About the Dahlen Esker by Lorraine A. Manz

Total Page:16

File Type:pdf, Size:1020Kb

About the Dahlen Esker by Lorraine A. Manz 2 3 y a w h g i H e t a t S D a h le n r ke Es About the Dahlen Esker By Lorraine A. Manz First described in detail by Jack Kume in 1967, the Dahlen esker is the one of the best examples of its kind in North America. Eskers are long, sinuous, steep-sided ridges consisting of sediments (mainly sand and gravel with lesser amounts of silt and glacial till) deposited by meltwater streams flowing through tunnels or ice-walled channels at the base or within a stagnant or retreating glacier. When the ice melted these sediments were preserved more-or-less in place as ridges that mark the course of their parent stream, so like the compaction ridges described on page 17, eskers are topographic reversals. The Dahlen esker is located in northeastern North Dakota between the towns of Dahlen and Fordville. It is clearly visible as a prominent ridge from State Highway 32, which crosses its eastern end about half a mile north of the Grand Forks-Walsh County line. The esker was deposited approximately 12,000 years ago by a stream flowing in an ice-floored tunnel near the base of a stagnating glacier. It is roughly 400 feet wide at its base and Kume (1967) estimated its length at about four miles. The crest of the ridge rises to a maximum height of 80 feet and although it is generally level, numerous gaps give it an irregular appearance. The gaps, which have been widened and deepened by modern stream erosion, were probably formed at the same time as the esker, most likely by sediment collapse as the underlying ice melted. In this color-enhanced, high-resolution aerial image, the Dahlen esker’s steep, winding profile contrasts sharply with the low-relief till plain on which it stands. The star marks the point from which the cover photo was taken. Reference Kume, Jack, 1967, The Dahlen esker of Grand Forks and Walsh Counties, North Dakota: Proceedings of the North Dakota Academy of Science, v. 20, p. 119-124, reprinted as North Dakota Geological Survey Miscellaneous Series 32. LiDAR image generated by Chris Maike, NDGS. Chris is generating LiDAR quadrangles throughout the state. JANUARY 2016 1 .
Recommended publications
  • WELLESLEY TRAILS Self-Guided Walk
    WELLESLEY TRAILS Self-Guided Walk The Wellesley Trails Committee’s guided walks scheduled for spring 2021 are canceled due to Covid-19 restrictions. But… we encourage you to take a self-guided walk in the woods without us! (Masked and socially distanced from others outside your group, of course) Geologic Features Look for geological features noted in many of our Self-Guided Trail Walks. Featured here is a large rock polished by the glacier at Devil’s Slide, an esker in the Town Forest (pictured), and a kettle hole and glacial erratic at Kelly Memorial Park. Devil’s Slide 0.15 miles, 15 minutes Location and Parking Park along the road at the Devil’s Slide trailhead across the road from 9 Greenwood Road. Directions From the Hills Post Office on Washington Street, turn onto Cliff Road and follow for 0.4 mile. Turn left onto Cushing Road and follow as it winds around for 0.15 mile. Turn left onto Greenwood Road, and immediately on your left is the trailhead in patch of woods. Walk Description Follow the path for about 100 yards to a large rock called the Devil’s Slide. Take the path to the left and climb around the back of the rock to get to the top of the slide. Children like to try out the slide, which is well worn with use, but only if it is dry and not wet or icy! Devil’s Slide is one of the oldest rocks in Wellesley, more than 600,000,000 years old and is a diorite intrusion into granite rock.
    [Show full text]
  • Introduction to Geological Process in Illinois Glacial
    INTRODUCTION TO GEOLOGICAL PROCESS IN ILLINOIS GLACIAL PROCESSES AND LANDSCAPES GLACIERS A glacier is a flowing mass of ice. This simple definition covers many possibilities. Glaciers are large, but they can range in size from continent covering (like that occupying Antarctica) to barely covering the head of a mountain valley (like those found in the Grand Tetons and Glacier National Park). No glaciers are found in Illinois; however, they had a profound effect shaping our landscape. More on glaciers: http://www.physicalgeography.net/fundamentals/10ad.html Formation and Movement of Glacial Ice When placed under the appropriate conditions of pressure and temperature, ice will flow. In a glacier, this occurs when the ice is at least 20-50 meters (60 to 150 feet) thick. The buildup results from the accumulation of snow over the course of many years and requires that at least some of each winter’s snowfall does not melt over the following summer. The portion of the glacier where there is a net accumulation of ice and snow from year to year is called the zone of accumulation. The normal rate of glacial movement is a few feet per day, although some glaciers can surge at tens of feet per day. The ice moves by flowing and basal slip. Flow occurs through “plastic deformation” in which the solid ice deforms without melting or breaking. Plastic deformation is much like the slow flow of Silly Putty and can only occur when the ice is under pressure from above. The accumulation of meltwater underneath the glacier can act as a lubricant which allows the ice to slide on its base.
    [Show full text]
  • Indiana Glaciers.PM6
    How the Ice Age Shaped Indiana Jerry Wilson Published by Wilstar Media, www.wilstar.com Indianapolis, Indiana 1 Previiously published as The Topography of Indiana: Ice Age Legacy, © 1988 by Jerry Wilson. Second Edition Copyright © 2008 by Jerry Wilson ALL RIGHTS RESERVED 2 For Aaron and Shana and In Memory of Donna 3 Introduction During the time that I have been a science teacher I have tried to enlist in my students the desire to understand and the ability to reason. Logical reasoning is the surest way to overcome the unknown. The best aid to reasoning effectively is having the knowledge and an understanding of the things that have previ- ously been determined or discovered by others. Having an understanding of the reasons things are the way they are and how they got that way can help an individual to utilize his or her resources more effectively. I want my students to realize that changes that have taken place on the earth in the past have had an effect on them. Why are some towns in Indiana subject to flooding, whereas others are not? Why are cemeteries built on old beach fronts in Northwest Indiana? Why would it be easier to dig a basement in Valparaiso than in Bloomington? These things are a direct result of the glaciers that advanced southward over Indiana during the last Ice Age. The history of the land upon which we live is fascinating. Why are there large granite boulders nested in some of the fields of northern Indiana since Indiana has no granite bedrock? They are known as glacial erratics, or dropstones, and were formed in Canada or the upper Midwest hundreds of millions of years ago.
    [Show full text]
  • An Esker Group South of Dayton, Ohio 231 JACKSON—Notes on the Aphididae 243 New Books 250 Natural History Survey 250
    The Ohio Naturalist, PUBLISHED BY The Biological Club of the Ohio State University. Volume VIII. JANUARY. 1908. No. 3 TABLE OF CONTENTS. SCHEPFEL—An Esker Group South of Dayton, Ohio 231 JACKSON—Notes on the Aphididae 243 New Books 250 Natural History Survey 250 AN ESKER GROUP SOUTH OF DAYTON, OHIO.1 EARL R. SCHEFFEL Contents. Introduction. General Discussion of Eskers. Preliminary Description of Region. Bearing on Archaeology. Topographic Relations. Theories of Origin. Detailed Description of Eskers. Kame Area to the West of Eskers. Studies. Proximity of Eskers. Altitude of These Deposits. Height of Eskers. Composition of Eskers. Reticulation. Rock Weathering. Knolls. Crest-Lines. Economic Importance. Area to the East. Conclusion and Summary. Introduction. This paper has for its object the discussion of an esker group2 south of Dayton, Ohio;3 which group constitutes a part of the first or outer moraine of the Miami Lobe of the Late Wisconsin ice where it forms the east bluff of the Great Miami River south of Dayton.4 1. Given before the Ohio Academy of Science, Nov. 30, 1907, at Oxford, O., repre- senting work performed under the direction of Professor Frank Carney as partial requirement for the Master's Degree. 2. F: G. Clapp, Jour, of Geol., Vol. XII, (1904), pp. 203-210. 3. The writer's attention was first called to the group the past year under the name "Morainic Ridges," by Professor W. B. Werthner, of Steele High School, located in the city mentioned. Professor Werthner stated that Professor August P. Foerste of the same school and himself had spent some time together in the study of this region, but that the field was still clear for inves- tigation and publication.
    [Show full text]
  • Quarrernary GEOLOGY of MINNESOTA and PARTS of ADJACENT STATES
    UNITED STATES DEPARTMENT OF THE INTERIOR Ray Lyman ,Wilbur, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director P~ofessional Paper 161 . QUArrERNARY GEOLOGY OF MINNESOTA AND PARTS OF ADJACENT STATES BY FRANK LEVERETT WITH CONTRIBUTIONS BY FREDERICK w. SARDE;30N Investigations made in cooperation with the MINNESOTA GEOLOGICAL SURVEY UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1932 ·For sale by the Superintendent of Documents, Washington, D. C. CONTENTS Page Page Abstract ________________________________________ _ 1 Wisconsin red drift-Continued. Introduction _____________________________________ _ 1 Weak moraines, etc.-Continued. Scope of field work ____________________________ _ 1 Beroun moraine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47 Earlier reports ________________________________ _ .2 Location__________ _ __ ____ _ _ __ ___ ______ 47 Glacial gathering grounds and ice lobes _________ _ 3 Topography___________________________ 47 Outline of the Pleistocene series of glacial deposits_ 3 Constitution of the drift in relation to rock The oldest or Nebraskan drift ______________ _ 5 outcrops____________________________ 48 Aftonian soil and Nebraskan gumbotiL ______ _ 5 Striae _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 48 Kansan drift _____________________________ _ 5 Ground moraine inside of Beroun moraine_ 48 Yarmouth beds and Kansan gumbotiL ______ _ 5 Mille Lacs morainic system_____________________ 48 Pre-Illinoian loess (Loveland loess) __________ _ 6 Location__________________________________
    [Show full text]
  • Eskers Formed at the Beds of Modern Surge-Type Tidewater Glaciers in Spitsbergen
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Apollo Eskers formed at the beds of modern surge-type tidewater glaciers in Spitsbergen J. A. DOWDESWELL1* & D. OTTESEN2 1Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER, UK 2Geological Survey of Norway, Postboks 6315 Sluppen, N-7491 Trondheim, Norway *Corresponding author (e-mail: [email protected]) Eskers are sinuous ridges composed of glacifluvial sand and gravel. They are deposited in channels with ice walls in subglacial, englacial and supraglacial positions. Eskers have been observed widely in deglaciated terrain and are varied in their planform. Many are single and continuous ridges, whereas others are complex anastomosing systems, and some are successive subaqueous fans deposited at retreating tidewater glacier margins (Benn & Evans 2010). Eskers are usually orientated approximately in the direction of past glacier flow. Many are formed subglacially by the sedimentary infilling of channels formed in ice at the glacier base (known as ‘R’ channels; Röthlisberger 1972). When basal water flows under pressure in full conduits, the hydraulic gradient and direction of water flow are controlled primarily by ice- surface slope, with bed topography of secondary importance (Shreve 1985). In such cases, eskers typically record the former flow of channelised and pressurised water both up- and down-slope. Description Sinuous sedimentary ridges, orientated generally parallel to fjord axes, have been observed on swath-bathymetric images from several Spitsbergen fjords (Ottesen et al. 2008). In innermost van Mijenfjorden, known as Rindersbukta, and van Keulenfjorden in central Spitsbergen, the fjord floors have been exposed by glacier retreat over the past century or so (Ottesen et al.
    [Show full text]
  • Trip F the PINNACLE HILLS and the MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A
    F-1 Trip F THE PINNACLE HILLS AND THE MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A. Sanders Department of Geosciences Monroe Community College INTRODUCTION The Pinnacle Hills, fortunately, were voluminously described with many excellent photographs by Fairchild, (1923). In 1973 the Range still stands as a conspicuous east-west ridge extending from the town of Brighton, at about Hillside Avenue, four miles to the Genesee River at the University of Rochester campus, referred to as Oak Hill. But, for over thirty years the Range was butchered for sand and gravel, which was both a crime and blessing from the geological point of view (plates I-VI). First, it destroyed the original land form shapes which were subsequently covered with man-made structures drawing the shade on its original beauty. Secondly, it allowed study of its structure by a man with a brilliantly analytical mind, Herman L. Fair­ child. It is an excellent example of morainal deposition at an ice front in a state of dynamic equilibrium, except for minor fluctuations. The Mendon Kame area on the other hand, represents the result of a block of stagnant ice, probably detached and draped over drumlins and drumloidal hills, melting away with tunnels, crevasses, and per­ foration deposits spilling or squirting their included debris over a more or less square area leaving topographically high kames and esker F-2 segments with many kettles and a large central area of impounded drainage. There appears to be several wave-cut levels at around the + 700 1 Lake Dana level, (Fairchild, 1923). The author in no way pretends to be a Pleistocene expert, but an attempt is made to give a few possible interpretations of the many diverse forms found in the Mendon Kames area.
    [Show full text]
  • 4. Results & Analysis
    T h e M i d d l e s e x N a t u r a l H e r i t a g e S t u d y on the nature of the soil overlaying the relatively 4. Results & Analysis impermeable clay layer. In general, flat homogeneous areas have experienced the greatest loss of woodlands due to their high agricultural value. This chapter provides a general summary of County trends Kame Moraines, Peat and Muck, Beveled Till Plains and based on the MNHS and LSWS field surveys and on spatial Beaches or Shore Cliffs are uncommon physiographic types analysis of the woodland patches in Middlesex County. in Middlesex, yet a relatively large proportion of these areas are covered in woodlands (Table 4). Peat and Muck soils, which occur on valley bottoms, are too saturated to farm unless drained and are generally used for cash crops. 4.1 WOODLAND PHYSIOGRAPHY Remnant wetlands tend to be irregularly shaped and account for a high proportion of the area in these bottom lands. Table 4 is a comparison between the area of physiographic Woodlands in riparian landscapes tend to be long and types in Middlesex County and the area covered by continuous, but irregularly shaped. The strong relief of woodlands for each physiographic type. Although Kame Moraines, Shore Cliffs and Beveled Till Plains are Undrumlinized Till Plains, Till Moraines and Clay Plains not easy to farm and therefore more of these areas are are common physiographic types in Middlesex County wooded. Sandy soils found in Sand Plains, Spillways and (Table 4), only a relatively small proportion of these areas Kame Moraines are dominated by relatively large forest are covered in woodlands.
    [Show full text]
  • Imap10 Front.Pdf (6.25
    Illinois Map 10 2001 George H. Ryan, Governor Department of Natural Resources Brent Manning, Director ILLINOIS STATE GEOLOGICAL SURVEY William W. Shilts, Chief Geologic Road Map of Illinois: N Natural Resources Building East Dubuque Warren 615 East Peabody South Beloit Richmond Antioch 84 CHAIN- 173 Champaign Illinois, 61820-6964 APPLE RIVER Rockton 173 O-LAKES Zion ILLINOIS CANYON LAKE BEACH LE-AQUA-NA Lake Summerset Galena 78 Durand Roscoe 94 Surface Deposits and Landscapes 26 76 132 Harvard Lena 75 2 Fox Lake 251 90 14 47 83 Machesney 173 Waukegan MCHENRY DAM E 20 Stockton 70 Park ROCK CUT & LAKE DEFIANCE W Pecatonica McHenry North Chicago Woodstock David A. Grimley, Barbara J. Stiff, and Michael J. Andrew Loves Park 23 60 73 Belvidere 12 20 Marengo 176 41 Freeport 176 Mundelein Winnebago 20 Lake Forest Surface deposits compiled from Hansel and Johnson (1996), Lineback (1979), and Willman and Frye (1970) 84 59 Rockford Cherry Valley Crystal Lake 14 22 90 Huntley Lake Zurich Highland Park S Forreston MISSISSIPPI Carpentersville PALISADES 72 Byron 68 Genoa 94 Savanna Mount Carroll Lanark Arlington 26 2 Kirkland 62 Hts. 72 Hampshire WISCONSIN glacial outwash Mount Morris Mt. Prospect Evanston lake plain 39 20 Elgin Des 64 LOWDEN Skokie Driftless 47 Schaumburg Plaines Lake Michigan 52 290 WHITE CASTLE 64 41 Area PINE ROCK Oregon Sycamore 31 Milledgeville Polo FOREST 19 Michigan 19 St. Charles 20 LOWDEN-MILLER Rochelle 43 De Kalb 64 88 38 Oak Chicago 38 Elburn 59 355 Park 290 Fulton 2 Ashton 251 88 Wheaton Chicago MORRISON- Dixon Cicero ROCKWOOD 25 294 34 88 23 Morrison Sterling Downers 30 Rock Falls Waterman Hinckley Sugar Grove Naperville Grove 50 41 A 84 78 30 Aurora IOWIOWA 55 12 90 26 Amboy SHABBONA LAKE Oak A.
    [Show full text]
  • A Guide to the Geology of the Quincy North Area
    557 IL6gui 1980-D uide to the geology of the Quincy North area David L Reinertsen Commemorating the 50th Field Trip Season and the Survey's 75th year. Cross section of one of the larger sinkholes exposed along the west siJe of State Route 336 at Stop 2. Printed by authority of the State of Illinois/1980/500 copies 'L L 'NO | STATE GEOLOGICAL l SURVEY | f 3 3051 00006 8142 , A guide to the geology of the Quincy North area In 1930 the Geological Survey was 25 years old and the new Educational Extension Section was conducting its first field trips. Dr. M. M. Leighton, the Survey's third Chief, had created the section and its program "...to cooperate with the science teachers of the state and furnish them information regarding geology, such as will be helpful in their teaching of earth history and the development of life.' Part of the Section's work was to start a series of six annual "earth history field trips." More than 250 teachers and laymen attended the first year's trips near Dun- dee, La Salle-Starved Rock, Charleston- Mattoon-Eff i ngham , Harri sburg-Shawneetown Quincy, and Rock Island. In its 50 years (except for the war years 1942 to 1945), Ed. Extension has conducted more than 290 field trips. In 1979, 367 people from all walks of life attended the Survey's four field trips. 0m, ~x~w* 4 <#P\* -M* mmm-"* s U / • '« '-^L^<*-^ Teachers on the Quincy field trip, October 4, 1930, assemble in a quarry. Figure 1.
    [Show full text]
  • Pine Hill Esker Trail
    mature forest, crosses a meadow and goes back 1.04 miles: Trail turn-around, at the location of into forested terrain. Unique for this trail are its wetland and a permanent stream. eskers and kettle ponds and the views of a 1.19 miles: Optional (but recommended) side wetland pond where Rocky Brook flows into the loop on the left side, shortly after remnants of the Stillwater River. The trail is located on DCR circular track. watershed protection land, so dogs are not 1.23 miles: Trail loops gently to the right. Deep allowed. down to the left is a small pond (a kettle pond). Length and Difficulty 1.32 miles: Side trail rejoins the return trail. 1.55 miles: Trail junction of Sections A, B and C. For clarity, the trail is divided into three sections: The trail description continues with Sect. C A, B and C, with one-way lengths of 0.65 mi., 0.45 outbound. mi. and 0.45 mi., respectively. The full hike, as 1.58 miles: Wet area most of the times of the described below, includes all three sections. The year. side loop on Sect. B is included on the return. The 1.78 miles: View to wetland pond where the A+B+C trail length is 3.1 mi., while the two shorter Stillwater River meets Rocky Brook. The distant versions, A+B or A+C, are both 2.2 mi. in length. structure is part of the Sterling water system. The elevation varies between 428 ft and 540 ft, 2.00 miles: Trail turn around point at the edge of with several short steep hills.
    [Show full text]
  • Esker Habitat Characteristics and Traditional Land Use in the Slave Geological Province
    Re: Esker Habitat Characteristics and Traditional Land Use in the Slave Geological Province STUDY DIRECTOR RELEASE FORM The above publication is the result of a project conducted under the West Kitikmeot / Slave Study. I have reviewed the report and advise that it has fulfilled the requirements of the approved proposal and can be subjected to independent expert review and be considered for release to the public. Study Director Date INDEPENDENT EXPERT REVIEW FORM I have reviewed this publication for scientific content and scientific practices and find the report is acceptable given the specific purposes of this project and subject to the field conditions encountered. Reviewer Date INDEPENDENT EXPERT REVIEW FORM I have reviewed this publication for scientific content and scientific practices and find the report is acceptable given the specific purposes of this project and subject to the field conditions encountered. Reviewer Date BOARD RELEASE FORM The Study Board is satisfied that this final report has been reviewed for scientific content and approves it for release to the public. Chair West Kitikmeot/Slave Society Date Box 2572, Yellowknife, NT, X1A 2P9 Ph (867) 669-6235 Fax (867) 920-4346 e-mail: [email protected] Home Page: http://www.wkss.nt.ca ESKER HABITAT CHARACTERISTICS and TRADITIONAL USE STUDY in the SLAVE GEOLOGICAL PROVINCE FINAL REPORT to the WEST KITIKMEOT / SLAVE STUDY Submitted by: Stephen Traynor Senior Land Specialist – Land Administration Indian and Northern Affairs Canada Yellowknife, NT August 2001 SUMMARY In May of 1996 approval was granted and funding awarded by the West Kitikmeot Slave Study Society (WKSS) for a project to initiate research and information dissemination on eskers in the Slave Geological Province.
    [Show full text]