Ultra-Short-Acting Beta Blockers Could Play Important Role in Minimizing Decatecholaminization

Total Page:16

File Type:pdf, Size:1020Kb

Ultra-Short-Acting Beta Blockers Could Play Important Role in Minimizing Decatecholaminization 12 ISICEM News Wednesday 21 March 2018 Issue 2 Ultra-short-acting beta blockers could play important role in minimizing decatecholaminization uring yesterday’s Amomed- evidence that perhaps we need a logical phenotype that can identify “Catecholaminergic vasopressors sponsored symposium little bit of sympathetic stimula- those patients who will benefit from may induce adverse cardiac events. D‘Decatecholaminization tion in our lives, but too much the drug. When it comes to using We need to think about the nega- What’s new?’, Matthias Heringlake, of a good thing becomes bad, beta-blockers for these patients, the tive side effects when using catecho- Professor of Anesthesiology at the and unfortunately once a patient single-center trial from Morelli et lamines and consider alternatives University of Lübeck, Germany becomes ill we then ply them with al. in patients with resistant septic – one possibility being vasopressin.” and Johann Knotzer, Head of the even more stimulation in the form shock showed that esmolol was Vasopressin works in the Department of Anesthesiology at of catecholamines.” effective in reducing heart rate to endothelium mainly through VI: Hospital Wels-Grieskirchen, Aus- “Alternatives include vasopres- target levels without an increase “Relative vasopressin deficiency tria, spoke about the role of ultra- sin, but the clinical trials conducted in adverse outcomes compared to backs up the rationale for early- short-acting beta blockers in sepsis, so far have not shown any differ- standard treatment, and that out- phase combinations of vasopres- and after cardiac surgery. ence in outcomes, although a recent comes, including time on vasopres- sin and norepinephrine in cardiac Managing septic shock remains post-hoc analysis of the VASST sors and mortality, were improved.2 surgery patients,” said Dr Knotzer. a significant therapeutic challenge. trial1 in Canada did suggest benefits “As a consequence, the UK “In the presence of constant mean Ultra-short-acting beta blockers in hypotensive patients not meeting Department of Health has funded a arterial pressure, norepinephrine can effectively control the heart the Sepsis-3 shock criteria,” said multicenter study called STRESS-L, doses may be minimized.” rate and may have other significant Professor Singer. using landiolol to treat patients in The VANCS trial3, published in non-cardiac benefits, the ISICEM “The challenge is to find a bio- septic shock, which is now starting 2017, investigated early applica- audience heard. to recruit,” said Profes- tion of vasopressin in hypotensive Introducing the sym- sor Singer. “Alternatives cardiac surgery patients. This was a posium was session chair, “Despite [the fact that] we include vasopressin, but randomized double-blind controlled Mervyn Singer, Professor of the clinical trials conducted trial with 330 patients present- Intensive Care Medicine at don’t have the data yet so far have not shown any ing hypotension following heart University College London, for landiolol’s effectiveness difference in outcomes, surgery. Severe hypotension was UK. Professor Singer noted although the recent VANCS defined as mean arterial pressure that although norepinephrine in sepsis patients, it is not trial3 in Canada did find <65 mmHg and a cardiac index of is the standard treatment for some benefits in a subgroup >2.2 l/min/m2. Half of the patients low blood pressure in septic unlikely that it will be even of patients.” This trial were randomly assigned to receive shock, it is associated with more effective than esmolol was discussed in greater either first-line vasopressin (0.01 multiple negative effects detail by Dr Knotzer during to 0.06 IU/min), and the other half too. These include tachyar- since it has less negative the session. first-line norepinephrine (10 to 60 rhythmias, digital ischemia, effect on blood pressure.” Dr Knotzer addressed μg/min). The primary endpoint was immunosuppression, stimula- the audience about a combination of mortality and tion of bacterial growth and Matthias Heringlake catecholamine toxicity, ex- severe complications. virulence, and increases in plaining that, to avoid this, “The study showed that acute myocardial stress, oxygen norepinephrine shouldn’t kidney failure and atrial fibrillation consumption and damage. Mortal- be given at high doses, nor for long occur significantly more often in ity rises with norepinephrine dose periods of time. norepinephrine patients than vaso- and this may not be simply related Speaking to ISICEM News pressin patients (49% vs 32% to illness severity. ahead of the session, Dr Knotzer [p = 0.0014]),” Dr Knotzer Professor Singer said: “I’m a said the severity and duration of explained. VANCS also found a believer – and there is quite a lot hypotension in cardiac anesthesia is significantly lower rate of atrial of pre-clinical and some clinical associated with a negative outcome: fibrillation in the vasopressin group or intensive 2 ISICEM Wednesday 2018.indd 12 20/03/2018 15:44 Issue 2 Wednesday 21 March 2018 ISICEM News 13 (63.8% vs 82.1%; p = 0.0004) and advantages of using landiolol is that References shorter mean length of hospital stay it has only minimal effects on blood 1. Russell JA, Lee T, Singer J, et al. Vasopressin and Septic Shock Trial (VASST) Group. The (10 vs 13 days; p=0.0016). pressure, even in patients who are Septic Shock 3.0 Definition and Trials: A “The VANCS trial is a promis- hemodynamically compromised, and Vasopressin and Septic Shock Trial Experience. ing and very interesting trial, with can be used to titrate the heart rate Crit Care Med. 2017;45:940–8. 2. Morelli A, Ertmer C and Westphal M. Effect good results,” said Dr Knotzer. and optimize stroke volume – an of heart rate control with esmolol in hemo- “We know that vasopressin has a important physiological regulator. dynamic and clinical outcome in patients positive effect in cardiac surgery “Despite [the fact that] we don’t with septic shock. A randomised Controlled trial. JAMA.2013;310(16):1683-1691. patients according to a decrease have the data yet for landiolol’s 3. Hajjar L, Vincent J, Galas F, et al. Vasopres- in atrial fibrillation and in renal effectiveness in sepsis patients, it sion versus Norepinephrine in Patients with replacement therapy. Furthermore, is not unlikely that it will be even Vasoplegic Shock After Cardiac Surgery; The VANCS Randomized Controlled Trial. in the VANCS trial, vasopres- more effective than esmolol since Anesthesiology 1 2017, Vol.126, 85-93. sin was tested as a verum against it has less negative effect on blood norepinephrine, and not on top of pressure,” he said. “Additionally, Additional information norepinephrine. However, no ben- based on the experience in patients • Tamura T, Yokoyama M. ‘Prevention of atrial fibrillation after cardiac surgery using low efit in outcome was detected. The undergoing cardiac surgery, and dose landiolol. A systematic review and meta- door is open for a large randomized in patients with heart failure, analysis. J. Clinical Anesth 2017 Nov: 42:1-6. • Nagai R, Kinugawa K, Inoue H, Atarashi H, controlled trial to show a mortal- landiolol may be used to prevent Seino Y, Yamashita T. Urgent management of ity benefit.” atrial fibrillation also in patients rapid heart rate in patients with atrial fibrilla- tion/ flutter and left ventricular dysfunction: To sum up, he said presenting with sepsis. This, comparison of the ultra-short-acting landiolol severity and duration of however, also needs to be shown in with digoxin (J-Land Study). Circ J. 2013; “We need to 77 (4):908-16. hypotension is associated future trials.” with a negative outcome, think about the Professor Heringlake summed and catecholaminergic drugs up his talk by relaying that septic may induce cardiac events. negative side shock leads to vascular hyper Vasopressin is an alternative effects when using responsiveness and myocardial vasopressor, but there are still dysfunction and said that increased open questions on mortality, catecholamines and sympathetic tone and high doses of benefit, dosage, time point catecholamines may perpetuate sys- and the right patients. consider alternatives temic inflammation and increases In his talk, Professor – one possibility mortality. He said vasopressin used Heringlake focused on lan- in septic shock restores vascular diolol, which acts as a highly being vasopressin.” tone, avoids catecholamine toxicity, cardio-selective ultra-short- ameliorates AKI and may be associ- Johann Knotzer acting beta blocker. Used as ated with reduced mortality. an anti-arrhythmic agent, it “Beta-blocking agents (and has shown it can achieve rapid and artery bypass grafting, valvular avoidance of classical catechola- reversible heart rate reduction with surgery or other interventions and mines) may be useful in septic cir- minor effects on blood pressure. is associated with a significant culatory failure – beyond prevention Landiolol has been available increase in post-operative morbidity of atrial fibrillation,“ said Profes- in Europe since July 2017 but has and mortality. sor Heringlake. been used in Japan for 15 years “Landiolol is particularly effec- “Stroke volume optimization in the prevention and treatment tive for this treatment, as pointed improves visceral perfusion, and of 3.5-million atrial fibrillation out by several recent meta-analyses; other benefits include re- patients following cardiac surgery or a feature possibly related to its high duced inflammation, and intensive care. Postoperative atrial β-1 cardioselectivity,” said Profes- improved hemodynam- “The challenge overall fibrillation develops in 30 to 50% of sor Heringlake. ics and outcomes during cardiac patients following coronary He added that one of the main septic shock.” is finding a biological phenotype to identify those patients who may benefit from the drug.” Mervyn Singer 2 ISICEM Wednesday 2018.indd 13 20/03/2018 15:44.
Recommended publications
  • Product List March 2019 - Page 1 of 53
    Wessex has been sourcing and supplying active substances to medicine manufacturers since its incorporation in 1994. We supply from known, trusted partners working to full cGMP and with full regulatory support. Please contact us for details of the following products. Product CAS No. ( R)-2-Methyl-CBS-oxazaborolidine 112022-83-0 (-) (1R) Menthyl Chloroformate 14602-86-9 (+)-Sotalol Hydrochloride 959-24-0 (2R)-2-[(4-Ethyl-2, 3-dioxopiperazinyl) carbonylamino]-2-phenylacetic 63422-71-9 acid (2R)-2-[(4-Ethyl-2-3-dioxopiperazinyl) carbonylamino]-2-(4- 62893-24-7 hydroxyphenyl) acetic acid (r)-(+)-α-Lipoic Acid 1200-22-2 (S)-1-(2-Chloroacetyl) pyrrolidine-2-carbonitrile 207557-35-5 1,1'-Carbonyl diimidazole 530-62-1 1,3-Cyclohexanedione 504-02-9 1-[2-amino-1-(4-methoxyphenyl) ethyl] cyclohexanol acetate 839705-03-2 1-[2-Amino-1-(4-methoxyphenyl) ethyl] cyclohexanol Hydrochloride 130198-05-9 1-[Cyano-(4-methoxyphenyl) methyl] cyclohexanol 93413-76-4 1-Chloroethyl-4-nitrophenyl carbonate 101623-69-2 2-(2-Aminothiazol-4-yl) acetic acid Hydrochloride 66659-20-9 2-(4-Nitrophenyl)ethanamine Hydrochloride 29968-78-3 2,4 Dichlorobenzyl Alcohol (2,4 DCBA) 1777-82-8 2,6-Dichlorophenol 87-65-0 2.6 Diamino Pyridine 136-40-3 2-Aminoheptane Sulfate 6411-75-2 2-Ethylhexanoyl Chloride 760-67-8 2-Ethylhexyl Chloroformate 24468-13-1 2-Isopropyl-4-(N-methylaminomethyl) thiazole Hydrochloride 908591-25-3 4,4,4-Trifluoro-1-(4-methylphenyl)-1,3-butane dione 720-94-5 4,5,6,7-Tetrahydrothieno[3,2,c] pyridine Hydrochloride 28783-41-7 4-Chloro-N-methyl-piperidine 5570-77-4
    [Show full text]
  • A Framework for Assurance of Medication Safety Using Machine Learning
    A Framework for Assurance of Medication Safety using Machine Learning Yan Jia1 Tom Lawton2 John McDermid1 Eric Rojas3 Ibrahim Habli1 Abstract— Medication errors continue to be the leading cause of avoidable patient harm in hospitals. This paper sets out a framework to assure medication safety that combines machine learning and safety engineering methods. It uses safety analysis to proactively identify potential causes of medication error, based on expert opinion. As healthcare is now data rich, it is possible to augment safety analysis with machine learning to discover actual causes of medication error from the data, and to identify where they deviate from what was predicted in the safety analysis. Combining these two views has the potential to enable the risk of medication errors to be managed proactively and dynamically. We apply the framework to a case study involving thoracic surgery, e.g. oesophagectomy, where errors in giving beta-blockers can be critical to control atrial fibrillation. This case study combines a HAZOP-based safety analysis method known as SHARD with Bayesian network structure learning and process mining to produce the analysis results, showing the potential of the framework for ensuring patient safety, and for transforming the way that safety is managed in complex healthcare environments. Keywords—medication safety, machine learning, proactive safety management 1. INTRODUCTION Safety analysis is both predictive and reactive. It aims to identify hazards, hazard causes and mitigations, and associated risks before a system is deployed. The system is then monitored during its deployment to manage risks. When systems are used in highly controlled environments, built using components with a long service history, these predictions can be accurate.
    [Show full text]
  • Annual Report 2016
    Annexes to the annual report of the European Medicines Agency 2016 Annex 1 – Members of the Management Board ............................................................... 2 Annex 2 - Members of the Committee for Medicinal Products for Human Use ...................... 4 Annex 3 – Members of the Pharmacovigilance Risk Assessment Committee ........................ 6 Annex 4 – Members of the Committee for Medicinal Products for Veterinary Use ................. 8 Annex 5 – Members of the Committee on Orphan Medicinal Products .............................. 10 Annex 6 – Members of the Committee on Herbal Medicinal Products ................................ 12 Annex 7 – Committee for Advanced Therapies .............................................................. 14 Annex 8 – Members of the Paediatric Committee .......................................................... 16 Annex 9 – Working parties and working groups ............................................................ 18 Annex 10 – CHMP opinions: initial evaluations and extensions of therapeutic indication ..... 24 Annex 10a – Guidelines and concept papers adopted by CHMP in 2016 ............................ 25 Annex 11 – CVMP opinions in 2016 on medicinal products for veterinary use .................... 33 Annex 11a – 2016 CVMP opinions on extensions of indication for medicinal products for veterinary use .......................................................................................................... 39 Annex 11b – Guidelines and concept papers adopted by CVMP in 2016 ...........................
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Annexes to the Annual Report of the European Medicines Agency 2014
    Annexes to the annual report of the European Medicines Agency 2014 Table of contents Annex 1 – Members of the Management Board ............................................................................. 2 Annex 2 – Members of the Committee for Medicinal Products for Human Use ................................... 4 Annex 3 – Members of the Pharmacovigilance Risk Assessment Committee ...................................... 6 Annex 4 – Members of the Committee for Medicinal Products for Veterinary Use ............................... 8 Annex 5 – Members of the Committee on Orphan Medicinal Products ............................................ 10 Annex 6 – Members of the Committee on Herbal Medicinal Products .............................................. 12 Annex 07 – Committee for Advanced Therapies .......................................................................... 14 Annex 8 – Members of the Paediatric Committee ........................................................................ 16 Annex 9 – Working parties and working groups .......................................................................... 18 Annex 10 – CHMP opinions in 2014 on medicinal products for human use ...................................... 22 Annex 11 – CVMP opinions in 2014 on medicinal products for veterinary use .................................. 36 Annex 12 – COMP opinions in 2014 on designation of orphan medicinal products ............................ 41 Annex 13 – HMPC European Union herbal monographs in 2014....................................................
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Peri-Operative Medicine John Cohn
    Perioperative Medicine Steven L. Cohn (Editor) Perioperative Medicine Editor Steven L. Cohn Director – Medical Consultation Service Kings County Hospital Center Clinical Professor of Medicine SUNY Downstate Brooklyn, NY ISBN 978-0-85729-497-5 e-ISBN 978-0-85729-498-2 DOI 10.1007/978-0-85729-498-2 Springer London Dordrecht Heidelberg New York British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2011931531 © Springer-Verlag London Limited 2011 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit- ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. Product liability: The publisher can give no guarantee for information about drug dosage and application thereof contained in this book. In every individual case the respective user must check its accuracy by consulting other pharmaceutical literature. Cover design: eStudioCalamar, Figueres/Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Preoperative risk assessment and perioperative management are important aspects of clinical practice in internal medicine.
    [Show full text]
  • Safety and Efficacy of a Bolus Injection of Landiolol Hydrochloride As A
    Advance Publication by-J-STAGE Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp Safety and Efficacy of a Bolus Injection of Landiolol Hydrochloride as a Premedication for Multidetector-Row Computed Tomography Coronary Angiography Kazuhiro Osawa, MD; Toru Miyoshi, MD; Shuhei Sato, MD; Noriaki Akagi; Yusuke Morimitsu; Kazufumi Nakamura, MD; Kunihisa Kohno, MD; Kengo Kusano, MD; Susumu Kanazawa, MD; Hiroshi Ito, MD Background: We evaluated the safety and efficacy of a bolus injection of landiolol hydrochloride, an ultrashort-act- ing β1-selective antagonist, as an additional treatment after premedication with an oral β-blocker to reduce heart rate prior to multidetector-row computed tomography (MDCT) coronary angiography (CAG). Methods and Results: A total of 458 patients who underwent MDCT CAG were retrospectively enrolled. Image quality and hemodynamic parameters were compared in patients before and after approval of landiolol hydrochloride. If heart rate reduction was insufficient after premedication with an oral β-blocker, a bolus injection of landiolol hydro- chloride (n=66) or other drugs (n=30) was used. The percentage of evaluable images per segment in patients after approval of landiolol (99.3%) was greater than that in patients before approval of landiolol (97.4%, P<0.01). Heart rates before scanning in patients receiving landiolol hydrochloride were similar to those receiving other drugs. Heart rate was significantly reduced approximately 5 min after injection of landiolol hydrochloride and increased shortly. No decrease in systolic blood pressure or other adverse effects was observed. Conclusions: Bolus injection of landiolol hydrochloride sufficiently reduced heart rate without significantly reducing systolic blood pressure and produced a high percentage of evaluable images, suggesting that bolus injection of landiolol hydrochloride as an additional pretreatment is feasible in MDCT CAG.
    [Show full text]
  • Use of Landiolol Hydrochloride in the Long-Term Treatment of Tachyarrhythmias
    (19) TZZ _¥_T (11) EP 2 796 139 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.10.2014 Bulletin 2014/44 A61K 31/5377 (2006.01) A61P 9/06 (2006.01) (21) Application number: 13165582.1 (22) Date of filing: 26.04.2013 (84) Designated Contracting States: (72) Inventor: Krumpl, Günther AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 1010 Vienna (AT) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Loidl, Manuela Bettina et al Designated Extension States: REDL Life Science Patent Attorneys BA ME Donau-City-Straße 11 1220 Wien (AT) (71) Applicant: AOP Orphan Pharmaceuticals AG 1160 Vienna (AT) (54) Use of landiolol hydrochloride in the long-term treatment of tachyarrhythmias (57) The invention provides a new use of landiolol patient is persistently reduced during the administration hydrochloride in the treatment of a subject suffering from period compared to the heart rate before treatment and tachycardia or tachyarrhythmia, wherein landiolol- hydro- no overshooting effect occurs after termination of said chloride is administered for a period of at least 0.5 hours administration. and up to at least 2 days, wherein the heart rate of said EP 2 796 139 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 796 139 A1 Description [0001] The invention provides a new use of landiolol hydrochloride in the treatment of a subject suffering from tachy- cardia or tachyarrhythmia, wherein landiolol-hydrochloride is administered for a period of at least 0.5 hours and up to at 5 least 2 days, wherein the heart rate of said patient is persistently reduced during the administration period compared to the heart rate before treatment.
    [Show full text]
  • Drug Consumption at Wholesale Prices in 2017 - 2020
    Page 1 Drug consumption at wholesale prices in 2017 - 2020 2020 2019 2018 2017 Wholesale Hospit. Wholesale Hospit. Wholesale Hospit. Wholesale Hospit. ATC code Subgroup or chemical substance price/1000 € % price/1000 € % price/1000 € % price/1000 € % A ALIMENTARY TRACT AND METABOLISM 321 590 7 309 580 7 300 278 7 295 060 8 A01 STOMATOLOGICAL PREPARATIONS 2 090 9 1 937 7 1 910 7 2 128 8 A01A STOMATOLOGICAL PREPARATIONS 2 090 9 1 937 7 1 910 7 2 128 8 A01AA Caries prophylactic agents 663 8 611 11 619 12 1 042 11 A01AA01 sodium fluoride 610 8 557 12 498 15 787 14 A01AA03 olaflur 53 1 54 1 50 1 48 1 A01AA51 sodium fluoride, combinations - - - - 71 1 206 1 A01AB Antiinfectives for local oral treatment 1 266 10 1 101 6 1 052 6 944 6 A01AB03 chlorhexidine 930 6 885 7 825 7 706 7 A01AB11 various 335 21 216 0 227 0 238 0 A01AB22 doxycycline - - 0 100 0 100 - - A01AC Corticosteroids for local oral treatment 113 1 153 1 135 1 143 1 A01AC01 triamcinolone 113 1 153 1 135 1 143 1 A01AD Other agents for local oral treatment 49 0 72 0 104 0 - - A01AD02 benzydamine 49 0 72 0 104 0 - - A02 DRUGS FOR ACID RELATED DISORDERS 30 885 4 32 677 4 35 102 5 37 644 7 A02A ANTACIDS 3 681 1 3 565 1 3 357 1 3 385 1 A02AA Magnesium compounds 141 22 151 22 172 22 155 19 A02AA04 magnesium hydroxide 141 22 151 22 172 22 155 19 A02AD Combinations and complexes of aluminium, 3 539 0 3 414 0 3 185 0 3 231 0 calcium and magnesium compounds A02AD01 ordinary salt combinations 3 539 0 3 414 0 3 185 0 3 231 0 A02B DRUGS FOR PEPTIC ULCER AND 27 205 5 29 112 4 31 746 5 34 258 8
    [Show full text]
  • Successful Combination of Landiolol and Levosimendan in Patients With
    CASE REPORT Successful Combination of Landiolol and Levosimendan in Patients with Decompensated Heart Failure A Report of 3 Cases Wojciech Dabrowski,1 MD, Dorota Siwicka-Gieroba,1 MD, Ewa Piasek,1 MD, Todd T Schlegel,2,3 MD and Andrzej Jaroszynski,4 MD Summary Tachycardia and supraventricular tachyarrhythmias often impair cardiovascular capacity in patients with de- compensated heart failure (dHF) treated with inotropes. Normalization of heart rhythm or rate typically im- proves diastolic filling and stroke volume (SV). Thus, isochronal administration of an ultra-short-acting and highly selective β1-blockers, such as landiolol, along with inotropic calcium-sensitizer medications, such as levosimendan, could benefit patients with dHF. We present a case series of three patients with severe dHF and low ejection fraction who were successfully treated with a combination of landiolol and levosimendan. The co-administration of landiolol and levosimendan was well tolerated, improved cardiac function, normalized SV, and enabled the reduction of norepinephrine dos- ing in all patients. Additionally, the combination improved the vectorcardiographic spatial QRS-T angle and de- creased the corrected QT interval. All patients were successfully discharged from the intensive care unit (ICU). A combination of levosimendan and landiolol was safe and well-tolerated. This combination may be a new option for successful treatment of patients with acute dHF complicated by sinus or supraventricular tachycar- dias. (Int Heart J 2020; 61: 384-389) Key words: Critically ill, Cardiac tachyarrhthmias, Sepsis, Spatial QRS-T angle, Corrected QT interval achycardias including supraventricular tachyar- dences of atrial fibrillation and tachycardia, whereas oth- rhythmias such as atrial fibrillation are frequently ers suggest that the incidence of ventricular arrhythmias observed in patients with decompensated heart following treatment with levosimendan is no different T 1,2) 9,10) failure (dHF), increasing the risk of mortality.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]