark, probably from skyllo, to tear or mangle Cirrhoscyllium expolitum Smith & Radcliffe 1913 varnished, referring to how the shark’s body, when dry, “glistens as though varnished, owing to the peculiar character of the dermal denticles” Cirrhoscyllium formosanum Teng 1959 -anum, adjectival suffix: referring to distribution off the coast of Formosa (Taiwan) Cirrhoscyllium japonicum Kamohara 1943 Japanese, known only from Mimase, Shikoku, Japan Parascyllium Gill 1862 para-, near, i.e., related to Scylliorhinus (now in Scyliorhinidae); skylion, Greek for dogfish or small shark, probably from skyllo, to tear or mangle Parascyllium collare Ramsay & Ogilby 1888 collar, referring to prominent dark and unspotted collar around gills Parascyllium elongatum Last & Stevens 2008 prolonged, referring to distinctive, elongate body shape Parascyllium ferrugineum McCulloch 1911 rust-colored, referring to dark brown spots on sides and fins Parascyllium sparsimaculatum Goto & Last 2002 sparsi, sparse; maculatum, spotted, referring to relatively larger (and hence fewer) spots than congeners Parascyllium variolatum (Duméril 1853) spotted, referring to white
    [Show full text]
  • Parascylliidae Gill, 1862 - Carpetsharks, Collared Carpetsharks [=Parascyllinae, Cirrhoscylliidae] Notes: Parascylliinae Gill, 1862P:408 [Ref
    FAMILY Parascylliidae Gill, 1862 - carpetsharks, collared carpetsharks [=Parascyllinae, Cirrhoscylliidae] Notes: Parascylliinae Gill, 1862p:408 [ref. 1783] (subfamily) Parascyllium [family name sometimes seen as Parascyllidae] Cirrhoscylliidae Applegate, 1974:749 [ref. 31930] (family) Cirrhoscyllium GENUS Cirrhoscyllium Smith & Radcliffe, in Smith, 1913 - carpetsharks [=Cirrhoscyllium Smith [H. M.] & Radcliffe [L.], in Smith, 1913:568, Zev Whitley [G. P.], 1927:289] Notes: [ref. 4043]. Neut. Cirrhoscyllium expolitum Smith & Radcliffe, 1913. Type by original designation (also monotypic). Zev Whitley 1927 is an unneeded replacement. •Valid as Cirrhoscyllium Smith & Radcliffe, 1913 -- (Compagno 1984:167 [ref. 6474], Nakaya & Shirai in Masuda et al. 1984:8 [ref. 6441], Goto et al. 1994:167 [ref. 22834], Goto & Nakaya 1996:200 [ref. 22429], Compagno 1999:476 [ref. 25589], Goto 2001:80 [ref. 25912], Compagno 2001:132 [ref. 26323], Compagno et al. 2005:19 [ref. 29145]). Current status: Valid as Cirrhoscyllium Smith & Radcliffe, 1913. Parascylliidae. (Zev) [ref. 4662]. Masc. Cirrhoscyllium expolitum Smith & Radcliffe, 1913. Type by being a replacement name. Unneeded replacement for Cirrhoscyllium Smith & Radcliffe, 1913, not preoccupied by Cirriscyllium Ogilby, 1908 in same family. Treated as masculine (Art. 30.2.4). •Objective synonym of Cirrhoscyllium Smith & Radcliffe, 1913 -- (Compagno 1984:167 [ref. 6474], Goto & Nakaya 1996:200 [ref. 22429], Goto 2001:80 [ref. 25912]). Current status: Synonym of Cirrhoscyllium Smith & Radcliffe, 1913. Parascylliidae. Species Cirrhoscyllium expolitum Smith & Radcliffe, in Smith, 1913 - barbelthroat carpetshark [=Cirrhoscyllium expolitum Smith [H. M.] & Radcliffe [L.], in Smith, 1913:568, Pl. 45; Figs. 1, 2] Notes: [Proceedings of the United States National Museum v. 45 (no. 1997); ref. 4043] South China Sea between northern Luzon Island and China, 21°33'N, 118 [or 116]°13'E, Albatross station 5310, depth 100 fathoms.
    [Show full text]
  • Life History, Mating Behavior, and Multiple Paternity in Octopus
    LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career.
    [Show full text]
  • *For More Information, Please See
    Common Name Scientific Name Health Point Specifies-Specific Course(s)* Bat, Frog-eating Trachops cirrhosus AN0023 3198 3928 Bat, Fruit - Jamaican Artibeus jamaicensis AN0023 3198 3928 Bat, Mexican Free-tailed Tadarida brasiliensis mexicana AN0023 3198 3928 Bat, Round-eared - stripe-headed Tonatia saurophila AN0023 3198 3928 Bat, Round-eared - white-throated Lophostoma silvicolum AN0023 3198 3928 Bat, Seba's short-tailed Carollia perspicillata AN0023 3198 3928 Bat, Vampire - Common Desmodus rotundus AN0023 3198 3928 Bat, Vampire - Lesser False Megaderma spasma AN0023 3198 3928 Bird, Blackbird - Red-winged Agelaius phoeniceus AN0020 3198 3928 Bird, Brown-headed Cowbird Molothurus ater AN0020 3198 3928 Bird, Chicken Gallus gallus AN0020 3198 3529 Bird, Duck - Domestic Anas platyrhynchos AN0020 3198 3928 Bird, Finch - House Carpodacus mexicanus AN0020 3198 3928 Bird, Finch - Zebra Taeniopygia guttata AN0020 3198 3928 Bird, Goose - Domestic Anser anser AN0020 3198 3928 Bird, Owl - Barn Tyto alba AN0020 3198 3928 Bird, Owl - Eastern Screech Megascops asio AN0020 3198 3928 Bird, Pigeon Columba livia AN0020 3198 3928 Bird, Quail - Japanese Coturnix coturnix japonica AN0020 3198 3928 Bird, Sparrow - Harris' Zonotrichia querula AN0020 3198 3928 Bird, Sparrow - House Passer domesticus AN0020 3198 3928 Bird, Sparrow - White-crowned Zonotrichia leucophrys AN0020 3198 3928 Bird, Sparrow - White-throated Zonotrichia albicollis AN0020 3198 3928 Bird, Starling - Common Sturnus vulgaris AN0020 3198 3928 Cat Felis domesticus AN0020 3198 279 Cow Bos taurus
    [Show full text]