Chapter 4 Project Options 4 Project Options

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Project Options 4 Project Options SECOND SCHEDULE EIA FOR THE PROPOSED LOGGING AND OIL PALM PLANTATION AT PT 11675 (854.31 HECTARES) IN MUKIM KERATONG DISTRICT OF ROMPIN, PAHANG DARULMAKMUR CHAPTER 4 PROJECT OPTIONS 4 PROJECT OPTIONS The aim of this project is to bring development and economic benefit to the State of Pahang, thus the Project Options as in Build-Out and No-Build Options were also given due consideration as required in the EIA Guidelines. 4.1 SITE OPTION The selection of this proposed project site is based on the economic need for converting the land to a land use with economic value by planting palm oil trees which can generate revenue to the state. Department of Forestry Pahang State through a letter dated 24th July 2018 with reference number PHN.PHG.100.21/4/11/643 (5) has granted an approval to APSB to develop this 854.31 ha with oil palm plantation projects. Soil categories for this site which is Rengam Series and Durian Series shows that this area are suitable for palm oil plantation based on “Panduan Mengenali Siri-Siri Tanah Utama Di Semenanjung Malaysia published by Ministry of Agriculture Malaysia”, 2008. In addition into that, this site which was licensed in 2006 is considered as Kawasan Sudah Kerja. Thus no other site is available to be developing as oil palm plantation. 4.2 PROJECT OPTIONS 4.2.1 Build-Out Option The advantages from Build-Out Option would mean that the project will materialise as planned and all the resource potential of the field can be increased and will generate economic benefits to sustain the oil palm industries and revenue to the country. Meanwhile, the oil palm industry is one of the major contributors to Malaysia’s economy and this project will ensure the continued economic growth of the country and the well- being of the people and the state. Besides, this project also will provide job opportunities to the people living in the area and the villagers can contribute in this project as workers or providing food supply or machineries hence enabling them to increase their household income. As for the disadvantages from this Built-Out Option, the opening of new plantation area will threat on species survival through deforestation. In addition, the removal of acres of rainforest threatens the biodiversity in these finely balanced ecosystems, along with the habitat of species. Meanwhile, the removal of the important structures allows heavy rains to wash away nutrient-rich soil together with excessive fertilizers and pesticides that will be used during the operation phase of this project. Hence this will affect the soil and water quality. However the disadvantages in relation to soil erosion, fertiliser and pesticides application can be minimize through an efficient mitigation plan. 4-1 SECOND SCHEDULE EIA FOR THE PROPOSED LOGGING AND OIL PALM PLANTATION AT PT 11675 (854.31 HECTARES) IN MUKIM KERATONG DISTRICT OF ROMPIN, PAHANG DARULMAKMUR 4.2.2 No-Build Option The No-Build Option would give advantages in term of environment aspects because the area will not be disturb hence the forest tree and wildlife will be maintained. Since there is no oil palm project there, the soil and water quality also will not be affected. Failure of implementing this project would basically reduce the oil palm based revenue which is a high revenue sources for the nation as Malaysia is one of the palm oil exporters. In addition this site will remain as abandoned area after been left as Kawasan Sudah Kerja (KSK). In summary, non-implementation of the project will affect the revenue and consequently loss of additional economic and other benefits to the State Government, including the following: - a) Loss of employment opportunities related to the planting and operational activities of the project; b) Loss of revenue to the Federal Government of Malaysia and the Pahang State Government; and c) Loss of spin-off economic/business opportunities for oil palm industries, suppliers of materials and equipment, and oil palm service providers. 4.3 TECHNOLOGY OPTION During logging and site clearing activities, equipment and vehicles to be used are tractor, bulldozers, excavators and lorry. Chainsaw are used for cutting the trees during clearing activities. Planting methods will be in line with the modern technique and common practices for palm oil plantations in Malaysia which includes field lining and holing, culling, transplanting and cover crop establishment. Standards established by MPOB shall be adopted for a successful and healthy plantation in order to produce quality fruits. Other applicable technology options are: Eco-friendly farming practices such as reducing pesticide use and more efficient use of irrigation systems. Soil erosion should be minimized through good agricultural methods. Control the rate, manner and type of chemicals such as pesticides and fertilizers. Land cover planting to reduce erosion along river banks and drains. 4.4 RAW MATERIALS OPTION Raw materials options include nursery plants, cover crop, fertilizer and pesticide. Nursery Plants The young nursery plants will be transported in polybags. The number of plants to be planted is estimated to be approximately 60 trees per acre. Planting will be carried out manually and excavators will be used, but only when necessary. After the young trees have been planted the unused polybags will be buried onsite. Cover Crop Cover crop which is known as Mucuna Bracteata was selected for the plantation. This type of species was suggested as the cover crop for oil palm tree. It is a leguminous plant which is best known as a nitrogen regulating plant for agro-ecosystems including rubber trees, oil palm, citrus and coconut plantations. Cover crop helps to cover and shield the soil from weeds or plants, as well as providing rapid growth for existing agricultural crops, prevent soil erosion, and provide nitrogen fixation. 4-2 SECOND SCHEDULE EIA FOR THE PROPOSED LOGGING AND OIL PALM PLANTATION AT PT 11675 (854.31 HECTARES) IN MUKIM KERATONG DISTRICT OF ROMPIN, PAHANG DARULMAKMUR The main functions of such ground cover are to protect the soil from erosion and enrich the organic matter; the latter improves the soil structure leading to better aeration, infiltration and retention of moisture. Moreover, it has potential to increase soil fertility and health through the processes of natural soil fertilization and aeration. The planting method is by using seedling bought from nurseries outside of the site most probably from Rompin or within Pahang/Johor. Fertilizer and Pesticide Other raw materials are fertilizers and pesticides. The application will be carried out as a normal maintenance practice for a healthy grows of the plant. The usual practice of fertilizer usage is by once in every three (3) months. The most common of fertilizer used will have N:P:K of 15:15:15. The amount of each fertilizer was specified. For the first year there will be 200 g, for the second year is 0.5 kg and the third year will be 1 kg. Nitrogen will help plant foliage to grow strong, phosphorous helps roots and flowers to grow and develop while potassium (Potash) is important for the overall plant health. For pesticides, the recommended type is Roundup which is based of Glyphosate by using mechanical pump. Roundup (Glyphosphate) was chosen due to its properties as a highly effective weed-killer, safe to users and minimal impact to the environment. 4.5 PLANTATION METHOD OPTIONS Planting pattern and terracing needs are usually determined by the degree of slope. The project area is in undulating terrain between 80 m and 280 m above mean sea-level. About 81.0% (1,718.36 ha) of the area lies on the slope steepness less than 15°. In order to facilitate mechanization and to improve soil or water conservation, mechanical terrace- paths will be constructed in between palm rows along the contour. The planting options will be considered depending on the slope degree. 4.6 LAYOUT OPTIONS The layout will consider the best drainage for the plantation and minimize alteration of existing drainage pattern. Terracing where required will have to be considered and minimal cutting is to be implemented to reduce erosion. As for access road within the site, it will use the existing earth road and will be regularly maintained to allow for proper access for the logging and plantation. Type of the off road developed will be earth road made from laterite material. Laterite is a highly weathered material, rich in secondary oxides of iron, aluminum, or both. For drainage systems, shallow drains can reduce excess water and maintain the high groundwater table. Oil palm development stage No. of oil palm rows between two parallel field drains Immature (1 to 3 years old) >8 Young mature (4 to 7 years old) 8 Fully mature (>8 years old) 4 Source: Guidance on Drainage Construction by MPOB (2011) • Optimal water level management at 50-70 cm (in collection drain) results in a yield potential of 25-30 mt FFB/ha/yr. It is important to ensure that this water level is present in all collection drains; • A flooded field will hinder all estate operations and add to methane/nitrogen oxide emissions; 4-3 SECOND SCHEDULE EIA FOR THE PROPOSED LOGGING AND OIL PALM PLANTATION AT PT 11675 (854.31 HECTARES) IN MUKIM KERATONG DISTRICT OF ROMPIN, PAHANG DARULMAKMUR A flooded field will hinder all estate operations and add to methane/nitrogen oxide emissions; Weirs or water control structures with over-flows should be installed at strategic locations along the main and collection drains to achieve this water-level; and The number of weirs will depend on the topography. They are best installed at every 20 cm drop in elevation. Soil bags and logs can be used to construct such weirs.
Recommended publications
  • Effect of Cover Crops on Weed Community and Oil Palm Yield
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 13–541/2014/16–1–23–31 http://www.fspublishers.org Full Length Article Effect of Cover Crops on Weed Community and Oil Palm Yield Batoul Samedani1*, Abdul Shukor Juraimi1, Sheikh Awadz Sheikh Abdullah1, Mohd Y. Rafii 2, Anuar Abdul Rahim3 and Md. Parvez Anwar2 1Department of Crop Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia 2Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia 3Department of Land Management, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia *For correspondence: [email protected] Abstract Sustainable weed management in oil palm plantation has been a challenge now a day. Weed suppression by cover cropping is considered as a viable alternative to herbicidal control. This study0020was, therefore, conducted during 2010-2012 in a Malaysia oil palm plantation to characterize oil palm weed communities and evaluate oil palm yield under four different perennial cover-crop systems. Experimental treatments included four different cover crop combinations such as Axonopus compressus, Calopogonium caeruleum + Centrosema pubescens, Mucuna bracteata, Pueraria javanica + Centrosema pubescens, and herbicidal control by glufosinate-ammonium and weedy control. Weed composition in the un-weeded treatment was different from that of cover crop treatments. The un-weeded treatment favored Paspalum conjugatum and A. compressus as the dominant species. In the A. compressus and C. caeruleum + C. pubescens treatments the associated weed species with highest dominance was Asystasia gangetica, while the weeds A. compressus and A. gangetica were associated with M. bracteata and P. javanica + C. pubescens treatments. In the weeded treatment receiving 6 sprays of glufosinate- ammonium over the two years, B.
    [Show full text]
  • General Discusion
    IDENTIFICATION OF NITROGEN FIXING MICROSYMBIONTS FROM Mucuna bracteata NODULES SALWANI BINTI SHAFFIE UNIVERSITI SAINS MALAYSIA APRIL 2011 IDENTIFICATION OF NITROGEN FIXING MICROSYMBIONTS FROM Mucuna bracteata NODULES by SALWANI BINTI SHAFFIE Thesis submitted in fulfillment of the requirement for the degree of Master of Science APRIL 2011 ACKNOWLEDGEMENTS First and foremost to my supervisor, Dr. Amir Hamzah b. Ahmad Ghazali, I have only my sincerest gratitude for your endless supervision, counsel and encouragement. Thank you for your spent time and such patience with me over the years. My special thanks to Prof Nazalan Najimudin for your help, support and great idea especially for helping me in molecular part. To Kak Mun, Kak Ai, Kak Lin, Kak Wan, Ika, Poi Leng and Fatin, thank you for all those time you spent for supporting, teaching and helping me to finish my lab works and also complete the thesis. I enjoy being with you guys especially when we managed to catch the sneaky rats! My special dedication to Dr Sam Allen, for giving me a hand in finishing my thesis writing. Also not forgotten, to Kak Nurul Huda for cleaning my lab and your kind heart for lending me the chemicals and lab apparatus. From the bottom of my heart, thanks to all my friends throughout my life in USM for supporting me directly and indirectly. Last but not least, my deepest gratitude to my family especially my husband, Afdzal b. Nazri and wonderful baby, Syafinaz bt Afdzal. My deepest thanks also to my parents, Shaffie b. Isa and Sharifah Haryati bt. Sharif Jaafar and parents in law, Nazri b.
    [Show full text]
  • Smallholder Oil Palm: Space for Diversification?
    Smallholder oil palm: space for diversification? WaNuLCAS model-based exploration of the environmental and economic impact of intercropping scenarios for Indonesian smallholders MSc Thesis Plant Production Systems WaNuLCAS 4.3 Dienke Stomph January 2017 Smallholder oil palm: space for diversification? MSc Thesis Plant Production Systems Name Student: Dienke Stomph Registration Number: 930507808100 Study: MSc Organic Agriculture – Specialization Agroecology Chair group: Plant Production Systems (PPS) Code Number: PPS-80436 Date January, 2017 Supervisors: Meine van Noordwijk Ni’matul Khasanah Tom Schut Examiner: Maja Slingerland Disclaimer: this thesis report is part of an education program and hence might still contain (minor) inaccuracies and errors. Correct citation: Stomph, D., 2017, Smallholder oil palm: space for diversification?, MSc Thesis Wageningen University, 78 p. Contact [email protected] for access to data, models and scripts used for the analysis 2 ACKNOWLEDGEMENT Firstly, I would like to express my sincere gratitude to supervisors Meine van Noordwijk and Ni’matul Khasanah for their continuous support, assisting me, challenging me and allowing for independence. I would also like to thank Tom Schut for his helpful remarks, which were of considerable support in improving the structure of this final report. Furthermore, the fruitful discussions with people in my close surroundings at Wageningen University and the World Agroforestry Centre scientists are gratefully acknowledged. FOREWORD This MSc. thesis report describes the model development and simulation of plot-level diversification scenarios for oil palm cultivation. The study zooms in to the Indonesian oil palm context, with as a focal point smallholders on Sumatra. The report first lists the research aim and objective.
    [Show full text]
  • Microbial Olefin Production – Towardsa Biorefinery Approach
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Chemie Biogener Rohstoffe MICROBIAL OLEFIN PRODUCTION – TOWARDS A BIOREFINERY APPROACH Michael Emil Loscar Vollständiger Abdruck von der promotionsführenden Einrichtung Campus Straubing für Biotechnologie und Nachhaltigkeit der Technischen Universitat München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Magnus Fröhling Prüfer der Dissertation: 1. Prof. Dr. Volker Sieber 2. Prof. Dr. Bastian Blombach Die Dissertation wurde am 16.10.2019 bei der Technischen Universität München eingereicht und durch die promotionsführende Einrichtung Campus Straubing für Biotechnologie und Nachhaltigkeit am 10.02.2020 angenommen. dummy TO ALL LOVED ONES, ESPECIALLY TO MY TWINS JANNIS AND KILIAN „YESTERDAY´S the past, The Family Circus TOMORROW`S the future, TODAY is a . GIFT ! That`s why it´s called: The PRESENT“ by Bil Keane Zusammenfassung In Zeiten des Klimawandels wird fieberhaft nach Alternativen zu fossilen Rohstoffen gesucht. Hierbei liegt ein Fokus auf nachwachsenden Rohstoffen. Die Hof- Bioraffinerie soll die gasförmigen Chemikalien Ethylen, Propylen und Isopren aus Silage bereitstellen. Hierzu sollen diese Chemikalien mittels Fermentation hergestellt werden. Die mikrobielle Bildung von Ethylen wurde bisher von drei Substraten beschrieben: (1) α-Ketoglutarat aus dem Zitratzyklus, (2) 1-Aminocyclopropan-1-Carbonsäure (ACC) aus dem Yang-Zyklus und (3) aus 2-keto-4-Methylthio Buttersäure (KMBA). Allen Stoffwechselwegen gemein ist eine suboptimale Stöchiometrie von Glukose ausgehend. Um wirtschaftliche Mengen bereitzustellen bedarf es der Erforschung neuer Stoffwechselwege zum Ethylen. Ziel der vorliegenden Arbeit ist die Suche nach stöchiometrisch optimaleren Wegen und enzymatischen Reaktionen. Hierzu wurde die lehrstuhlinterne Stammsammlung mittels headspace Gaschromatographie nach ethylenogenen und propylenogenen Mikroorganismen durchmustert.
    [Show full text]
  • Mucuna Bracteata) Cover Crop
    12 KKU Researeh Journal KKU Research Journal 2016; 21(3) : 12 - 27 http://www.tci-thaijo.org/index.php/kkurj/index 3KRWRV\QWKHWLFHI¿FLHQF\RI36,,DQGJURZWKRI\RXQJUXEEHU tree (Hevea brasiliensis) planted with Mucuna (Mucuna bracteata) cover crop Anoma Dongsansuk 1,2*, Supat Isarangkool Na Ayutthaya1,2, Naruemol Kaewjumpa1,2, and Anan Polthanee1* 1Department of Plant science and Agricultural resources, Faculty of Agriculture, Khon Kaen University, Thailand, 40002 2Knowledge development of Rubber tree in Northeastern group, Khon Kaen University, Thailand, 40002 3Department of Biology, Faculty of Science, Khon Kaen University, Thailand, 40002 *Corresponding author, e-mail: [email protected] and [email protected] Abstract Mucuna bracteata is a legume crop recommended for use as a cover crop to plant EHWZHHQURZVRI\RXQJUXEEHUWUHHVLQDQLQWHUFURSSLQJV\VWHP,WKDVPDQ\DGYDQWDJHV as a cover crop including its rapid growth rate, deep root system, drought tolerance and KLJKQLWURJHQ¿[DWLRQUDWH+RZHYHUWKHUHLVOLWWOHLQIRUPDWLRQUHJDUGLQJWKHSK\VLRORJLFDO UROHVSDUWLFXODUO\LQUHJDUGVWRHQKDQFHPHQWRISKRWRV\QWKHWLFHI¿FLHQF\DQGJURZWK performance, in which M. bracteata plants provide for the young rubber trees. 3KRWRV\QWKHVLVSDUDPHWHUVLQFOXGLQJ3KRWRV\VWHP,,HI¿FLHQF\FKORURSK\OOFRQWHQWWKH greenness or relative chlorophyll content of leaves (SPAD values) and growth of two-year-old rubber trees planted with or without M. bracteata were evaluated. The rubber plantation was situated at Khon Kaen University (NE Thailand) and the measurements were performed during the dry (March)
    [Show full text]
  • Litter Accumulation from Mucuna Bracteata Cover Crop and Its Effects on Some Soil Chemical Properties in Rubber Plantations
    Journal of the Rubber Research Institute of Sri Lanka, (2010) 90, 49-57 Litter accumulation from Mucuna bracteata cover crop and its effects on some soil chemical properties in rubber plantations Surani Chathurika*, Lalani Samarappuli** and Ranjith B Mapa* * Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya **Department of Soils and Plant Nutrition, Rubber Research Institute, Agalawatta Received 26 November 2009; Accepted 25 November 2010 Abstract Young rubber plants do not provide sufficient protection to the soil, mainly due to the poor canopy cover. Mucuna bracteata (MB) has been introduced recently as a potential cover crop for young rubber plantations. This study aimed to assess the litter accumulation from MB and its impact on soil properties under rubber. In this study sampling was done from different age groups of rubber (1 to 8 years) in two different rubber growing soil series, namely Boralu and Homagama series. Soil samples were collected under three different ground cover conditions, under MB (UM), naturals (NA) and weed free circle (WF) at two soil depths; D1 (0-15 cm) and D2 (15-30 cm). The Experimental design was a fully nested ANOVA with three replicates. Soil organic C, total sol N, available P and K were measured using standard methods. Litter accumulation of MB was significantly high in five years old plantation. Mean soil organic carbon was significantly different between two soil series and at different locations in a rubber plantation. Higher soil N contents (0.22- 0.37%) were observed in four, five and six year’s old rubber plantations. Soil K content was significantly different between age of rubber plantation and at different locations in a rubber plantation.
    [Show full text]
  • Preliminary Taxonomic Study on Homestead Flora of Four Districts of Bangladesh: Magnoliopsida
    Bangladesh J. Plant Taxon. 27(1): 37‒65, 2020 (June) © 2020 Bangladesh Association of Plant Taxonomists PRELIMINARY TAXONOMIC STUDY ON HOMESTEAD FLORA OF FOUR DISTRICTS OF BANGLADESH: MAGNOLIOPSIDA GOUTAM KUMER ROY* AND SALEH AHAMMAD KHAN Department of Botany, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh Keywords: Homestead flora; Magnoliopsida; Threatened Species; Four Districts; Bangladesh. Abstract This study has documented the contemporary taxonomic information on the species of the class Magnoliopsida (Dicotyledons) extant in the homestead areas of Dhaka, Gazipur, Manikganj and Tangail districts of Bangladesh. In these areas, the Dicotyledons are comprised of total 455 species under 302 genera belonging to 78 families. Fabaceae with 41 species is the largest family and Solanum and Lindernia are the largest genera. Total 238 species are herbs followed by 129 species of trees and 88 species of shrubs. Total 332 species are economically useful. The composition and distribution of the species of this plant group are remarkably variable in the homestead areas of the four districts. The current status of seven threatened species viz., Abroma augusta, Andrographis paniculata, Aniseia martinicensis, Mucuna bracteata, Pterocarpus santalinus, Rauvolfia serpentina and Tournefortia roxburghii, included in the Red Data Book of Bangladesh and extant in the study area, has been evaluated and described. This study has identified some threats to the homestead flora and formulated some recommendations for the conservation of threatened and declining native plant species of the study area. The data provided by this study will serve as an important baseline to track the trend of changes in the floristic composition and diversity and sustainable development of plant genetic resources in the homesteads of the study area.
    [Show full text]
  • Temperature Effect Investigation Toward Peat Surface CO2
    Journal of Agricultural Science and Technology B 5 (2015) 170-183 doi: 10.17265/2161-6264/2015.03.002 D DAVID PUBLISHING Temperature Effect Investigation toward Peat Surface CO2 Emissions by Planting Leguminous Cover Crops in Oil Palm Plantations in West Kalimantan Arifin1, Suntoro Wongso Atmojo2, Prabang Setyono3 and Widyatmani Sih Dewi4 1. Environmental Engineering Department, Tanjungpura University, Pontianak 78124, Indonesia 2. Agriculture Faculty, Sebelas Maret University, Surakarta 57126, Indonesia 3. Environmental Science Postgraduate Program, Sebelas Maret University, Surakarta 57126, Indonesia 4. Agriculture Postgraduate Program, Sebelas Maret University, Surakarta 57126, Indonesia Abstract: The aim of this research was to know the impact of planting leguminous cover crops (LCCs) of Mucuna bracteata and Calopogonium mucunoides in oil palm plantation on peatland on reducing CO2 emissions. Atmosphere temperature, peat surface temperature, in-closed chamber temperature and peat surface CO2 fluxes were monitored on two adjacent experimental plots. The first experimental plot was on the newly opened peat surface (NOPS) and another was on the eight years planted oil palm land (EPOL). The closed chamber techniques adopted from International Atomic Energy Agency (IAEA) (1993) were implemented to trap CO2 emissions emitted from 24 treatment plots at the 1st, 3rd and 6th months observations. Average CO2 fluxes observed on no LCCs plots in the NOPS site were 61.25 ± 8.98, 33.76 ± 2.92 and 33.75 ± 3.45 g/m2h , while in the EPOL site were 55.38 ± 15.95, 2 29.90 ± 5.32 and 27.70 ± 4.62 g/m h at the 1st, 3rd and 6th months monitoring, respectively.
    [Show full text]
  • Updated Nomenclature and Taxonomic Status of the Plants of Bangladesh Included in Hook
    Bangladesh J. Plant Taxon. 19(2): 173-190, 2012 (December) © 2012 Bangladesh Association of Plant Taxonomists UPDATED NOMENCLATURE AND TAXONOMIC STATUS OF THE PLANTS OF BANGLADESH INCLUDED IN HOOK. F., THE FLORA OF BRITISH INDIA: VOLUME-II 1 M. ENAMUR RASHID AND M. ATIQUR RAHMAN Department of Botany, University of Chittagong, Chittagong-4331, Bangladesh Keywords: J.D. Hooker; Flora of British India; Bangladesh; Nomenclature; Taxonomic Status. Abstract Sir Joseph Dalton Hooker in his second volume of the Flora of British India included a total of 2328 species in 416 genera under 28 natural orders (= families) of which 201 species in 104 genera under 20 natural orders are determined to have been recorded from the area now in Bangladesh. These taxa are listed with their updated nomenclature and taxonomic status as per ICBN following Cronquist’s system of plant classification. The current nomenclatural treatment revealed a total of 200 species in 109 genera under 25 families to be recognized from the area of Bangladesh. The recorded area and the name of specimen’s collector, as in the protologue of the Flora of British India, are also provided. Introduction The plants from the area of Bangladesh included in the Volume-I of the Flora of British India have recently been puiblished with updated nomenclature and taxonomic status as per ICBN (Rashid and Rahman, 2011). The present study deals with the similar treatment of the Volume II of the Flora of British India (1876-1879) which was compiled by J. D. Hooker with three different parts (IV-VI) published in 3 different dates.
    [Show full text]
  • Growth and Production of Oil Palm to Refer to Or to Cite This Work, Please
    biblio.ugent.be The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access. This item is the archived peer-reviewed author-version of: Growth and production of Oil Palm Verheye, W. In: Verheye, W. (ed.), Land Use, Land Cover and Soil Sciences. Encyclopedia of Life Support Systems (EOLSS), UNESCO-EOLSS Publishers, Oxford, UK. http://www.eolss.net To refer to or to cite this work, please use the citation to the published version: Verheye, W. (2010). Growth and Production of Oil Palm . In: Verheye, W. (ed.), Land Use, Land Cover and Soil Sciences . Encyclopedia of Life Support Systems (EOLSS), UNESCO-EOLSS Publishers, Oxford, UK . http://www.eolss.net GROWTH AND PRODUCTION OF OIL PALM Willy Verheye, National Science Foundation Flanders and Geography Department, University of Gent, Belgium Keywords : Agro-chemicals, estate, fresh fruit bunch, industrial plantations, land clearing, land management, oil palm, palm kernels, palm oil, pests. Contents 1. Introduction 2. Origin and Distribution 3. Botany 3.1 Cultivars and Classification 3.2 Structure 3.3 Pollination and Propagation 4. Ecology and Growing Conditions 4.1 Climate Requirements 4.2 Soil Requirements 5. Land and Crop Husbandry 5.1 Land Clearing 5.2 Planting and Land Management 5.3 Pests and Diseases 5.4 Crop Forecasting 5.5 Harvesting 6. Milling and Oil Processing 7. Utilization and Use 8.
    [Show full text]
  • Potential Use of Mucuna Bracteata As a Cover Crop for Coconut Plantations in the Low Country Intermediate Zone of Sri Lanka
    Journal of Food and Agriculture 2017, 10 (1 & 2): 26 - 34 DOI: http://doi.org/10.4038/jfa.v10i1-2.5210 Potential use of Mucuna bracteata as a Cover Crop for Coconut Plantations in the Low Country Intermediate Zone of Sri Lanka H.M.P.M. Herath1, H.M.I.K. Herath1,* and W.M. Ratnayake2 ABSTRACT plots had significantly lower bulk density, higher organic carbon content than the Cover crops provide a wide range of control and there was no significant bracteata ecological and environmental benefits. planted in three rows is the most suitable Mucuna bracteata is one of the leguminous planting method being able to give better creepers which has superior characteristics ground cover, lower soil bulk density and such as fast growth, high nitrogen fixation higher soil nitrogen than other treatments. ability, high biomass production, and free According to the results of the study, it can from pest and diseases. While this plant has be concluded that Mucuna bracteata could be recently been used as a cover crop in rubber well grown as a cover crop under coconut in plantations in the Wet Zone of Sri Lanka, it the Intermediate Zone of Sri Lanka. Also, it has not been tested under coconut cultivation can be suggested that Coconut with Mucuna in the Intermediate Zone. Therefore, this bracteata planted in three rows is the most study aimed to assess the suitability of suitable planting method being able to give Mucuna bracteata as a cover crop in coconut better ground cover, lower soil bulk density plantation in the Low Country Intermediate and higher soil nitrogen than other Zone of Sri Lanka.
    [Show full text]
  • Leguminous Ground Cover Mucuna Bracteata in Mature Rubber Plantations: Effect on Soil Ph and Organic Carbon
    Short Scientific Report Journal of Plantation Crops, 2015, 43(1):67-70 Leguminous ground cover Mucuna bracteata in mature rubber plantations: Effect on soil pH and organic carbon M.D. Jessy*, V.K. Syamala, A. Ulaganathan and A. Philip Rubber Research Institute of India, Kottayam-686 009, Kerala, India. (Manuscript Received: 17-07-14, Revised: 18-10-14, Accepted: 08-12-14) Keywords: Hevea brasiliensis, Mucuna bracteata, organic carbon, soil pH Acidification of agricultural soils is a global taken up with this objective. The effect of retaining concern, and despite increasing awareness about its Mucuna on soil organic carbon status and other causes and impact on crop productivity, the chemical properties was also studied. cultivated area under acid soils is steadily The study was conducted at three locations, increasing. Nitrogen addition in excess of one each in North Central, Central and South assimilation and storage by biota and organic matter Kerala. In each location, soil samples were and incomplete return of alkalinity of organic anions collected from adjacent 18-20 year old plantations to the soil cause acidity (Barak et al., 1997). Another with and without Mucuna bracteata as ground major factor leading to soil acidification is the cover. Each plantation was divided into eight imbalance in the uptake of cations over anions by blocks and composite soil samples (0-30 cm) were nitrogen fixing leguminous crops (Bolan et al., collected from each block for chemical analyses 1991). In areas of Australia where clover has been during August 2012 before post-monsoon fertilizer grown continuously for more than 30 years, the soil application.
    [Show full text]