The Chemical Compositions and Ages of Globular Clusters*

Total Page:16

File Type:pdf, Size:1020Kb

The Chemical Compositions and Ages of Globular Clusters* J. Astrophys. Astr. (1996) 17, 1–6 The Chemical Compositions and Ages of Globular Clusters* Russell Cannon Anglo-Australian Observatory, Epping NSW 2121, Australia Received 1996 March 28; accepted 1996 May 14 Abstract. Recent technological advances have led to a dramatic improvement in the quality of photometric and spectroscopic data obtainable on stars in globular clusters. Evidence from CCD-based colour magnitude diagrams points to clear differences in age between some clusters. High dispersion spectra show that abundance variations cannot explain the observed differences. In particular, it seems that NGC 288 must be 2–3 Gyr older than NGC 362. The same spectra show that although there is a spread in some molecular band strengths in NGC 362, the total C+N+O abundance remains constant, indicating that the material has undergone varying amounts of nuclear process- ing. No variations are seen in the abundances of iron group elements. Lower dispersion spectra for a large sample of faint stars in 47 Tucanae, obtained with a multi-object optical fibre system, show that unevolved main sequence stars in that cluster share the same CNO variations as the bright giants. The conclusion from all these data is that the intra-cluster CNO variations are neither truly primordial nor due to evolutionary mixing. It may be that there was a sufficiently extended period of star formation for material from first generation stars to be used in later generations, or that some pollution has occurred due to mass loss. Finally, it is noted that if ‘prehistoric’ clusters exist with ages of around 50 Gyr, as hypothesised in some cosmological models, these should probably still be rather obvious and readily recognised. 1. Introduction When Meghnad Saha published his classic papers on ionisation theory which led directly to the quantitative determination of the physical state and chemical com- position of stellar atmospheres, Henry Norris Russell commented that this would provide years of work for astrophysicists in the future. Now, seventy years later, we are certainly still exploring many consequences of Saha’s work. This year is the centenary of Sana’s birth in India, and it is therefore a great pleasure to be able to give a report here on some small contributions to one aspect of that work, the study * Paper presented at the 6th Asian-Pacific Regional Meeting on Astronomy of the International Astronomical Union, India, 1993. 1 2 Russell cannon of globular star clusters. It is also a privilege to give one of the first lectures in an impressive new auditorium. IUCAA has come a long way in the few months since the dedication ceremony last January and is clearly already well set up to provide both the facilities and the ambience needed for a successful research centre. Much of what follows is similar to a talk given at the IUCAA Dedication Symposium and so the next few sections will give only brief summaries of some basic observational data on globular clusters. The reader is referred to that earlier paper (Cannon 1993) for a more detailed account and further references. Some new results on the abundance spread among faint main sequence stars in one cluster are given here in section 6, while the final section consists of comments on the likely appearance of ‘prehistoric’ clusters, if such exist. 2. The significance of globular clusters Globular clusters are particularly important because their ages can be reasonably accurately determined and they turn out to be about the oldest objects known. They thus give information on the formation and early history of our Galaxy. More than that, they are so old that their ages are of cosmological significance: the best current estimates of their ages make them older than the age of the Universe in some cosmological models. In other words, they provide a constraint on permissible models. Recent technological advances, in particular the advent of Charge Coupled Device (CCD) detectors, have led to a dramatic improvement in the accuracy of photometry of faint stars in clusters. Thus it is possible to delineate the locus of stars in the colour-magnitude diagram (CMD) very much more precisely than previously. In particular, the location of the main sequence turn-off point, which is a direct measure of cluster age, can be much better determined. For a given cluster and a given set of theoretical isochrones, it is possible to determine the turn-off luminosity to better than 0.1 mag, and hence the age to better than 1 Gy. This however is only a sort of ‘internal’ accuracy; uncertainties in the transformation from observed to theoretical quantities (i.e., colour to temperature, magnitude to bolometric luminosity), in the abundances of some key elements, and in some of the input physics for the stellar models, mean that the absolute ages are not so well determined. In particular, it is difficult to be confident about the relative ages of clusters with different chemical composition; conversely, the uncertainties can be minimised by comparing clusters with very similar composition. One such pair of clusters is NGC 288 and NGC 362. Their overall metallicities, as measured by various parameters which essentially depend on the abundance of iron, are almost identical. Bolte (1989) and Green & Norris (1990) have indepen- dently obtained precise CMDs for both clusters, using CCDs. Both studies come to the same conclusion: the turn-off in NGC 288 is about 0.3 mag fainter than that in NGC 362, implying that NGC 288 is two to three billion years older. However, it is possible that a difference in the abundance of some hard-to-observe chemical element might be responsible for the observed shift in the turn-off point. A prime Globular clusters 3 suspect is oxygen, since it does affect the turnoff luminosity and it is known that itsabundance does not always vary in step with that of iron. 3. The determination of oxygen abundances Another recent technological advance had made it possible for the first time to measure reasonably accurate oxygen abundances in globular cluster stars. With a modern high dispersion spectrograph, such as the UCL coude echelle spectrograph (UCLES) on the AAT, it is possible to observe the oxygen line at 630nm in globular cluster red giants. Dickens et al. (1991) have used UCLES to observe samples of stars in NGC 288 and NGC 362. It is in fact not enough just to observe the oxygen line; it is also necessary to measure the strengths of molecular bands, such as those due to CN and CH, in order to determine the carbon and nitrogen abundances as well. The strength of the oxygen line depends on the C and Ν abundances, while the important parameter for the stellar interior models used to determine cluster ages is actually the combined C+N+O abundance. The abundances are determined by comparing the observed spectra with calcu- lated synthetic spectra. The result which Dickens et al. obtained was that all the stars they observed in both clusters have the same overall C+N+O abundance, to within the errors. They also confirmed that NGC 288 and NGC 362 have almost the same iron abundance. Thus their data eliminate oxygen variations as the cause of the difference between the two CMDs. 4. Cluster ages It thus seems that NGC 288 really is 2–3 Gyr older than NGC 362. There are a few other well-founded examples of pairs of clusters with similar abundances but different ages. There is also good evidence that there is very little spread in age within some other samples of clusters. However, it is not yet possible to determine the overall age distribution function, especially when clusters of very different abundance are included. The available data are consistent with the majority of Galactic globular clusters being virtually coeval but with a minority having significantly different ages. Supporting evidence for this picture comes from the morphology of cluster CMDs. It has long been recognised that the structure of the horizontal branch correlates with metallicity for most clusters, but that a few clusters are anomalous (the ‘second parameter’ problem). If the mean colour of the horizontal branch is taken to be a function of age, with the stars becoming bluer as age increases, it seems that most of the anomalous clusters are younger than the main sample in the Galaxy. Most of these ‘young’ globulars are outlying clusters which may have been captured when smaller galaxies were disrupted and merged with the Galaxy. It is a bit difficult to decide which of NGC 288 and NGC 362 is the ‘anomalous’ cluster; both have been classed as ‘second parameter clusters’ in the past, in opposite senses, but it seems likely that NGC 288 is an exceptionally old cluster (Cannon 1993). 4 Russell cannon An alternative view is that there is in fact a Gaussian spread of cluster ages, with dispersion around half a billion years and with NGC 288 and NGC 362 being close to opposite ends of the range. In any event, NGC 288 seems to be a particularly significant cluster in the cosmological context, since in either view it must be one of the oldest. 5. Abundance variations within clusters The classical assumption was that all stars in a given cluster have the same abun- dance. The very tightly defined CMDs for most well-observed clusters justify this assumption, at least so far as the iron group elements (which dominate opacity) are concerned, with a few exceptions of which the most notable is NGC 5139 (Omega Centauri). However, there are in fact large variations in the strengths of the CN bands in many clusters (Norris 1987). The questions which arise are: what is the origin of these variations, and do they have implications for age determinations? NGC 362 is one cluster with a large spread in CN band strength: NGC 288 shows virtually no spread.
Recommended publications
  • Ray Emission from the Globular Cluster 47 Tucanae (Research Note)
    A&A 499, 273–277 (2009) Astronomy DOI: 10.1051/0004-6361/200811564 & c ESO 2009 Astrophysics HESS upper limit on the very high energy γ-ray emission from the globular cluster 47 Tucanae (Research Note) F. Aharonian1,2, A. G. Akhperjanian3,G.Anton4, U. Barres de Almeida5,, A. R. Bazer-Bachi6, Y. Becherini7, B. Behera8, K. Bernlöhr1,9, C. Boisson10, A. Bochow1, V. Borrel6,I.Braun1,E.Brion11, J. Brucker4,P.Brun11, R. Bühler1,T.Bulik12, I. Büsching13, T. Boutelier14,P.M.Chadwick5, A. Charbonnier15,R.C.G.Chaves1, A. Cheesebrough5, L.-M. Chounet16,A.C.Clapson1, G. Coignet17, M. Dalton9,M.K.Daniel5,I.D.Davids18,13, B. Degrange16,C.Deil1, H. J. Dickinson5, A. Djannati-Ataï7, W. Domainko1, L. O’C. Drury2, F. Dubois17, G. Dubus14, J. Dyks12, M. Dyrda19,K.Egberts1, D. Emmanoulopoulos8, P. Espigat7, C. Farnier20, F. Feinstein20, A. Fiasson20, A. Förster1, G. Fontaine16,M.Füßling9,S.Gabici2,Y.A.Gallant20,L.Gérard7, B. Giebels16, J. F. Glicenstein11, B. Glück4,P.Goret11, D. Hauser8, M. Hauser8,S.Heinz4, G. Heinzelmann21,G.Henri14,G.Hermann1,J.A.Hinton22, A. Hoffmann23, W. Hofmann1, M. Holleran13, S. Hoppe1,D.Horns21, A. Jacholkowska15, O. C. de Jager13, I. Jung4, K. Katarzynski´ 24,U.Katz4, S. Kaufmann8, E. Kendziorra23, M. Kerschhaggl9, D. Khangulyan1, B. Khélifi16,D. Keogh5,Nu.Komin11, K. Kosack1,G.Lamanna17,J.-P.Lenain10, T. Lohse9, V. Marandon7, J. M. Martin10, O. Martineau-Huynh15 , A. Marcowith20, D. Maurin15,T.J.L.McComb5,M.C.Medina10, R. Moderski12, E. Moulin11, M. Naumann-Godo16, M. de Naurois15, D. Nedbal25, D.
    [Show full text]
  • Adrienne M. Cool CURRICULUM VITAE Department
    Adrienne M. Cool CURRICULUM VITAE Department of Physics and Astronomy San Francisco State University Tel: (415)338-6450 1600 Holloway Avenue Fax: (415)338-2178 San Francisco, CA 94132 E-mail: [email protected] Education Ph.D. Astronomy, Harvard University (1994) M.S. Electrical Engineering, Columbia University (1986) B.S. Physics, Yale University (1984) Employment 2006–present Professor, Department of Physics and Astronomy San Francisco State University 2000–06 Associate Professor, Department of Physics and Astronomy San Francisco State University 1996–00 Assistant Professor, Department of Physics and Astronomy San Francisco State University 1993–96 Postdoctoral Researcher, Department of Astronomy University of California, Berkeley 1988–93 Research Assistant, Department of Astronomy Harvard University 1988–90 Teaching Assistant, Department of Astronomy Harvard University 1987 Research Assistant, Astrophysics Laboratory Columbia University 1986 Teaching Assistant, Department of Electrical Engineering Columbia University 1985 Research Assistant, Department of Electrical Engineering Columbia University 1984 Private instructor in mathematics and physics 1981–84 Technical Assistant, Department of Nuclear Medicine Mount Sinai Medical Center, New York City Honors and Awards • Image of globular star cluster Omega Centauri chosen for Hubble Heritage web site (2008) • Affirmative Action Award, San Francisco State University (2005) • Image of globular star cluster NGC 6397 chosen for Hubble Heritage web site (2003) • Presidential Award for Professional Development of Probationary Faculty, San Francisco State University (2000) 1 • Outstanding Contributions to Teaching Certificate, San Francisco State University (1997) • Fellow, NASA Graduate Student Researchers Program (1992-93) • Harvard Merit Fellowship (1990) • Danforth Center Certificate for Teaching Excellence, Harvard University (1989) • Amelia Earhart Fellowship Award, Zonta International Foundation (1989, 1990) • Teaching Assistant/Scholar Award, Columbia University, Dept.
    [Show full text]
  • Report of Contributions
    Mapping the X-ray Sky with SRG: First Results from eROSITA and ART-XC Report of Contributions https://events.mpe.mpg.de/e/SRG2020 Mapping the X- … / Report of Contributions eROSITA discovery of a new AGN … Contribution ID : 4 Type : Oral Presentation eROSITA discovery of a new AGN state in 1H0707-495 Tuesday, 17 March 2020 17:45 (15) One of the most prominent AGNs, the ultrasoft Narrow-Line Seyfert 1 Galaxy 1H0707-495, has been observed with eROSITA as one of the first CAL/PV observations on October 13, 2019 for about 60.000 seconds. 1H 0707-495 is a highly variable AGN, with a complex, steep X-ray spectrum, which has been the subject of intense study with XMM-Newton in the past. 1H0707-495 entered an historical low hard flux state, first detected with eROSITA, never seen before in the 20 years of XMM-Newton observations. In addition ultra-soft emission with a variability factor of about 100 has been detected for the first time in the eROSITA light curves. We discuss fast spectral transitions between the cool and a hot phase of the accretion flow in the very strong GR regime as a physical model for 1H0707-495, and provide tests on previously discussed models. Presenter status Senior eROSITA consortium member Primary author(s) : Prof. BOLLER, Thomas (MPE); Prof. NANDRA, Kirpal (MPE Garching); Dr LIU, Teng (MPE Garching); MERLONI, Andrea; Dr DAUSER, Thomas (FAU Nürnberg); Dr RAU, Arne (MPE Garching); Dr BUCHNER, Johannes (MPE); Dr FREYBERG, Michael (MPE) Presenter(s) : Prof. BOLLER, Thomas (MPE) Session Classification : AGN physics, variability, clustering October 3, 2021 Page 1 Mapping the X- … / Report of Contributions X-ray emission from warm-hot int … Contribution ID : 9 Type : Poster X-ray emission from warm-hot intergalactic medium: the role of resonantly scattered cosmic X-ray background We revisit calculations of the X-ray emission from warm-hot intergalactic medium (WHIM) with particular focus on contribution from the resonantly scattered cosmic X-ray background (CXB).
    [Show full text]
  • Research Investigates the Brightest Star of 47 Tucanae 10 August 2021, by Tomasz Nowakowski
    Research investigates the brightest star of 47 Tucanae 10 August 2021, by Tomasz Nowakowski The brightest star of 47 Tuc at both ultraviolet and optical wavelengths is the so-called "Bright Star" (BS). It is a blue giant star of spectral type B8 III with an effective temperature of some 11,000 K. Moreover, the Bright Star is a post-asymptotic giant branch (post-AGB) star that is moving across the color-magnitude diagram toward the tip of the white- dwarf cooling sequence. Although many studies of the bright star have been conducted, its chemical composition is still poorly understood. Given that the Bright Star represents a unique window into the chemistry of 47 Tuc, a team of astronomers led by William V. Dixon of the Space Telescope Science Institute in Baltimore, Globular cluster 47 Tucanae. Credit: NASA, ESA, and Maryland, investigated this star using the Far the Hubble Heritage (STScI/AURA)-ESA/Hubble Ultraviolet Spectroscopic Explorer (FUSE), the Collaboration. Hubble Space Telescope (HST) and the Magellan Telescope. The observations allowed the team to determine Astronomers have inspected the brightest star of a photospheric abundances of 26 elements of the globular cluster known as 47 Tucanae (other bright star. The data show that the intermediate- designation NGC 104). Results of the study, mass elements generally scale with iron, while the published August 3 on arXiv.org, provide important heaviest elements have roughly solar abundances. insights into the properties and chemical It was found that the star has a relatively low composition of this star, what could improve our carbon to nitrogen ratio, what suggests that it understanding of the cluster's nature.
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • Diapositiva 1
    Componentes del Universo • Estrellas • Galaxias Componentes del • Constelaciones Universo Estrellas Estrellas Masas de gases de hidrógeno y En su interior hay helio, que emiten luz. reacciones nucleares (hidrógeno se Se encuentran a temperaturas muy transforma en helio). elevadas. Más hidrógeno es más joven. Más helio llega a su muerte. Estrellas Diagrama Hertzsprung-Russel Diagrama de Hertzsprung-Russel (diagrama H-R) Agrupa estrellas según su luminosidad visual. Tipo espectral corresponde a sus longitudes de ondas que emiten y su temperatura. Las estrellas con mayor masa son las que tienen mayor luminosidad, como las azules, las gigantes rojas y las supergigantes. Las estrellas viven en un 90% de sus vidas en la secuencia principal. 1 Diagrama Hertzsprung-Russel Estrellas Estrellas Estrellas Características físicas de las estrellas es la Magnitud: Magnitud Aparente: cantidad de luz Magnitud Absoluta: es la que tendrían todas si estuvieran a que se recibe de un objeto. la misma distancia de la Tierra. En condiciones atmosféricas favorables el ojo humano es capaz de distinguir hasta 6.000 estrellas. El brillo aparente no es igual al brillo real. Un objeto extremadamente brillante puede aparecer absolutamente débil, si está lejos. Estrellas Estrellas Magnitud estelar (brillo) Magnitud estelar (brillo) Sistema de medida Más brillantes: magnitudes negativas. Cada magnitud es 2,512 veces más brillante que la siguiente. Magnitud 1 es 100 veces más brillante que una magnitud 6. 20 estrellas de magnitud = ó > 1. Más débil magnitud de 23. 2 Estrellas Estrellas Escala de magnitudes aparentes Mag. Estelar Objeto -26,8 Sol -12,6 Luna llena -4,4 Brillo máximo de Venus La estrella más cercana a la Tierra -2,8 Brillo máximo de Marte es Próxima Centauri.
    [Show full text]
  • The White Dwarf Cooling Sequence of 47 Tucanae
    A&A 571, A56 (2014) Astronomy DOI: 10.1051/0004-6361/201424652 & c ESO 2014 Astrophysics The white dwarf cooling sequence of 47 Tucanae Enrique García-Berro1,2, Santiago Torres1,2,LeandroG.Althaus3,4, and Marcelo M. Miller Bertolami4,5, 1 Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860 Castelldefels, Spain e-mail: [email protected] 2 Institute for Space Studies of Catalonia, c/Gran Capita 2–4, Edif. Nexus 104, 08034 Barcelona, Spain 3 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina 4 Instituto de Astrofísica de La Plata, UNLP-CONICET, Paseo del Bosque s/n, 1900 La Plata, Argentina 5 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany Received 22 July 2014 / Accepted 1 October 2014 ABSTRACT Context. 47 Tucanae is one of the most interesting, well-observed, and theoretically studied globular clusters. This allows us to determine the reliability of our understanding of white dwarf cooling sequences, to compare different methods of determining its age, and to assess other important characteristics, such as its star formation history. Aims. Here we present a population synthesis study of the cooling sequence of the globular cluster 47 Tucanae. In particular, we study the distribution of effective temperatures, the shape of the color−magnitude diagram, and the corresponding magnitude and color distributions. Methods. To do this, we used an up-to-date population synthesis code based on Monte Carlo techniques that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases.
    [Show full text]
  • Deep Hstphotometry of Ngc 6388: Age and Horizontal Branch Luminosity * Peterb
    Source of Acquisition NASA Goddard Space Flight Center APJ LETTERS,DRAFT V5, FEBRUARY6,2006 Preprint typeset using BTg style emulateapj v. 12/14/05 DEEP HSTPHOTOMETRY OF NGC 6388: AGE AND HORIZONTAL BRANCH LUMINOSITY * PETERB. STETSON"* Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada; e-mail: [email protected] M. CATELAN Pontificia Universidad Cat6lica de Chile, Departamento de Astronomla y Astrofisica, Av. Vicuiia Mackenna 4860, 782-0436 Macul, Santiago, Chile; e-mail: [email protected] BARTONJ. PRITZL Macatester College, I600 Grand Avenue, Saint Paul, MN 55105; e-mail: [email protected] HORACEA. SMITH Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824; e-mail: [email protected] KARENKINEMUCHI Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY 82071; e-mail: [email protected] ANDREWC. LAYDEN Department of Physics and Astronomy, Bowling Green State University, 104 Overman Hall, Bowling Green, OH 43403; e-rnail. [email protected] ALLENV. SWEIGART NASA Goddard Space Flight Center, Exploration of the Universe Division, Code 667, Greenbelt, MD 20771; e-mail: [email protected] AND R. M. RICH Division of Astronomy, Department of Physics and Astronomy, UCLA, Los Angeies, CA 90095; e-mail: [email protected] ApJ Letters, draft v5, February 6,2006 ABSTRACT We present the first deep color-magnitude diagram (CMD) of the Galactic globular cluster NGC 6388, ob- tained with the Hubble Space Telescope, that is able to reach the main-sequence turnoff point of the cluster. From a detailed comparison between the cluster CMD and that of 47 Tucanae (NGC 104), we find that the bulk of the stars in these two clusters have nearly the same age and chemical composition.
    [Show full text]
  • Identification of Luminous White Dwarf Candidates in the Globular Clusters M13 and M22 Using Hst Acs Photometric Data
    Publications of the Korean Astronomical Society pISSN: 1225-1534 30: 265 ∼ 266, 2015 September eISSN: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/PKAS.2015.30.2.265 IDENTIFICATION OF LUMINOUS WHITE DWARF CANDIDATES IN THE GLOBULAR CLUSTERS M13 AND M22 USING HST ACS PHOTOMETRIC DATA Dong-Hwan Cho1, Tae Seog Yoony1, Sang-Gak Lee2,3, and Hyun-Il Sung4 1Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701, Korea 2Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea 3National Youth Space Center, Goheung, Jeonnam 548-951, Korea 4Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348, Korea E-mail: [email protected] (Received November 30, 2014; Reviced May 31, 2015; Aaccepted June 30, 2015) ABSTRACT A search for luminous white dwarfs (WDs) in several nearby Galactic globular clusters (GCs) was carried out using the deep and homogeneous photometric catalog of Galactic GCs taken with the ACS/WFC aboard the Hubble Space Telescope (HST) by Sarajedini et al. and Anderson et al.. It resulted in the identification of luminous WD candidates in the GCs M13 (NGC 6205) and M22 (NGC 6656). The purpose of the present study is to identify luminous WDs in the deep and homogeneous V versus V − I color-magnitude diagrams (CMDs) of several nearby Galactic GCs taken with the ACS/WFC aboard the HST. Using photometric data for the GCs M13 and M22 that are now in the public domain, the V versus V − I CMDs of the GCs M13 and M22 were constructed.
    [Show full text]
  • Caldwell Catalogue - Wikipedia, the Free Encyclopedia
    Caldwell catalogue - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit View history Caldwell catalogue From Wikipedia, the free encyclopedia Main page Contents The Caldwell Catalogue is an astronomical catalog of 109 bright star clusters, nebulae, and galaxies for observation by amateur astronomers. The list was compiled Featured content by Sir Patrick Caldwell-Moore, better known as Patrick Moore, as a complement to the Messier Catalogue. Current events The Messier Catalogue is used frequently by amateur astronomers as a list of interesting deep-sky objects for observations, but Moore noted that the list did not include Random article many of the sky's brightest deep-sky objects, including the Hyades, the Double Cluster (NGC 869 and NGC 884), and NGC 253. Moreover, Moore observed that the Donate to Wikipedia Messier Catalogue, which was compiled based on observations in the Northern Hemisphere, excluded bright deep-sky objects visible in the Southern Hemisphere such [1][2] Interaction as Omega Centauri, Centaurus A, the Jewel Box, and 47 Tucanae. He quickly compiled a list of 109 objects (to match the number of objects in the Messier [3] Help Catalogue) and published it in Sky & Telescope in December 1995. About Wikipedia Since its publication, the catalogue has grown in popularity and usage within the amateur astronomical community. Small compilation errors in the original 1995 version Community portal of the list have since been corrected. Unusually, Moore used one of his surnames to name the list, and the catalogue adopts "C" numbers to rename objects with more Recent changes common designations.[4] Contact Wikipedia As stated above, the list was compiled from objects already identified by professional astronomers and commonly observed by amateur astronomers.
    [Show full text]
  • 108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
    Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947
    [Show full text]
  • THE SKY TONIGHT Romans About Two Thousand Years Ago
    - Southern Birds JULY HuRAE SKY GUIDE Most constellations visible in the northern sky in Dunedin were named by the Greeks and THE SKY TONIGHT Romans about two thousand years ago. These constellations are predominantly tied to myths and legends that explained how the stars were Moon Landing Anniversary put in the sky. The constellations in the southern The 20th of July this year marks fifty years sky, however, are not visible in the northern since humans first walked on the moon. hemisphere and so were not seen by Europeans The Apollo 11 mission was manned by three until the 15th and 16th centuries. These astronauts: Neil Armstrong, Buzz Aldrin, and constellations were given more practical names Michael Collins. They flew for four days after related to the journeys of the explorers, rather launch before reaching the moon’s orbit. than being based on any mythological stories. Neil Armstrong and Buzz Aldrin piloted the lunar module to the surface of the moon and In the late 1500s, the Dutch embarked on many collected 47.5kg of lunar material before trade voyages around Africa and the East Indies. returning to the command module and Navigation on these trips proved to be quite heading home. What’s truly amazing is that this difficult, as there were no accurate maps of the was accomplished with a computer the size of southern skies. Petrus Plancius was a mapmaker a car, with less processing power than today’s who commissioned a pilot, Pieter Keyser, to pocket calculators. record the position of the stars in the southern skies.
    [Show full text]