Till/A Symposium ' • TILL a Symposium

Total Page:16

File Type:pdf, Size:1020Kb

Till/A Symposium ' • TILL a Symposium ) Till/a Symposium ' • TILL a Symposium Edited by Richard P. Goldthwait Assisted by: Jane L. Forsyth David L. Gross Fred Pessl, Jr. OHIO STATE UNIVERSITY PRESS QE 097 T55 C~pyrl9ht © 1971 by the Ohio State University Press All Rights Reserved Library of Congress Catalogue Card Number 70-153422 Standard look Number 8142-0141-2 Manufactured In the United States of America Dedication To George W. White, at the time of his retirement, to honc,r his devotion, inspiration, and teaching on the subiect of till. Blank page vi. Contents PREFACE xi I ntroductfon 1 INTRODUCTION TO TILL, TODAY 3 by R. P. Goldthwait 1 , PROCEDURES OF TILL INVESTIGATIONS IN NORTH AMERICA: A GENERAL REVIEW 27 by A. Dreimanis Genesi~ 2 TILL GENESIS AND FABRIC IN SVALBARD, SPITSBERGEN 41 by G. S. Boulton j EVIDENCE FOR ABLATION AND BASAL TILL IN EAST-CENTRAL NEW HAMPSHIRE 73 by L. D. Drake J TILL FABRICS AND TILL STRATIGRAPHY IN WESTERN CONNECTICUT 92 by F. Pessl, Jr. ABLATION TILL IN NO~,THEASTERN VERMONT 106 by D. P. Stewart and P. MacClintock vii Thickness and Structure 3 INFLUENCE OF -IRREGULARITIES OF THE BED OF AN ICE SHEET ON DEPOSITION RATE OF TILL 117 by L. H. Nobles and J. Weertman GLACIOTECTONIC STRUCTURES IN DRIFT 127 by S. R. Moran THICKNESS OF WISCONSINAN TILL IN GRAND RIVER AND KILLBUCK LOBES, NORTHEASTERN OHIO AND NORTHWESTERN PENNSYLVANIA 149 by G. W. White Stratigraphic Correlations . 4 TILLS IN SOUTHERN SASKATCHEWAN, CANADA 167 by E. A. Christiansen TILL STRATIGRAPHY OF THE DANVILLE REGION, EAST-CENTRAL ILLINOIS 184 by W. H. Johnson, D. L. Gross, and S. R. Moran SUBSURFACE STRATIGRAPHY OF THE WOODFORDIAN TILLS IN THE McLEAN COUNTY REGION, 1.LLINOIS 217 by J.P. Kempton, P. B. DuMontelle, and H. D. Glass Com position 5 1;., BIMODAL DISTRIBUTION OF ROCK AND MINERAL FRAGME~TS IN BASAL TILLS 237 by A. Dreimanis and U. J. Vagners GRAIN-SIZE AND MINERALOGICAL GRADATIONS WITHIN TILLS OF THE ALLEGHENY PLATEAU 251 by D. L. Gross and S. R. Moran viii PARTICLE-SIZE AND CARBONATE ANALYSIS OF GLACIAL TILL AND LACUSTRINE DEPOSITS IN WESTERN OHIO 275 by J. R. Steiger and N. Holowaychuk MINERAL AND ELEMENTAL COMPOSITION OF WISCONSIN-AGE TILL DEPOSITS IN WEST- · CENTRAL OHIO 290 by L. P. Wilding, L. R. Drees, N. E. Smeck, and G. F. Hall Fabric & METHODS IN THE ANALYSIS OF TILL FABRICS 321 by J. T. Andrews PEBBLE ORIENTATION AND ICE MOVEMENT IN SOUTH-CENTRAL ILLINOIS . 328 by J. A. Lineback EVIDENCE FOR REORIENTATION OF A TILL FABRIC IN THE EDMONTON AREA, ALBERTA 335 by J. Ramsden and J. A. Westgate THE RELATIONSHIP OF MACRO- AND MICROFABRIC OF TILL AND THE GENESIS OF GLACIAL LANDFORMS IN JEFFERSON COUNTY, WISCONSIN 345 by E. B. Evenson Other Phenomena 7 PLEISTOCENE MUDFLOW ALONG THE SHELBYVILLE MORAINE FRONT, MACON COUNTY, ILLINOIS . 367 by N. C. Hester and P. B. DuMontelle UNARMORED TILL BALLS IN UNUSUAL ABUNDANCE NEAR MINOT, NORTH DAKOTA 383 by W. A. Pettyiohn and R. W. Lemke NOTES ON THE CONTRIBUTORS 395 INDEX 397 ix Blank page x. Preface Symposia can be challenging, or deadly. This subject, till, excited the two hundred participants so that they urged that all the papers be gathered in one volume. These papers challenged a few participants to get out and solve some problems in the field, and some differences were argued on the floor. Subsequent solutions to many of these problems are incorporated in the articles published here. The symposium may guide many in the future to enga.ge in more discerning or_ more useful investigations of glacial till. The idea of glacial till as the subject of a symposium was originally sug- gested by Professor George W. White of· Illinois, and enthusiastically endorsed by this editor, and by Professor Dreimanis and the local com- mittee. It was a subject which was to attract a large group of geologists to the regional (North-Central) meetings· of the Geological Society of America · in Columbus, Ohio, in 1969. The. oral papers were invited by open letter in November, 1968. The subject was so timely that it elicited 24 papers (plus three "by title"), which were formed into three half-day sessions. on May 15 and 16, 1969. Twenty of these oral presentations are given here as full- length papers in which are incorporated additions and emendations in re- sponse to the lively floor discussion. · To the original twenty papers are added two new complimentary studies: (1) a general subject and literature review, with an appraisal of the status of till studies, written by this editor, to relate the papers and to set them in context; and ( 2) one of the very few recent detailed studies of till in and on an active glacier by G. S. Boulton. As with all spontaneous papers, these do not cover every facet of the subject; soils and weathering aspects and applied and economic studies are conspicuously absent. The subjects do conveniently fall, however, within certain areas of current interest: genesis,· structure, stratigraphic correlation, composition, and fabric. The papers are designed on a professional level for the co-worker and scientist in related fields. This volume should serve as a reference volume for all inter- ested in this common subject. xi There are a few related papers presented at that Columbus meeting which are not here, either because they were submitted elsewhere or were not completed in publishable form. These papers are listed below, and most of their abstracts are published in "Abstracts with Programs for 1969, Part 6, North Central Section, The Geological Society of America": Brace, B. R., "Till identification methods recently used iri Butler and Preble Counties, Ohio." - Favede, F., "Differentiation of ice deposits of Wisconsin age in Portage County, Ohio." Flemal, R. C., Hinckley, K., and Hessler, J. L., "Fossil pingo field in north- central Illinois." Harris, S. A., "The meaning of till fabrics" ( title listed without abstract). Jacobs, A. M., "Sand-silt-clay ratios of two Illinoian tills." Karrow, P. F., "Character and variations in multiple-till sequences in the Waterloo interlobate area of Ontario." Lindsay, J. F., Summerson, C. H., and Barrett, P. J., "A long-axis clast fabric comparison of the Squantum 'Tillite,' Massachusetts, and the GQwganda Formation; Ontario." - Schafer, J. P., "Structural relationships of tills in western Connecticut." Sitler, R. F., "Weathering in glacial till." Tipton, M. J., and Leap, D. I., "Pre-Wisconsin glacfation as the builder of the Coteau des Prairies.~' Myriads of earlier studies of glacial till in English are referenced at the end of each paper here, especially the first. Still other older S<?urces are listed in Charlesworth, f K., "The Quaternary Era", v. 1, Chapters XVI to XX, p. 359-414. One symposium on till was held ( 1966) in Poznan, Poland, and is· soon to be published in languages other than English. This volume is the first group of papers in English on till. Not the least of the indirect contributions to quality in this volume are the high standards and careful critique performed promptly and eagerly by the assistant editors. To them and their organizations ( Bowling Green State University, Illinois State Geological Survey, and United States Geo- logical Survey) is due gratitude for the many "free" hours, and three trips to Columbus for editorial meetings. The cochairman of the original oral sessions, R. F. Black, R. H. Durrell, W. R. Farrand, J. L. Forsyth, A. Good- ing, J. L. Rau, A. F. Schneider, and W. J. Wayne, carefully steered and conducted the discussions. This is, then, an integrated published effort of a large group of experts. Richard P. Goldthwait xii 1 'Introduction Blank page 2. Till j a Symposium Introduction to Till, Today R. P. Goldthwait WHY TILL? Till is the only sediment stemming directly and solely from glacial ice. It and its rock equivalent, tillite, are used to identify the former presence and extent of glaciers, and to define the sequence of climatic events leading to repeated glaciations extending far into temperature latitudes. The uncon- solidated deposit, variously referred to as hardpan, boulder clay ( Charles- worth, 1957), unsorted glacial drift, Geschiebelehm (German), keileem (Dutch), or just "moraine,'' forms patchy to continuous cover over 30 percent of the continents. Another 10 percent or more of the land may be underlain by consolidated tillites from former glaciers hundreds of millions of years ago ( principally Permocarboniferous and Huronian). In addition to its universality, till holds the secrets to the action of ice at the bottom of a glacier. Tunnels and stream openings under glaciers penetrate only the outer few tens or hundreds of feet of ice, and involve an artificial boundary condition. Actual drilling in deep ice is just beginning to supply some answers. Another approach to basal action in ice comes from _. theoretical physics ( Nye, 1952) and has grown rapidly since 1960 ( e.g., Shumskii, 1964; Lliboutry, 1964; Pounder, 1965; Oura, 1969), but in most ways it is still untested. One paper here (Nobl~s and Weertman, 1971; this volume, p. 117) is concerned entirely with this approach. So we rely on the product itself, till, for many answers. It has been studied far too little; ~indeed, this is the first compendium in English on the subject. Positive identification of the glacial origin of till is important, both as to interpretation of the extent and frequency of drastic prehistm;ic climatic events, and as to the tracing and locating of outcropping mineral resources, overrun and buried by the glacial drift. The latter is an a:rt long developed in Finland and rapidly developing in Canada. Till is also the foundation material with· which almost every engineer and builder in latitudes above 3 4 Till / A SYMPOSIUM 40° must deal.
Recommended publications
  • WELLESLEY TRAILS Self-Guided Walk
    WELLESLEY TRAILS Self-Guided Walk The Wellesley Trails Committee’s guided walks scheduled for spring 2021 are canceled due to Covid-19 restrictions. But… we encourage you to take a self-guided walk in the woods without us! (Masked and socially distanced from others outside your group, of course) Geologic Features Look for geological features noted in many of our Self-Guided Trail Walks. Featured here is a large rock polished by the glacier at Devil’s Slide, an esker in the Town Forest (pictured), and a kettle hole and glacial erratic at Kelly Memorial Park. Devil’s Slide 0.15 miles, 15 minutes Location and Parking Park along the road at the Devil’s Slide trailhead across the road from 9 Greenwood Road. Directions From the Hills Post Office on Washington Street, turn onto Cliff Road and follow for 0.4 mile. Turn left onto Cushing Road and follow as it winds around for 0.15 mile. Turn left onto Greenwood Road, and immediately on your left is the trailhead in patch of woods. Walk Description Follow the path for about 100 yards to a large rock called the Devil’s Slide. Take the path to the left and climb around the back of the rock to get to the top of the slide. Children like to try out the slide, which is well worn with use, but only if it is dry and not wet or icy! Devil’s Slide is one of the oldest rocks in Wellesley, more than 600,000,000 years old and is a diorite intrusion into granite rock.
    [Show full text]
  • Introduction to Geological Process in Illinois Glacial
    INTRODUCTION TO GEOLOGICAL PROCESS IN ILLINOIS GLACIAL PROCESSES AND LANDSCAPES GLACIERS A glacier is a flowing mass of ice. This simple definition covers many possibilities. Glaciers are large, but they can range in size from continent covering (like that occupying Antarctica) to barely covering the head of a mountain valley (like those found in the Grand Tetons and Glacier National Park). No glaciers are found in Illinois; however, they had a profound effect shaping our landscape. More on glaciers: http://www.physicalgeography.net/fundamentals/10ad.html Formation and Movement of Glacial Ice When placed under the appropriate conditions of pressure and temperature, ice will flow. In a glacier, this occurs when the ice is at least 20-50 meters (60 to 150 feet) thick. The buildup results from the accumulation of snow over the course of many years and requires that at least some of each winter’s snowfall does not melt over the following summer. The portion of the glacier where there is a net accumulation of ice and snow from year to year is called the zone of accumulation. The normal rate of glacial movement is a few feet per day, although some glaciers can surge at tens of feet per day. The ice moves by flowing and basal slip. Flow occurs through “plastic deformation” in which the solid ice deforms without melting or breaking. Plastic deformation is much like the slow flow of Silly Putty and can only occur when the ice is under pressure from above. The accumulation of meltwater underneath the glacier can act as a lubricant which allows the ice to slide on its base.
    [Show full text]
  • Indiana Glaciers.PM6
    How the Ice Age Shaped Indiana Jerry Wilson Published by Wilstar Media, www.wilstar.com Indianapolis, Indiana 1 Previiously published as The Topography of Indiana: Ice Age Legacy, © 1988 by Jerry Wilson. Second Edition Copyright © 2008 by Jerry Wilson ALL RIGHTS RESERVED 2 For Aaron and Shana and In Memory of Donna 3 Introduction During the time that I have been a science teacher I have tried to enlist in my students the desire to understand and the ability to reason. Logical reasoning is the surest way to overcome the unknown. The best aid to reasoning effectively is having the knowledge and an understanding of the things that have previ- ously been determined or discovered by others. Having an understanding of the reasons things are the way they are and how they got that way can help an individual to utilize his or her resources more effectively. I want my students to realize that changes that have taken place on the earth in the past have had an effect on them. Why are some towns in Indiana subject to flooding, whereas others are not? Why are cemeteries built on old beach fronts in Northwest Indiana? Why would it be easier to dig a basement in Valparaiso than in Bloomington? These things are a direct result of the glaciers that advanced southward over Indiana during the last Ice Age. The history of the land upon which we live is fascinating. Why are there large granite boulders nested in some of the fields of northern Indiana since Indiana has no granite bedrock? They are known as glacial erratics, or dropstones, and were formed in Canada or the upper Midwest hundreds of millions of years ago.
    [Show full text]
  • Model by Keven
    High-quality constraints on the glacial isostatic adjustment process over North America: The ICE-7G_NA (VM7) model by Keven Roy A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Physics University of Toronto © Copyright 2017 by Keven Roy Abstract High-quality constraints on the glacial isostatic adjustment process over North America: The ICE-7G_NA (VM7) model Keven Roy Doctor of Philosophy Graduate Department of Physics University of Toronto 2017 The Glacial Isostatic Adjustment (GIA) process describes the response of the Earth’s surface to variations in land ice cover. Models of the phenomenon, which is dominated by the influence of the Late Pleistocene cycle of glaciation and deglaciation, depend on two fundamental inputs: a history of ice-sheet loading and a model of the radial variation of mantle viscosity. Various geophysical observables enable us to test and refine these models. In this work, the impact of the GIA process on the rotational state of the planet will be analyzed, and new estimates of the long-term secular trend associated with the GIA process will be provided. It will be demonstrated that it has undertaken a significant change since the mid-1990s. Other important observables include the vast amount of geological inferences of past sea level change that exist for all the main coasts of the world. The U.S. Atlantic coast is a region of particular interest in this regard, due to the fact that data from the length of this coast provides a transect of the forebulge associated with the former Laurentide ice sheet.
    [Show full text]
  • During the Last Ice Age As Ice Sheets Moved Southward Over Our Region, Glaciers Broke Off and Carried Pieces of the Underlying Bedrocks
    “Glacial Erratics and Fieldstones” Boulders and other rocks broken off and carried by ice sheets covering this region were left in place when the glaciers melted. Geologists call these “erratics.”. Early settlers called them “fieldstones” and used them to build their house walls. During the last Ice Age as ice sheets moved southward over our region, glaciers broke off and carried pieces of the underlying bedrocks. When the ice melted, the fragments were left scattered over the surface. Geologists call such transported rocks “glacial erratics,” because they are different from the native bedrock. Most of these were pebble- and boulder-sized, mixed into sands and clay. A few are more than 10 feet high, such as Haring Rock in the Tenafly Nature Center (Fig 1A) and Tripod Rock in Sussex County (Fig. 1b). Fig. 2 shows images of erratics of various sized in a state park. As the ice sheets moved, rocks underneath often scratched parallel grooves in the bedrocks. These are called “glacial striations” (Fig. 3). Until Englewood Township was formally organized in 1859, most of what is now our City consisted of small farms which stretched from Overpeck Creek uphill to the Hudson River. Like other early European settlers, the farmers needed to move the boulders and other glacial erratics to create plowable fields. Rocks were gathered to build stone walls typical of New England and other glaciated parts of the Northeast. (Fig. 4). Many of the stones collected from the fields (“fieldstones”) were trimmed to make the walls of homes and other buildings. Many of the remaining buildings from the Dutch/English colonial period and the early 19th Century here in Englewood and vicinity incorporated “fieldstones” in their walls.
    [Show full text]
  • Ground-Water Movement in Auglaize and Mercer Counties, Ohio By
    Ground-water Movement in Auglaize and Mercer Counties, Ohio by Karen S. Gottschalk A senior thesis submitted to fulfill the requirements for the degree of Bachelor of Science in Geology, 1986 The Ohio State University Thesis Advisor Department of Geology and Mineralogy ACKNOWLEDGEMENTS I would like to thank the people who helped me get through this thesis. Thanks to Robert Voisard, Tim and Craig Gottschalk for the many hours they spent helping me measure wells, to Sally Buck for supplying me with her thesis data sheets, to Krista Bailey for the ice cream break, to Jeff Gottschalk and Steve Putman for the use of their computers and printers. Thanks. CONTENTS Introduction ••••••• 1 Study Area Description •• 1 Climate 2 Soi 1 •• 2 Surface Hydrology •• 2 Population Characteristics. 3 General Geology ••• 5 Trenton Limestone 5 Utica Shale ••••• 6 Hudson River Series 6 Clinton Group •••• 7 Niagara Formation. 7 Glacial Geology •• 8 Wabash Moraine. 8 Till Plains 9 Teays River Valley •• 9 Hydrology ••• 12 General Theory. 14 Groundwater Movement. 14 Laidlaw Landfill. 15 Conclusion 16 LIST OF PLATES Plate A - 1: Regional Map of Ohio and Indiana. 18 Plate B - 2a: General Soil Map of Mercer County, Ohio. 20 Plate B - 2b: General Soils Map of Auglaize County (Portion) 21 Plate C - 1: Bedrock Configuration of Teays River Valley Under St. Marys 22 Plate C - 2: Cross-Section from A to A' showing thickness of 1naterd:als in buried valleys . • . 23 Plate D - 1: Map showing location of Laidlaw landfill, Mercer Co. • 24 Study Area Maps: 25 LIST OF TABLES Table B - 1: 19 Well Logs: • 31 INTRODUCTION Study Area Description Auglaize County is located in west-central Ohio <Plate A-1).
    [Show full text]
  • Quarrernary GEOLOGY of MINNESOTA and PARTS of ADJACENT STATES
    UNITED STATES DEPARTMENT OF THE INTERIOR Ray Lyman ,Wilbur, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director P~ofessional Paper 161 . QUArrERNARY GEOLOGY OF MINNESOTA AND PARTS OF ADJACENT STATES BY FRANK LEVERETT WITH CONTRIBUTIONS BY FREDERICK w. SARDE;30N Investigations made in cooperation with the MINNESOTA GEOLOGICAL SURVEY UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1932 ·For sale by the Superintendent of Documents, Washington, D. C. CONTENTS Page Page Abstract ________________________________________ _ 1 Wisconsin red drift-Continued. Introduction _____________________________________ _ 1 Weak moraines, etc.-Continued. Scope of field work ____________________________ _ 1 Beroun moraine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47 Earlier reports ________________________________ _ .2 Location__________ _ __ ____ _ _ __ ___ ______ 47 Glacial gathering grounds and ice lobes _________ _ 3 Topography___________________________ 47 Outline of the Pleistocene series of glacial deposits_ 3 Constitution of the drift in relation to rock The oldest or Nebraskan drift ______________ _ 5 outcrops____________________________ 48 Aftonian soil and Nebraskan gumbotiL ______ _ 5 Striae _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 48 Kansan drift _____________________________ _ 5 Ground moraine inside of Beroun moraine_ 48 Yarmouth beds and Kansan gumbotiL ______ _ 5 Mille Lacs morainic system_____________________ 48 Pre-Illinoian loess (Loveland loess) __________ _ 6 Location__________________________________
    [Show full text]
  • Trip F the PINNACLE HILLS and the MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A
    F-1 Trip F THE PINNACLE HILLS AND THE MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A. Sanders Department of Geosciences Monroe Community College INTRODUCTION The Pinnacle Hills, fortunately, were voluminously described with many excellent photographs by Fairchild, (1923). In 1973 the Range still stands as a conspicuous east-west ridge extending from the town of Brighton, at about Hillside Avenue, four miles to the Genesee River at the University of Rochester campus, referred to as Oak Hill. But, for over thirty years the Range was butchered for sand and gravel, which was both a crime and blessing from the geological point of view (plates I-VI). First, it destroyed the original land form shapes which were subsequently covered with man-made structures drawing the shade on its original beauty. Secondly, it allowed study of its structure by a man with a brilliantly analytical mind, Herman L. Fair­ child. It is an excellent example of morainal deposition at an ice front in a state of dynamic equilibrium, except for minor fluctuations. The Mendon Kame area on the other hand, represents the result of a block of stagnant ice, probably detached and draped over drumlins and drumloidal hills, melting away with tunnels, crevasses, and per­ foration deposits spilling or squirting their included debris over a more or less square area leaving topographically high kames and esker F-2 segments with many kettles and a large central area of impounded drainage. There appears to be several wave-cut levels at around the + 700 1 Lake Dana level, (Fairchild, 1923). The author in no way pretends to be a Pleistocene expert, but an attempt is made to give a few possible interpretations of the many diverse forms found in the Mendon Kames area.
    [Show full text]
  • 4. Results & Analysis
    T h e M i d d l e s e x N a t u r a l H e r i t a g e S t u d y on the nature of the soil overlaying the relatively 4. Results & Analysis impermeable clay layer. In general, flat homogeneous areas have experienced the greatest loss of woodlands due to their high agricultural value. This chapter provides a general summary of County trends Kame Moraines, Peat and Muck, Beveled Till Plains and based on the MNHS and LSWS field surveys and on spatial Beaches or Shore Cliffs are uncommon physiographic types analysis of the woodland patches in Middlesex County. in Middlesex, yet a relatively large proportion of these areas are covered in woodlands (Table 4). Peat and Muck soils, which occur on valley bottoms, are too saturated to farm unless drained and are generally used for cash crops. 4.1 WOODLAND PHYSIOGRAPHY Remnant wetlands tend to be irregularly shaped and account for a high proportion of the area in these bottom lands. Table 4 is a comparison between the area of physiographic Woodlands in riparian landscapes tend to be long and types in Middlesex County and the area covered by continuous, but irregularly shaped. The strong relief of woodlands for each physiographic type. Although Kame Moraines, Shore Cliffs and Beveled Till Plains are Undrumlinized Till Plains, Till Moraines and Clay Plains not easy to farm and therefore more of these areas are are common physiographic types in Middlesex County wooded. Sandy soils found in Sand Plains, Spillways and (Table 4), only a relatively small proportion of these areas Kame Moraines are dominated by relatively large forest are covered in woodlands.
    [Show full text]
  • Imap10 Front.Pdf (6.25
    Illinois Map 10 2001 George H. Ryan, Governor Department of Natural Resources Brent Manning, Director ILLINOIS STATE GEOLOGICAL SURVEY William W. Shilts, Chief Geologic Road Map of Illinois: N Natural Resources Building East Dubuque Warren 615 East Peabody South Beloit Richmond Antioch 84 CHAIN- 173 Champaign Illinois, 61820-6964 APPLE RIVER Rockton 173 O-LAKES Zion ILLINOIS CANYON LAKE BEACH LE-AQUA-NA Lake Summerset Galena 78 Durand Roscoe 94 Surface Deposits and Landscapes 26 76 132 Harvard Lena 75 2 Fox Lake 251 90 14 47 83 Machesney 173 Waukegan MCHENRY DAM E 20 Stockton 70 Park ROCK CUT & LAKE DEFIANCE W Pecatonica McHenry North Chicago Woodstock David A. Grimley, Barbara J. Stiff, and Michael J. Andrew Loves Park 23 60 73 Belvidere 12 20 Marengo 176 41 Freeport 176 Mundelein Winnebago 20 Lake Forest Surface deposits compiled from Hansel and Johnson (1996), Lineback (1979), and Willman and Frye (1970) 84 59 Rockford Cherry Valley Crystal Lake 14 22 90 Huntley Lake Zurich Highland Park S Forreston MISSISSIPPI Carpentersville PALISADES 72 Byron 68 Genoa 94 Savanna Mount Carroll Lanark Arlington 26 2 Kirkland 62 Hts. 72 Hampshire WISCONSIN glacial outwash Mount Morris Mt. Prospect Evanston lake plain 39 20 Elgin Des 64 LOWDEN Skokie Driftless 47 Schaumburg Plaines Lake Michigan 52 290 WHITE CASTLE 64 41 Area PINE ROCK Oregon Sycamore 31 Milledgeville Polo FOREST 19 Michigan 19 St. Charles 20 LOWDEN-MILLER Rochelle 43 De Kalb 64 88 38 Oak Chicago 38 Elburn 59 355 Park 290 Fulton 2 Ashton 251 88 Wheaton Chicago MORRISON- Dixon Cicero ROCKWOOD 25 294 34 88 23 Morrison Sterling Downers 30 Rock Falls Waterman Hinckley Sugar Grove Naperville Grove 50 41 A 84 78 30 Aurora IOWIOWA 55 12 90 26 Amboy SHABBONA LAKE Oak A.
    [Show full text]
  • A Guide to the Geology of the Quincy North Area
    557 IL6gui 1980-D uide to the geology of the Quincy North area David L Reinertsen Commemorating the 50th Field Trip Season and the Survey's 75th year. Cross section of one of the larger sinkholes exposed along the west siJe of State Route 336 at Stop 2. Printed by authority of the State of Illinois/1980/500 copies 'L L 'NO | STATE GEOLOGICAL l SURVEY | f 3 3051 00006 8142 , A guide to the geology of the Quincy North area In 1930 the Geological Survey was 25 years old and the new Educational Extension Section was conducting its first field trips. Dr. M. M. Leighton, the Survey's third Chief, had created the section and its program "...to cooperate with the science teachers of the state and furnish them information regarding geology, such as will be helpful in their teaching of earth history and the development of life.' Part of the Section's work was to start a series of six annual "earth history field trips." More than 250 teachers and laymen attended the first year's trips near Dun- dee, La Salle-Starved Rock, Charleston- Mattoon-Eff i ngham , Harri sburg-Shawneetown Quincy, and Rock Island. In its 50 years (except for the war years 1942 to 1945), Ed. Extension has conducted more than 290 field trips. In 1979, 367 people from all walks of life attended the Survey's four field trips. 0m, ~x~w* 4 <#P\* -M* mmm-"* s U / • '« '-^L^<*-^ Teachers on the Quincy field trip, October 4, 1930, assemble in a quarry. Figure 1.
    [Show full text]
  • The Early Wisconsinan History of the Laurentide Ice Sheet
    Document généré le 30 sept. 2021 19:59 Géographie physique et Quaternaire The Early Wisconsinan History of the Laurentide Ice Sheet L’évolution de la calotte glaciaire laurentidienne au Wisconsinien inférieur Geschichte der laurentischen Eisdecke im frühen glazialen Wisconsin Jean-Serge Vincent et Victor K. Prest La calotte glaciaire laurentidienne Résumé de l'article The Laurentide Ice Sheet L'identification, surtout en périphérie de l'inlandsis, de dépôts glaciaires que Volume 41, numéro 2, 1987 l'on croit postérieurs à la mise en place de sédiments non glaciaires ou de paléosols datant de l'interglaciaire sangamonien (phase 5) et antérieurs aux URI : https://id.erudit.org/iderudit/032679ar sédiments non glaciaires ou des sols mis en place au Wisconsinien moyen DOI : https://doi.org/10.7202/032679ar (phase 3) a amené de nombreux chercheurs à supposer que la calotte laurentidienne s'est d'abord développée au Sangamonien ou au Wisconsinien inférieur (phase 4). On passe en revue les différentes preuves associées au Aller au sommaire du numéro début de la formation de la calotte glaciaire wisconsinienne recueillies au Canada et au nord des États-Unis. En l'absence quasi généralisée de données géochronométriques sûres pour déterminer l'âge des dépôts glaciaires datant Éditeur(s) probablement du Sangamonien ou du Wisconsinien inférieur, on peut aussi bien supposer, pour une période donnée, que les glaces ont entièrement envahi Les Presses de l'Université de Montréal une région ou en étaient tout à fait absentes. En tenant pour acquis (?) que la calotte laurentidienne était en fait très étendue au Wisconsinien inférieur, on ISSN présente une carte montrant son étendue maximale et un tableau de 0705-7199 (imprimé) corrélation entre les unités glaciaires.
    [Show full text]