Principles of Underfit Streams

Total Page:16

File Type:pdf, Size:1020Kb

Principles of Underfit Streams Principles of Underfit Streams GEOLOGICAL SURVEY PROFESSIONAL PAPER 452-A Principles of Underfit Streams By G. H. DURY GENERAL THEORY OF MEANDERING VALLEYS GEOLOGICAL SURVEY PROFESSIONAL PAPER 452-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director First printing 1964 Second printing 1967 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1 (paper cover) CONTENTS Page Page Abstract.--_----_-__---_-_-_._____._.._______._____ Al Principles of underfit streams Continued Introduction --.--_.__.________,______._._____.__._. 1 Regional distribution and a regional hypothesis.___ A26 Acknowledgments__ _ _ _____________________________ 3 Climatic hypothesis and underfitness other than Perspective on terminology.-._-_---_______-__-_____- 4 manifest. ____________-_----_--_--__------ 29 Principles of underfit streams_______________________ 9 Meandering tendency of a drainage ditch __ 32 Diversion unnecessary__-_______________,________ 9 Creeks in Iowa------------------------- 33 Diversions other than capture the question of spill­ Humboldt River, Nev___________________ 35 ways --_--__-_____________--________________- 16 Shenandoah River, Va-__-----_-_-------- 36 Ozarks and Salt and Cuivre River basins, Wabash River, Ind., and glacial Lake Whittle- Missouri- _-_______-_---_--__---_----- 39 sey ---__..______-________..___.__-_._- 17 Rivers in New England________________ 47 Souris River at Minot, N. Dak...____________ 18 Canyons in Arizona.____________________ 55 Sheyenne River, N. Dak., and glacial Lake Problems of the influence of bedrock. _________ 59 Agassiz._________________________________ 18 Canyons as flumes._____________________ 63 Stratford Avon, England, and glacial Lake Summary __________________________________________ 65 Harrison __ _____________________________ 22 References cited---_-_-----__-----____-------------- 66 ILLUSTRATIONS Page PLATE 1. Map of the River Bar and the reversed River Agron, France, showing valley bends_..______________------ In pocket 2. Map of the Sheyenne River spillway and associated features, North Dakota.________________------_----- In pocket FIGURE 1. Oblioue aerial view of the Evenlode River, Oxfordshire, England, an underfit stream._________._____-____---- A2 2. Sketch map of part of the Windrush River, Oxfordshire, England, an underfit stream.__________-_____-__-_-- 3 3. Stereoscopic photograph of part of Bois Creek, Grant County, Wis., an underfit stream. ________--__-__------ 3 4. Block diagrams of underfit streams, showing character and possible origin of some combinations of stream channel and valley patterns.______-_________________-_________________---___---_---------_---------- 8 5. Graph showing comparative wavelengths of valley and stream meanders of members of the Warwickshire Avon system and of streams of the Cotswold back-slope, England. ________________________---_-_-------- 10 6. Location map of streams in Swabia, south Germany_________________________-_____---__-----_----------- 11 7-8. Sketches showing stream-channel and valley patterns 7. Eyach, Stunzach, and Schmeie Rivers_....._._______________________________-___-------___------- 12 8. Lauchert and Starzel Rivers._--_____-______-____--_-___________-___---__----_------------------- 12 9-10. Maps showing incised bends 9. Moselle and Meuse Rivers- _________-______________--______________--__-_------------_---------- 13 10. Seine and Meuse Rivers___---__-_____-_-__________-______-___-_---_--__-_----------------------- 14 11. Map of eastern France showing distribution of manifestly underfit streams______-____--------_-------------- 15 12. Graph showing relation of wavelength to drainage area of selected French rivers.________-____----_--_-_----- 16 13. Map of the Auglaize River system, Ohio, showing stream-channel patterns.--------------------------------- 18 14. Auglaize River system, Ohio, as mapped from aerial photographs-___-_______________.-______-------------- 19 15. Aerial photograph of part of the Auglaize River_ -_____-____-__._________-__--_-__----_------------------ 20 16. Sketch of the Souris River valley at Minot, N. Dak_____...________.-____--________-------------------- 21 17. Sketch map showing former drainage basin of the Avon River, Warwickshire, England, in relation to glacial Lake Harrison. _ ________-__--_____-___________________________-________-__-_____-_---------------------- 23 18. Sketches of the Avon River showing river terraces and two interpretations of these terraces._____-_____-__---- 24 19. Known areal extent of manifestly underfit streams in France and southeast England.___________________----- 26 20. Map of the Kickapoo River near Soldiers Grove, Wis_ ___________________________________________________ 27 21. Sketch of the Kickapoo River showing former meanders reconstructed from aerial photographs--------------__ 27 22. Contrasted valley patterns on the Delaware River, Kans - ________________________-_______-----___-------- 28 in IV CONTENTS Page FIGURE 23, 24. Map of conterminous United States showing areal range of manifestly underfit streams in relation to 23. Physical subdivisions____._-_-_---_._---- .---_-_-----_-_-----__----_-_______________..__.__.___ A30 24. Climatic subdivisions.__._____.__...__._...--__-___-_-______--___-_-___-________________________ 31 25. View of drainage ditch at Eagle Pitcher mine near Shullsburg, Wis_ _______-.______.__.._____.____._.____ 32 26. Sketch of ditch shown in figure 25.-......-.....-.-------------_-------------------__---.-__._.__...___ 32 27. Map of part of Sugar Creek, Iowa-._.._-_-_-.__-.__-_-__--_-_-_-_-_-_---___-_--______-___...__._____._ 33 28. Sketch of part of McDonald Creek, Iowa..._._-._-_-______-__-__-_---__--_--_--_-_-__--.__________.._ 34 29. Graph showing relation of wavelength to drainage area of the Humboldt and Owyhee Rivers and Birch Creek_ _ _.. 35 30-34. Maps of 30. Part of the South Fork of the Humboldt River, Nevada......-_--.._.__-____.._._.___.^.,____:._... 36 31. Part of the Humboldt River, including Carlin Canyon, near Carlin, Nev.________.,--.__________________ 37 32. Part of the North Fork of the Shenandoah River near Mount Jackson, Va.._____.__.._._..._.____.... 37 33. Part of the North Fork of the Shenandoah River near Strasburg, Va.----.-___-.__..-.._.^_.._._._... 38 34. Meramec River near Pacific, Mo., showing incised valley meanders_--_--___________- -___ _ ___...__ 40 35, 36. Gasconade River in flood, May 1961 35. Aerial view..____--_-_-_---._-_---_--_---------------------_.-.----__--_----__-___-__._________ 41 36. Ground view.____-___--____---_-_----.___-_-------------------------_---.--.--_..-_....._.____ 42 37. Map of the Gasconade River south of Linn, Mo., showing cutoff valley bend_______......__.-._... ._._.__.. 43 38-40. Maps of parts of the 38. Elk and Middle Forks, Salt River, Mo...._.......- ___..-.._.........-.-..__......._.__.... 44 39. Bourbeuse River, Mo.__.___-.--___.-__-_----_-...--_._-_---.-..---..-.-..-._...-__.... ..__.._.. 44 40. Meramec River, Mo -.___-.._---..-__-__----_-_--..-------------.--------...-......-_..._.__-- 44 41. Graph showing comparative wavelengths of streams in the northeast Ozarks and of the Salt and Cuivre Rivers. - - _ - 45 42. Maps showing ranges of stream-channel and valley patterns on underfit streams...._________________________ 46 43. Channel-bed profile of a reach of the Osage River, Mo.--__-_-_-__----__-----_-_-__-__________._..._.___. 47 44. Aerial oblique view of part of the Osage River upstream from the Lake of the Ozarks-._--_.______.__________ 48 45. Graph showing relation of wavelength to drainage area of streams in southern New England_________.________ 49 46. Map of the Deerfield River, Mass., showing valley bends on an upland reach-_______________________________ 49 47. Sketch of the Deerfield River showing stream meanders on a lowland reach---_-_-_.-______________________- 50 48. Map of the Westfield River, Mass., showing valley bends on an upland reach- .________-_-_--__. ________..- 51 49. Map of the Connecticut River valley showing scrolls.___-__----_-___---_______-_-__--_-___ _-._-__-____.- 52 50. Sketch map showing the possible capture of Pond Brook, Conn.__._-____._____-___--_--_.---_.___..____-__ 54 51. View of scallop of stream meander in kame, Pomperaug River, Conn______________________________________ 55 52. Sketch of the Connecticut River valley showing manifestly underfit streams on the drained floor of glacialLake Hitchcock _-____-__-___-___._________._______.___._-__.___..-_______.____-__.___.________---___--- 56 53-58. Views of 53. Valley bend in Canyon Padre, Ariz___---___-_____-.-___-.___-__.---_-.-..-----__-_.-__---____- --. 57 54. Berms and stream channel in Canyon Diablo, Ariz___--_-______-_-.--_._.-____--_._---_____-__-_-__ 57 55. Point bar of valley meander in Canyon Diablo_-.____..__.__-..__.____.____-______-_.___._______--_ 58 56. Point bar of valley bend, undercut outer slope, and shedding of joint blocks in Canyon Diablo-.--.--.----- 58 57. Sketch of Oraibi Wash, Ariz., showing scrolls and scars__..-_-__._______-_-______--___.-_-_--___--__---- 59 58. Aerial view of Oraibi Wash---____.______.______._____.._________.___.__...__.___.__._______-_______-- 60 59, 60. Views of meandering gullies 59. On highway bank near Iowa City, Iowa._____-___-----_--_-_-___.-.__--_-_-___-__-_-_-__--_-____-. 61 60. On mine tailings near Shullsburg, Wis__.____._.______--_._-___-__--___._._-_________-___--_-__.-- 62 61. View of joint blocks of dolomite shed from valley wall, Mineral Point Branch of the East Pecatonica River, Wis. 63 62. Stereoscopic photograph of Bear Creek Canyon, near Denver, Colo. -.-.__---___-_._-_______-__--__---___-- 64 63. Views of canyons on the west side of Deep Spring Valley, Calif._____.--_..-_-...__--__.__.__-_-_-_____---_ 65 TABLES TABLE 1. Wavelengths of meanders of the Sheyenne River spillway.__._-_.__-_-_-____-_____.-___-__-.-___--_-____--- A20 2.
Recommended publications
  • Souris R1ve.R Investigation
    INTERNATIONAL JOINT COMMISSION REPORT ON THE SOURIS R1VE.R INVESTIGATION OTTAWA - WASHINGTON 1940 OTTAWA EDMOND CLOUTIER PRINTER TO THE KING'S MOST EXCELLENT MAJESTY 1941 INTERNATIONAT, JOINT COMMISSION OTTAWA - WASHINGTON CAKADA UNITEDSTATES Cllarles Stewrt, Chnirmun A. 0. Stanley, Chairman (korge 11'. Kytc Roger B. McWhorter .J. E. I'erradt R. Walton Moore Lawrence ,J. Burpee, Secretary Jesse B. Ellis, Secretary REFERENCE Under date of January 15, 1940, the following Reference was communicated by the Governments of the United States and Canada to the Commission: '' I have the honour to inform you that the Governments of Canada and the United States have agreed to refer to the International Joint Commission, underthe provisions of Article 9 of theBoundary Waters Treaty, 1909, for investigation, report, and recommendation, the following questions with respect to the waters of the Souris (Mouse) River and its tributaries whichcross the InternationalBoundary from the Province of Saskatchewanto the State of NorthDakota and from the Stat'e of NorthDakota to the Province of Manitoba:- " Question 1 In order to secure the interests of the inhabitants of Canada and the United States in the Souris (Mouse) River drainage basin, what apportion- ment shouldbe made of the waters of the Souris(Mouse) River and ita tributaries,the waters of whichcross theinternational boundary, to the Province of Saskatchewan,the State of North Dakota, and the Province of Manitoba? " Question ,$! What methods of control and operation would be feasible and desirable in
    [Show full text]
  • Abandonment of Unaweep Canyon (1.4–0.8 Ma), Western Colorado: Effects of Stream Capture and Anomalously Rapid Pleistocene River Incision
    CRevolution 2: Origin and Evolution of the Colorado River System II themed issue Abandonment of Unaweep Canyon (1.4–0.8 Ma), western Colorado: Effects of stream capture and anomalously rapid Pleistocene river incision Andres Aslan1,*, William C. Hood2,*, Karl E. Karlstrom3,*, Eric Kirby4, Darryl E. Granger5,*, Shari Kelley6, Ryan Crow3,*, Magdalena S. Donahue3,*, Victor Polyak3,*, and Yemane Asmerom3,* 1Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, Colorado 81501, USA 2Grand Junction Geological Society, 515 Dove Court, Grand Junction, Colorado 81501, USA 3Department of Earth and Planetary Sciences, University of New Mexico, Northrop Hall 141, Albuquerque, New Mexico 87131, USA 4College of Earth, Ocean and Atmospheric Sciences, Oregon State University, 202D Wilkinson Hall, Corvallis, Oregon 97330, USA 5Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, USA 6New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801, USA ABSTRACT opment of signifi cant relief between adjacent through resistant Precambrian bedrock (Fig. 2). stream segments, which led to stream piracy. It has no major river at its base, and is currently Cosmogenic-burial and U-series dating, The response of rivers to the abandonment drained by two underfi t streams, East and West identifi cation of fl uvial terraces and lacus- of Unaweep Canyon illustrates how the Creeks, which drain the northeast and southwest trine deposits, and river profi le reconstruc- mode and tempo of long-term fl uvial incision ends of the canyon, respectively. Starting with tions show that capture of the Gunnison are punctuated by short-term geomorphic the Hayden Survey (Peale, 1877), geologists River by the Colorado River and abandon- events such as stream piracy.
    [Show full text]
  • 0 CC De L'aire À L'argonne 0 Foncier Portrait
    Communes membres : 0 Export_PDF de toutes les fiches A3 EPCI ortrait P Foncier Autrécourt-sur-Aire, Baudrémont, Beaulieu-en-Argonne, Beausite, Belrain, CC de l'Aire à Bouquemont, Brizeaux, Chaumont-sur-Aire, Les Hauts-de-Chée, Courcelles-en- Barrois, Courcelles-sur-Aire, Courouvre, Érize-la-Brûlée, Érize-la-Petite, Érize-Saint- Dizier, Èvres, Foucaucourt-sur-Thabas, Fresnes-au-Mont, Géry, Gimécourt, Ippécourt, Les Trois-Domaines, Lahaymeix, Lavallée, Lavoye, Levoncourt, Lignières- l'Argonne sur-Aire, Lisle-en-Barrois, Longchamps-sur-Aire, Louppy-le-Château, Neuville-en- Verdunois, Nicey-sur-Aire, Nubécourt, Pierrefitte-sur-Aire, Pretz-en-Argonne, Rembercourt-Sommaisne, Raival, Rupt-devant-Saint-Mihiel, Seigneulles, Thillombois, Seuil-d'Argonne, Vaubecourt, Ville-devant-Belrain, Villotte-devant- Louppy, Villotte-sur-Aire, Waly, Woimbey 0 Direction Régionale de l'environnement, de l'aménagement et du logement GRAND EST SAER / Mission Foncier Novembre 2019 http://www.grand-est.developpement-durable.gouv.fr/ 0 CC de l'Aire à l'Argonne Périmètre Communes membres 01/2019 47 ( Meuse : 47) Surface de l'EPCI (km²) 664,00 Dépt Meuse Densité (hab/km²) en 2016 EPCI 10 Poids dans la ZE Bar-le-Duc*(65,4%) Commercy(27,2%) Verdun(7,4%) ZE 43 Pop EPCI dans la ZE Bar-le-Duc(7,2%) Commercy(4,1%) Verdun(0,8%) Grand Est 96 * ZE de comparaison dans le portrait Population 2011 6 584 2016 6 579 Évolution 2006 - 2011 34 hab/an Évolution 2011 - 2016 -1 hab/an 10 communes les plus peuplées (2016) Les Hauts-de-Chée 739 11,2% Seuil-d'Argonne 518 7,9% 0 Rembercourt-Sommaisne
    [Show full text]
  • Modelling Surface Water-Groundwater Exchange
    Modelling Surface Water-Groundwater Exchange Evaluating Model Uncertainty from the Catchment to Bedform-Scale Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Reynold Chow, M.Sc., P.Geo aus Toronto, Kanada Tübingen 2019 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 21.05.2019 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr.-Ing. Wolfgang Nowak 2. Berichterstatter: Dr. rer. nat. Thomas Wöhling 3. Berichterstatter: Prof. Dr.-Ing. Olaf A. Cirpka Abstract My dissertation focuses on evaluating model uncertainties when numerically simulating surface water-groundwater (sw-gw) interactions at different scales. To do so, I mainly use HydroGeoSphere, a physically-based distributed finite element model that fully couples variably saturated subsurface flow with surface water flow. I evaluate three predominant model uncertainty types at three different scales of sw-gw interaction. For each of these investigations, I selected a corresponding study site. Firstly, I evaluate structural (conceptual) uncertainty from delineating baseflow contribution areas to gaining stream reaches, or stream capture zones, at the catchment-scale. I investigate how the delineated stream capture zone (in the Alder Creek watershed) can differ due to the chosen model code and delineation method (Chow et al. 2016). The results indicate that different models can calibrate acceptably well to the same data and produce very similar distributions of hydraulic head, but can produce different capture zones. The stream capture zone is highly sensitive to the post-processing particle tracking algorithm. Reverse transport is an alternative and more reliable approach that accounts for local-scale parameter uncertainty and provides probability intervals for the stream capture zone.
    [Show full text]
  • Die Tübinger Fauna Und Flora Heft 6, Mai 2007 (Berichtsjahr 2006)
    Die Tübinger Fauna und Flora Heft 6, Mai 2007 (Berichtsjahr 2006) Herausgegeben von der Naturkundlichen Arbeitsgemeinschaft Tübingen (NAG) ISSN 0945-6198 Die Tübinger Fauna und Flora Das Heft “Die Tübinger Flora und Fauna” (TüFF) ist der Informationsbrief der “Naturkundlichen Arbeitsgemeinschaft Tübingen” (NAG). Herausgeber: Naturkundliche Arbeitsgemeinschaft Tübingen (NAG) Schriftleitung: Rudolf Kratzer Anschrift der Dokumentationsstelle: Rudolf Kratzer Untere Sonnhalde 4 72070 Tübingen Tel. 07071/40495 E-Mail: [email protected] Kostenbeitrag: 5,- € (Druck und Versand) Umschlagszeichnung: Simon Kratzer, Tübingen Layout: Nils Anthes Druck: Copy & Druck Center Tübingen ISSN: 0945-6198 © Rudolf Kratzer, Tübingen 2007. Alle Rechte vorbehalten. KRATZER: Ornithologischer Jahresbericht Tübingen 2006 Ornithologischer Jahresbericht vom 01.01. - 31.12.2006 Zusammengestellt von Rudolf Kratzer Im Berichtsjahr wurden im Kreisgebiet 180 Vogelarten nachgewiesen. Ein Totalausfall hat- ten wir bei Seetauchern und Meeresenten. Auch der Limikolenzug war zu beiden Zugzeiten sehr schwach ausgeprägt. Während der Wintermonate (Januar / Februar) besuchten uns ein Großer Brachvogel (28. Nachweis) sowie acht Brandgänse (neues Maximum für den Kreis Tübingen). Im Frühjahr (März / April / Mai) konnte eine Bergente am Baggersee Queck beobachtet werden. Ein gehäuftes Auftreten im Vergleich zu den Vorjahren wurde bei durchziehenden Schwarzstörchen festgestellt. Seidenreiher, Rohrdommel und der 12. Nachweis einer Uferschnepfe zählten zu den Höhepunkten im Frühjahr. Während des außergewöhnlichen Einflugs von Gänsegeiern nach Mitteleuropa Ende Mai / Anfang Juni streifte auch ein Exemplar unser Gebiet. Als zweite Sensation und zugleich 2. Nachweis wurde ein Steinadler an der Kreisgrenze bei Talheim bemerkt. Es bleibt zu hoffen, dass beide Beobachtungen bei der zuständigen Seltenheitenkommission eingereicht werden. Im Sommer 2006 gelang der erste Brutnachweis einer Heidelerche nach 1984.
    [Show full text]
  • Topographic Controls on Divide Migration, Stream Capture, and Diversification in Riverine Life
    Earth Surf. Dynam., 8, 893–912, 2020 https://doi.org/10.5194/esurf-8-893-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Topographic controls on divide migration, stream capture, and diversification in riverine life Nathan J. Lyons1, Pedro Val2, James S. Albert3, Jane K. Willenbring4, and Nicole M. Gasparini1 1Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA 2Department of Geology, Federal University of Ouro Preto, Ouro Preto, Brazil 3Department of Biology, University of Louisiana at Lafayette, Lafayette, CA, USA 4Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA Correspondence: Nathan J. Lyons ([email protected]) Received: 16 October 2019 – Discussion started: 24 October 2019 Revised: 9 August 2020 – Accepted: 2 September 2020 – Published: 26 October 2020 Abstract. Drainages reorganise in landscapes under diverse conditions and process dynamics that impact biotic distributions and evolution. We first investigated the relative control that Earth surface process parameters have on divide migration and stream capture in scenarios of base-level fall and heterogeneous uplift. A model built with the Landlab toolkit was run 51 200 times in sensitivity analyses that used globally observed values. Large- scale drainage reorganisation occurred only in the model runs within a limited combination of parameters and conditions. Uplift rate, rock erodibility, and the magnitude of perturbation (base-level fall or fault displacement) had the greatest influence on drainage reorganisation. The relative magnitudes of perturbation and topographic relief limited landscape susceptibility to reorganisation. Stream captures occurred more often when the channel head distance to divide was low.
    [Show full text]
  • Die Stadt Haigerloch
    Statistisches Monatsheft Baden-Württemberg 5/2012 Land, Kommunen Im Blickpunkt: Die Stadt Haigerloch Reinhard Güll In einem weiteren Beitrag aus der Reihe „Im geschicktes und beherztes Verhandeln des Blickpunkt: Die Gemeinde …“ stellt das Statis­ damali gen Haigerlocher Pfarrers wurde der tische Landesamt einige Besonderheiten der Schlossberg nach Einnahme durch die ameri- Stadt Haigerloch anhand von ausgewählten kanischen Streitkräfte am Kriegsende vor einer Strukturdaten aus dem Landesinformations- Sprengung bewahrt. system Baden-Württemberg (LIS) vor. Beson- ders herausgehoben werden an dieser Stelle Im Zuge der Kreis- und Gemeindereform An- die Bevölkerungsentwicklung, die Wohn- und fang der 1970er-Jahre des letzten Jahrhunderts die Beschäftigtensituation. wurde der Landkreis Hechingen aufgelöst und Reinhard Güll ist Büroleiter die Stadt Haigerloch dem Zollernalbkreis an- der Abteilung „Informati- gegliedert. Die bis dahin selbstständigen Ge- onsdienste, Veröffentli- chungswesen, sozial- und meinden Stetten bei Haigerloch, Weildorf, Hart, regionalwissenschaftliche Analysen“ im Statistischen Die Stadt Haigerloch liegt nordwestlich der Bittelbronn, Trillfingen, Bad Imnau, Gruol und Landesamt Baden-Würt- Schwäbischen Alb im Tal der Eyach im nord- Owingen wurden anlässlich dieser Gebiets- temberg. westlichen Zipfel des Zollernalbkreises und reform in die Stadt Haigerloch eingemeindet. direkt an der Grenze zum Landkreis Freuden- In regionaler Typisierung ist Haigerloch eine stadt. Das steile Muschelkalktal der Eyach bildet Einheitsgemeinde. gerade hier zwei Schlingen, weshalb die Stadt von alteingesessenen Bürgern auch gerne als In Haigerloch wird der öffentliche Nahverkehr das „Felsenstädtchen“ bezeichnet wird. Da es durch Busse des Verkehrsverbundes Neckar- in der Gegend von Haigerloch sehr viel wild- Alb-Donau gewährleistet. Die bestehende wachsenden Flieder gibt, wird die Stadt auch häufig das „Fliederstädtchen“ genannt. S Lage der Stadt Haigerloch Erstmals urkundlich erwähnt wurde Haigerloch 1095 anlässlich einer in der dortigen Burg voll- zogenen Schenkung.
    [Show full text]
  • VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION in the CRETACEOUS Mcdermott MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO
    VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION IN THE CRETACEOUS McDERMOTT MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO Colleen O’Shea A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August: 2009 Committee: James Evans, advisor Kurt Panter, co-advisor John Farver ii Abstract James Evans, advisor Volcanic processes during and after an eruption can impact adjacent fluvial systems by high influx rates of volcaniclastic sediment, drainage disruption, formation and failure of natural dams, changes in channel geometry and changes in channel pattern. Depending on the magnitude and frequency of disruptive events, the fluvial system might “recover” over a period of years or might change to some other morphology. The goal of this study is to evaluate the preservation potential of volcanic features in the fluvial environment and assess fluvial system recovery in a probable ancient analog of a fluvial-volcanic system. The McDermott Member is the lower member of the Late Cretaceous - Tertiary Animas Formation in SW Colorado. Field studies were based on a southwest-northeast transect of six measured sections near Durango, Colorado. In the field, 13 lithofacies have been identified including various types of sandstones, conglomerates, and mudrocks interbedded with lahars, mildly reworked tuff, and primary pyroclastic units. Subsequent microfacies analysis suggests the lahar lithofacies can be subdivided into three types based on clast composition and matrix color, this might indicate different volcanic sources or sequential changes in the volcanic center. In addition, microfacies analysis of the primary pyroclastic units suggests both surge and block-and-ash types are present.
    [Show full text]
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]
  • Stream Channel and Vegetation Monitoring Reportreport,,,, 2005 Through 2008
    Resurrection Creek Stream and Riparian Restoration Project Stream Channel and Vegetation Monitoring ReportReport,,,, 2005 through 2008 USDA Forest Service Chugach National Forest January 2009 Resurrection Creek Restoration Monitoring Report January 2009 Resurrection Creek Stream and Riparian Restoration Project Stream Channel and Vegetation Monitoring Report 2005 through 2008 USDA Forest Service Chugach National Forest Seward Ranger District Bill MacFarlane, Chugach National Forest Hydrologist Rob DeVelice, Chugach National Forest Ecologist Dean Davidson, Chugach National Forest Soil Scientist (retired) January 2009 1 Resurrection Creek Restoration Monitoring Report January 2009 Summary______________________________________________________________ The Resurrection Creek Stream Restoration project was implemented in 2005 and 2006, with project area revegetation continuing through 2008. Stream channel morphology and vegetation have been monitored in 2005, 2006, 2007, and 2008. This report compiles the 2008 data and summarizes the 4 years of monitoring data and the short-term response of the project area to the restoration. Each of the project objectives established prior to the implementation of this project were fully or partially accomplished. These included variables that quantify channel pattern, channel profile, side channels, aquatic habitat, and riparian vegetation. While the target values may not have been met in all cases, the intent of each objective was met through restoration. The response of the project area in the 3 years following restoration represents the short- term response to restoration. While numerous changes can occur in this period as the morphology and vegetation adjusts to the new conditions, no major channel changes have occurred on Resurrection Creek or its side channels, and vegetation growth in the riparian area has occurred as expected.
    [Show full text]
  • Reconstruction of Glacial Lake Hind of Southwestern
    Journal of Paleolimnology 17: 9±21, 1997. 9 c 1997 Kluwer Academic Publishers. Printed in Belgium. Reconstruction of glacial Lake Hind in southwestern Manitoba, Canada C. S. Sun & J. T. Teller Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 Received 24 July 1995; accepted 21 January 1996 Abstract Glacial Lake Hind was a 4000 km2 ice-marginal lake which formed in southwestern Manitoba during the last deglaciation. It received meltwater from western Manitoba, Saskatchewan, and North Dakota via at least 10 channels, and discharged into glacial Lake Agassiz through the Pembina Spillway. During the early stage of deglaciation in southwestern Manitoba, part of the glacial Lake Hind basin was occupied by glacial Lake Souris which extended into the area from North Dakota. Sediments in the Lake Hind basin consist of deltaic gravels, lacustrine sand, and clayey silt. Much of the uppermost lacustrine sand in the central part of the basin has been reworked into aeolian dunes. No beaches have been recognized in the basin. Around the margins, clayey silt occurs up to a modern elevation of 457 m, and ¯uvio-deltaic gravels occur at 434±462 m. There are a total of 12 deltas, which can be divided into 3 groups based on elevation of their surfaces: (1) above 450 m along the eastern edge of the basin and in the narrow southern end; (2) between 450 and 442 m at the western edge of the basin; and (3) below 442 m. The earliest stage of glacial Lake Hind began shortly after 12 ka, as a small lake formed between the Souris and Red River lobes in southwestern Manitoba.
    [Show full text]
  • Johnson Creek Restoration Project Effectiveness Monitoring
    Bureau of Environmental Services • City of Portland Johnson Creek Restoration Projects Effectiveness Monitoring Reporting on data collected from 1997 through 2010 DECEMBER 2012 Dan Saltzman, Commissioner Dean Marriott, Director Dan Saltzman, Commissioner • Dean Marriott, Director Acknowledgements Implementation of the effectiveness monitoring program for restoration projects in the Johnson Creek Watershed has drawn on the expertise, support, and dedication of a number of individuals. We thank them for making this report possible. City of Portland, Environmental Services Staff Jennifer Antak, Johnson Creek Effectiveness Monitoring Program Lead Sean Bistoff Trevor Diemer Mathew Dorfman Steven Kass Theophilus Malone Chris Prescott Gregory Savage Wendy Sletten Maggie Skenderian Ali Young Supporting Organizations and Consultants Oregon Watershed Enhancement Board Salmon River Engineering ‐ Janet Corsale, PE CPESC Portland State University ‐ Denisse Fisher Contents Introduction .........................................................................................................................1 Johnson Creek Overview ...................................................................................................1 Project Effectiveness Monitoring Program....................................................................12 Overview ........................................................................................................................12 Monitoring Methods.....................................................................................................13
    [Show full text]