Evidence of Sequence and Age of Ancestral Lake Erie Lake-Levels, Northwest Ohio
62 ANCESTRAL LAKE ERIE LEVELS VOL. 115 Evidence of Sequence and Age of Ancestral Lake Erie Lake-Levels, Northwest Ohio TIMOTHY G. FISHER, Department of Environmental Sciences, University of Toledo, OH, USA; JOSEPH D. BLOCKLAND, Department of Environmental Sciences, University of Toledo, OH, USA, North Dakota Geological Survey, Bismarck, ND, USA; BRAD ANDERSON, Department of Environmental Sciences, University of Toledo, OH, USA, Nyrstar Tennessee Mines, Gordonsville, TN, USA; DAVID E. KRANTZ, Department of Environmental Sciences, University of Toledo, OH, USA; DONALD J. STIERMAN, Department of Environmental Sciences, University of Toledo, OH, USA; RONALD GOBLE, Department of Earth and Atmospheric Sciences, University of Nebraska at Lincoln, Lincoln, NE, USA ABSTRACT. While the general scheme of the retreat of the Late Wisconsinan glacier from the ancestral Lake Erie basin is understood, the sequence and timing of those movements that caused lake-level changes are not well documented. Ground penetrating radar (GPR), electrical resistivity (ER), and optically stimulated luminescence (OSL) techniques were used to analyze beach and sand dune formations in the Wauseon area in northwest Ohio. The beaches showed no evidence of being flooded after deposition. Thirteen (13) new OSL ages revealed a short time of approximately 1000 years (16.9–15.9 ka) for formation of the Maumee, Arkona and Whittlesey shorelines. Evidence supporting the Ypsilanti lowstand in the ancestral Lake Erie basin was not observed within two sequences of glacial lacustrine sediments. The results of OSL dating of sand dunes indicate a period of older activity (~14–15 ka) and confirmation of previous work that documented activity during the Younger Dryas cold period (~13–11.5 ka).
[Show full text]