Western Lake Erie Basin Study Upper Maumee Watershed Assessment Final August 3, 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Allen County/Fort Wayne Comprehensive Plan
A COMPREHENSIVE PLAN FOR ALLEN COUNTY AND FORT WAYNE EXISTING CONDITIONS REPORT Environmental Stewardship 1.0 OVERVIEW 1.1 Report Purpose The purpose of this report is to provide baseline information, key findings, and identification of key issues associated with the natural resources of the Allen County/Fort Wayne, Indiana project area. Information documented in this report will be used as a basis for informing planning policy decisions in formulation of a Joint County/City Comprehensive Plan. Tables and Figures referenced in the text appear at the end of this document in Appendices A and B, respectively. 1.2 Project Area The project area encompasses all of Allen County, including the City of Fort Wayne, Allen County townships, incorporated places, and unincorporated areas of the County. Figure 1 shows a map of Allen County and major political jurisdictions located within its boundaries. Total land area covered by the Allen County/Fort Wayne project area is 422,407 acres. Plan-it-Allen 1 2.0 EXISTING CONDITIONS INVENTORY 2.1 Physiography Allen County lies at the juncture of three distinct physiographic regions – the Steuben Morainal Lakes Area, the Tipton Till Plains, and the Maumee Lacustrine Plain. The county also lies across a major drainage divide between Lake Erie and the Mississippi River. This divide runs generally north/south through the western portion of the county. Figure 2 shows the principal physiographic regions and features in Allen County. The Steuben Morainal Lakes Area occupies the northern portion of the county. This area is characterized by hummocky, relatively rugged terrain that is the result of glaciation. -
Moving Forward with Lake Erie's Impairment Designation
Moving Forward with Lake Erie’s Impairment Designation Since 2002, the Section 303(d) list of impaired waters in Ohio EPA’s biannual report to U.S. EPA (Integrated Report) has Policy Recommendations -Western Lake Erie Basin Impairment included many of the watersheds draining to the western basin. The agency’s past integrated reports have also listed the shore- line waters of the Lake Erie western basin and Lake Erie islands as well as the waters near the Toledo and Oregon municipal • To meet requirements under the Clean Water Act, TMACOG recommends that the U.S. EPA work collaboratively with the water intakes as impaired for all four beneficial uses (including for public drinking water due to harmful algal blooms). designated agencies of WLEB states – Ohio EPA, Michigan DEQ, and Indiana Office of Water Quality – to evaluate water However, an impairment designation for Ohio’s open waters of Lake Erie was withheld until 2018, when the Ohio EPA changed quality targets for open waters and set monitoring and assessment protocols that can be used to continue to evaluate the course and included the western basin’s open waters on the state’s 303(d) list of impaired waterbodies in the 2018 Integrated status for the four beneficial uses in the open waters of Lake Erie’s western basin. Report. This new impairment designation for the open waters adds recreational use impairment due to large algal blooms. In 2016, Michigan DEQ assigned an impaired designation to Michigan waters of Lake Erie due to algal blooms caused by excessive • If U.S. -
Ground-Water Movement in Auglaize and Mercer Counties, Ohio By
Ground-water Movement in Auglaize and Mercer Counties, Ohio by Karen S. Gottschalk A senior thesis submitted to fulfill the requirements for the degree of Bachelor of Science in Geology, 1986 The Ohio State University Thesis Advisor Department of Geology and Mineralogy ACKNOWLEDGEMENTS I would like to thank the people who helped me get through this thesis. Thanks to Robert Voisard, Tim and Craig Gottschalk for the many hours they spent helping me measure wells, to Sally Buck for supplying me with her thesis data sheets, to Krista Bailey for the ice cream break, to Jeff Gottschalk and Steve Putman for the use of their computers and printers. Thanks. CONTENTS Introduction ••••••• 1 Study Area Description •• 1 Climate 2 Soi 1 •• 2 Surface Hydrology •• 2 Population Characteristics. 3 General Geology ••• 5 Trenton Limestone 5 Utica Shale ••••• 6 Hudson River Series 6 Clinton Group •••• 7 Niagara Formation. 7 Glacial Geology •• 8 Wabash Moraine. 8 Till Plains 9 Teays River Valley •• 9 Hydrology ••• 12 General Theory. 14 Groundwater Movement. 14 Laidlaw Landfill. 15 Conclusion 16 LIST OF PLATES Plate A - 1: Regional Map of Ohio and Indiana. 18 Plate B - 2a: General Soil Map of Mercer County, Ohio. 20 Plate B - 2b: General Soils Map of Auglaize County (Portion) 21 Plate C - 1: Bedrock Configuration of Teays River Valley Under St. Marys 22 Plate C - 2: Cross-Section from A to A' showing thickness of 1naterd:als in buried valleys . • . 23 Plate D - 1: Map showing location of Laidlaw landfill, Mercer Co. • 24 Study Area Maps: 25 LIST OF TABLES Table B - 1: 19 Well Logs: • 31 INTRODUCTION Study Area Description Auglaize County is located in west-central Ohio <Plate A-1). -
University of Oklahoma Libraries Western History Collections Map Collection #15: D. J
University of Oklahoma Libraries Western History Collections Map Collection #15: D. J. Berthrong ___________________________________________________________________________ 1. A black on white topographical copy of New Mexico, Arizona, and the "four corners" area. Map measures 14" x 20". No date. Two copies. Drawer 8606 2. An 11" x 15" black on white copy showing the old Northwest. Includes parts of Michigan, Ohio, Illinois, and Indiana, labeled "Indian Country." Indian villages and population figures are shown. Ca. early 19th Century. Drawer 8606 3. "A New Map of the Western Parts of Virginia, Pennsylvania, Maryland, and North Carolina." Settlements, rivers, and some topographical features are shown. Map is black on white and measures 17" x 23". Dated 1778. Drawer 8606 4. Western Indiana and Eastern Illinois drainage map showing waterways. A 17" x 22" blue on white copy. No date. Drawer 8606 5. Indiana. A 20" x 27" colored map showing towns, cities, counties, rivers, and railroads. U. S. Dept. of the Interior, 1916. Drawer 8606 6. Central Oklahoma. Map is 15" x 22" black on white. Shows Cheyenne-Arapahoe lands at time of 1892 Run. Also shows Wichita and affiliated tribes at the time of the 1901 drawing. Drawer 8606 7. Map is missing and no information is available about the map contents. [Missing since ca. 1999; confirmed missing 7/19/2018]. 8. Upper Mississippi. An 11" x 18" French exploration map showing waterways, forts, portages, and camps. Contains geographical inaccuracies. Includes text (French). A negative photostat from the Library of Congress. Ca. late 17th or early 18th Century. Drawer 8606. 9. Part 1 of Atlas compiled by S. -
Biological and Water Quality Study of the Ashtabula River and Select Tributaries, 2011
Biological and Water Quality Study of the Ashtabula River and Select Tributaries, 2011 Ashtabula County Ashtabula River at Benetka Road (RM 19.03) OHIO EPA Technical Report EAS/2014-01-01 Division of Surface Water December 19, 2014 EAS/2014-01-01 Ashtabula River and Select Tributaries TSD December 19, 2014 Biological and Water Quality Survey of the Ashtabula River and Select Tributaries 2011 Ashtabula County December 19, 2014 Ohio EPA Technical Report EAS/2014-01-01 Prepared by: Ohio Environmental Protection Agency Division of Surface Water Lazarus Government Center 50 West Town Street, Suite 700 Columbus, Ohio 43215 Ohio Environmental Protection Agency Ecological Assessment Section 4675 Homer Ohio Lane Groveport, Ohio 43125 and Ohio Environmental Protection Agency Northeast District Office 2110 East Aurora Road Twinsburg, Ohio 44087 Mail to: P.O. Box 1049, Columbus, Ohio 43216-1049 John R. Kasich, Governor, State of Ohio Craig W. Butler, Director, Ohio Environmental Protection Agency i EAS/2014-01-01 Ashtabula River and Select Tributaries TSD December 19, 2014 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 INTRODUCTION ...................................................................................................................... 12 STUDY AREA ........................................................................................................................... 13 RECOMMENDATIONS ............................................................................................................ -
2000 Lake Erie Lamp
Lake Erie LaMP 2000 L A K E E R I E L a M P 2 0 0 0 Preface One of the most significant environmental agreements in the history of the Great Lakes took place with the signing of the Great Lakes Water Quality Agreement of 1978 (GLWQA), between the United States and Canada. This historic agreement committed the U.S. and Canada (the Parties) to address the water quality issues of the Great Lakes in a coordinated, joint fashion. The purpose of the GLWQA is to “restore and maintain the chemical, physical, and biological integrity of the waters of the Great Lakes Basin Ecosystem.” In the revised GLWQA of 1978, as amended by Protocol signed November 18, 1987, the Parties agreed to develop and implement, in consultation with State and Provincial Governments, Lakewide Management Plans (LaMPs) for lake waters and Remedial Action Plans (RAPs) for Areas of Concern (AOCs). The LaMPs are intended to identify critical pollutants that impair beneficial uses and to develop strategies, recommendations and policy options to restore these beneficial uses. Moreover, the Specific Objectives Supplement to Annex 1 of the GLWQA requires the development of ecosystem objectives for the lakes as the state of knowledge permits. Annex 2 further indicates that the RAPs and LaMPS “shall embody a systematic and comprehensive ecosystem approach to restoring and protecting beneficial uses...they are to serve as an important step toward virtual elimination of persistent toxic substances...” The Great Lakes Water Quality Agreement specifies that the LaMPs are to be completed in four stages. These stages are: 1) when problem definition has been completed; 2) when the schedule of load reductions has been determined; 3) when P r e f a c e remedial measures are selected; and 4) when monitoring indicates that the contribution of i the critical pollutants to impairment of beneficial uses has been eliminated. -
The Maumee River Watershed and Algal Blooms in Lake Erie1 2
SESYNC Case Study The Maumee River Watershed and Algal Blooms in Lake Erie1 2 Ramiro Berardo3 & Ajay Singh4. Summary: The decay of Lake Erie’s environmental health and its impacts on local communities, including public health and the environment, was one of the focal events motivating the passage of the Clean Water Act in 1972. Despite the considerable improvement in water quality in the 1970s and 1980s because of implementation of agricultural best management practices to address soil erosion, seasonal algal blooms returned to Western Lake Erie. Potential causes of algal blooms may be a mixture of agricultural and urban practices that threaten ecological stability and public health for millions dependent on the lake for drinking water, tourism, and fisheries. For instance, in fall, 2014, national attention turned to the city of Toledo, Ohio as the city’s residents experienced disruption to city services such as access to potable water and certain medical services including child birth and surgery. For this case study we will study the relationship between human behavior and water quality impairments which lead to toxic algal blooms in the Western Lake Erie Basin, and in particular, the Maumee River Watershed. We will also review prior management and policy efforts of different stakeholders to improve water quality as well as issues surrounding the development of proposed policy and management changes. Multiple stakeholders from multiple states and Canadian provinces are involved in seeking solutions to the ongoing pollution problems. This case study will be ideal to examine how cooperation unfolds in the presence of collective action problems, and the interrelationships between human behavior and environmental outcomes. -
Status and Trends in Suspended-Sediment Discharges, Soil Erosion, and Conservation Tillage in the Maumee River Basin–Ohio, Michigan, and Indiana
In cooperation with the U.S. Army Corps of Engineers and the U.S. Department of Agriculture, Natural Resources Conservation Service Status and Trends in Suspended-Sediment Discharges, Soil Erosion, and Conservation Tillage in the Maumee River Basin–Ohio, Michigan, and Indiana U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior U.S. Geological Survey Status and Trends in Suspended-Sediment Discharges, Soil Erosion, and Conservation Tillage in the Maumee River Basin—Ohio, Michigan, and Indiana By Donna N. Myers and Kevin D. Metzker, U.S. Geological Survey, and Steven Davis, U.S. Department of Agriculture, Natural Resources Conservation Service Water-Resources Investigations Report 00-4091 In cooperation with the U.S. Army Corps of Engineers and the U.S. Department of Agriculture, Natural Resources Conservation Service U.S. Department of the Interior BRUCE BABBITT, Secretary U.S. Geological Survey Charles G. Groat, Director Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information write to: District Chief U.S. Geological Survey 6480 Doubletree Avenue Columbus, OH 43229-1111 Copies of this report can be purchased from: U.S.Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 2000 CONTENTS Abstract ................................................................................................................................................................................. 1 Introduction -
Indiana's Great Lakes Water Quality Agreement (GLWQA) Domestic Action Plan (DAP) for the Western Lake Erie Basin (WLEB)
Indiana’s Great Lakes Water Quality Agreement (GLWQA) DOMESTIC ACTION PLAN (DAP) for the WESTERN LAKE ERIE BASIN (WLEB) February 2018 INDIANA’S GREAT LAKES WATER QUALITY AGREEMENT DOMESTIC ACTION PLAN for the WESTERN LAKE ERIE BASIN Table of Contents FOREWORD .................................................................................................................................................................... 2 BACKGROUND ............................................................................................................................................................... 4 GOALS ............................................................................................................................................................................ 6 Timeframe to meet load reduction goals ........................................................................................................ 7 INDIANA’S PORTION OF THE WLEB ............................................................................................................................... 8 Land Use in the WLEB and Major Sources of Phosphorous ............................................................................ 8 WATERSHED PRIORITIZATION ..................................................................................................................................... 11 GUIDING PRINCIPLES FOR ACHIEVING WATER QUALITY IMPROVEMENTS ................................................................. 14 Point Sources/Regulated .............................................................................................................................. -
Al Ejti the Ohio State University
WATE R PROJECT COMPLETION WATER REPORT NO. 396X Concentration and Distribution of WAT E R Selected Trace Elements In The Maumee River Basin, Ohio, ER Indiana and Michigan Wayne A. Pettyjohn Professor Larry R. Hayes ATER Thomas R. Schultz Department of Geology and Minerology Al Ejti The Ohio State University United States Department WAT E R of the Interior CONTRACT NO. f\ A-026-OHIO !?& State of Ohio ER Water Resources Center Ohio State University CONCENTRATION AND DISTRIBUTION OF SELECTED TRACE ELEMENTS IN THE MAUMEE RIVER BASIN, OHIO, INDIANA AND MICHIGAN Wayne A. Pettyjohn Professor Larry R, Hayes Thomas R. Schultz Department of Geology and Minerology The Ohio State University WATER RESOURCES CENTER THE OHIO STATE UNIVERSITY COLUMBUS, OHIO 43210 March, 1974 This study was supported by the Office of Water Resources Research U.S. Department of the Interior under Project A-026-OHIO. Table of Contents INTRODUCTION 2 PURPOSE AND SCOPE 4 PREVIOUS INVESTIGATIONS 4 GENERAL FEATURES OF THE MAUMEE RIVER BASIN II GEOLOGY AND HYDROLOGY OF THE AREA 15 SAMPLE COLLECTION, PREPARATION AND ANALYTICAL TECHNIQUES 29 CONCENTRATION AND DISTRIBUTION OF SELECTED TRACE ELEMENTS 3g IN THE MAUMEE RIVER BASIN Aluminum 40 Arsenic 43 Cadmium 45 Cobalt 46 Chromium 49 Copper • . 51 Mercury 52 Nickel 55 Lead 56 Silver 58 Tin 59 Strontium 61 Zinc 63 TRACE ELEMENTS AND HEALTH SIGNIFICANCE OF SELECTED TRACE ELEMENTS * 65 Aluminum 69 Arsenic 70 Cadmium 72 Cobalt 75 Chromium 76 Copper 79 Lead 79 Mercury 83 Nickel 87 Silver 89 Strontium 90 Tin 92 Zinc 93 SUMMARY AND CONCLUSIONS . 95 BIBLIOGRAPHY 102 APPENDIX I 109 APPENDIX II 149 ABSTRACT During the period August, 1971 to April, 1973, water and stream-bottom sediment samples were collected from 225 sites distributed throughout the Maumee River basin in northwestern Ohio, southeastern Michigan and north eastern Indiana. -
Movements and Spawning of Bigheaded Carps in the Upper Wabash River, Indiana, USA: 2013 Update
Movements and Spawning of Bigheaded Carps in the Upper Wabash River, Indiana, USA: 2013 Update Alison Coulter1, Graduate Research Assistant [email protected] Reuben R. Goforth, Ph.D.1, Principal Investigator [email protected] 1Department of Forestry and Natural Resources, Purdue University, 195 Marstellar Street, West Lafayette, IN 47907 Introduction Over 180 aquatic non-indigenous species (NIS) have been introduced into Great Lakes Basin waters to date, and new introductions are expected in the future. The so-called “bigheaded carps” (e.g., silver Hypophthalmichthys molitrix and bighead H. nobilis) are considerable threats to the Great Lakes given expected trajectories of nutrient flow disruption and food web alterations that will likely accompany their introduction to the Basin. While great effort has been expended to keep these species from entering the Great Lakes Basin via the Illinois River and its connection to the Chicago Sanitary and Ship Canal, an additional pathway for introduction has been identified at Eagle Marsh near Fort Wayne, Indiana. Eagle Marsh may provide a corridor for movement of these species between the Wabash and Maumee River basins during high water periods. The direct connection of the Maumee River with Lake Erie would therefore provide a means for introduction of bigheaded carp to the Great Lakes. Immediate action has been taken to prevent such an introduction through the installation of a physical barrier across Eagle Marsh. However, the potential ranges and rates of movement by silver and bighead carps throughout the Wabash River, and especially into the Little River and Eagle Marsh, are not fully understood. Understanding the movements of invading species in novel environments is important for predicting potential impacts (DeGrandchamp et al. -
The Fresh-Water Naiades of Auglaize County, Ohio
THE FRESH-WATER NAIADES OF AUGLAIZE COUNTY, OHIO CLARENCE F. CLARK, Ohio Division of Conservation and Natural Resources, St. Marys, Ohio This paper deals with 30 collections of mussels taken at 24 stations (Fig. 1) in the drainage systems of Auglaize County during the past four years, 1938-42. The materials are of interest because: (1) no other naiad records have been pub- lished for this area; (2) rapid changes in stream ecology necessarily alter the mussel fauna; and (3) the proximity of headwater streams of the Ohio and Lake Erie drainages produce interesting distribution patterns for comparison. In the general vicinity, Goodrich (1914) reported on naiades from the Wabash River in Mercer County; Clark and Wilson (1912) surveyed the Maumee and Auglaize Rivers of Defiance County; Kirsch (1894) investigated the Maumee Basin; Ortmann (1919) reported on mussels from the St. Marys River, Beaver Creek, and Lake St. Marys in Mercer County, the Maumee River in Defiance County, the Scioto River in Hardin County, and Indian Lake in Logan County. These collections have been made in counties to the west, north and east of the region considered at present. Records of Sterki (1907) and those from the Carnegie Museum of Pitts- burgh list specimens from the Great Miami drainage to the south. This paper presents data on the origin of the naiades of Auglaize County, the species involved, their distribution and ecology, together with a brief discussion on the future of naiades in the county. Acknowledgements are due Dr. Henry van der Schalie for assistance in the identification of the specimens used in this study and in the preparation of this paper, and Dr.