Short Term in Vitro Culture of Cryptocaryon Irritans, a Protozoan Parasite of Marine Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Short Term in Vitro Culture of Cryptocaryon Irritans, a Protozoan Parasite of Marine Fishes 魚 病 研 究 Fish Pathology,39(4),175-181,2004.12 2004 The Japanese Society of Fish Pathology Short Term in vitro Culture of Cryptocaryon irritans, a Protozoan Parasite of Marine Fishes Apolinario V. Yambot1,3 and Yen-Ling Song1,2* 1Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, ROC 2Department of Life Science , National Taiwan University, Taipei 106, Taiwan, ROC3 Present address: College of Fisheries-Freshwater Aquaculture Center , Central Luzon State University, Philippines (Received March 19, 2004) ABSTRACT--Attempts were made to cultivate Cryptocaryon irritans in vitro at 23-25℃. Attachment of theronts and subsequent enlargement into trophonts were achieved in two experi ments using strips of trypticase soy agar (TSA, supplemented with 3% NaCl) as an attachment substrate in filtered seawater. In the third experiment, transformation of theronts into trophonts was achieved in an enriched liquid medium composed of 50% filtered seawater, 30% Leibovitz L-15 and 20% fetal calf serum without attachment onto the TSA. Sizes (mean ±SD) of the trophonts, 114.6 ± 57.9 μm to 295.9 ± 130 μm, were from a recorded size range (50 to 700 μm) of the parasite in vivo. Although only limited numbers of theronts (0.28-1.71%) transformed into trophonts, these results showed that the in vitro culture of C. irritans is potentially feasible as evidenced by the enlargement of the trophonts within the in vivo size range using either a solid medium as an attach ment substrate or a liquid medium without attachment. There is a need, however, to determine essential factors that influence the transformation of the trophonts into viable tomonts capable of producing theronts. Key words: Cryptocaryonirritans, in vitro culture, theront, trophont, culture media The white spot disease in marine fishes caused by Matthews, 1995; Dickerson and Clark, 1996; Yoshinaga the ciliated protozoan parasite, Cryptocaryon irritans, is and Nakazoe, 1997). Manifestation of acquired protec posing a problem to marine aquaculture. The parasite tive immunity in the different fish species against C. is considered one of the most devastating parasites of irritans suggests a potential role of vaccine as a prophy cultured marine fishes. Ornamental, wild and cultured lactic measure. fish species in marine cages and pens are included in Under laboratory conditions, immunization of fish the list of hosts of C. irritans. The parasite is widely dis against the parasite looked promising (Burgess and tributed in various marine waters worldwide (Colorni and Matthews, 1995; Yoshinaga and Nakazoe, 1997; Bryant Burgess, 1997). Diversified isolates of C. irritans, et al., 1999). However, difficulty in obtaining a sufficient including a low salinity variant infecting pond-reared sea amount of parasite organisms for large-scale production bream, were characterized recently by Yambot et al. of the vaccine is a major problem. Continuous propa (2003). gation of the parasite in vivo requires considerable Earlier works demonstrated that freshwater fish ac space, effort and resources. Moreover, maintaining a quire immunity against lchthyophthirius multifiliis, a constant supply of healthy host fish to produce large freshwater counterpart of C. irritans (Clark et al., 1987, amounts of parasites for vaccine development is costly 1988; Burkart et al., 1990). Similarly, resistance and impractical. against C. irritans has been observed in fish surviving In vitro cultures of other protozoan parasites of from the infection of the parasite (Burgess and fishes had been performed by various researchers (Uzmann and Hayduk, 1963; Noga, 1987; Noga and * Corresponding author Bower, 1987; Woo and Li, 1990; Wang and Belosevic, E-mail: song @ccms.ntu.edu.tw 1994). The in vitro techniques reduce space and other 176 A. V. Yambot and Y.-L. Song resources and eliminate the use and maintenance of liv Taipei, Taiwan. Infected samples were chosen based ing host fishes. The in vitro culture aiming for a sus on the appearance of white spots on the body of the tained growth of I. multifiliis has been previously fish. Healthy naive grouper fingerlings (each 4-6 cm in attempted (Noe and Dickerson, 1995; Ekless and length) were procured from a hatchery in southern Matthews, 1993; Nielsen and Buchmann, 2000). The in Taiwan. The fingerlings which were reared in tanks and vitro propagation appears a promising alternative for pro fed with fresh small shrimp at least one week prior to ducing the parasite in sufficient quantity to immunize the infection were used for the in vivo propagation of the fish against white spot disease. parasite. The present study reports the results of the first After their exit from the original host, 10 to 20 phase of experiments on the screening of different tomonts of C. irritans were seeded into a 1 L beaker with media for the in vitro culture of the protozoan parasite, C. one fingerling for infection by the excysting theronts. irritans. Some features of the trophont produced in vitro Salinity of the seawater was maintained at 35 ppt. were also discussed. Moderate aeration was given in each beaker. Fish feeding was discontinued while infection was in progress. When necessary, partial water change and Materials and Methods collection of fecal matters and other debris by siphoning Maintenance of the parasite were done with great care in each vessel. When most Samples of C. irritans-infected grouper Epinephelus of the trophonts have exited from the experimentally coioides were sourced out from a live fish markets in infected fish body and transformed to tomonts, the fish Table 1. Description of the different media used in the three experiments and summary of results a Includes those media with trophonts; NTG-no trophont growth b Sizes of trophonts (•} SD) were pooled from T2 and T3 In vitro culture of Cryptocaryon irritans 177 hosts were transferred to a new confinement. The T3 (JF1 epithelial cells from javelin grunter Pomadasys adhering tomonts were detached from the bottom of the kaakan, 95% L-15, 5% FCS). Bleeding was carried out beakers using a fine paintbrush. The tomonts were col in tilapia hybrids, Oreochromis sp. (200 g each), using lected by siphoning, cleaned of debris, and seeded into a a 5-mL syringe punctured through the dorsal aorta of the new beaker to infect another naive host fish. caudal peduncle. The blood was placed separately into Eppendorf tubes and allowed to clot overnight at In vitro culture of parasite 4•Ž. The fish serum was then separated by centrifuga Three in vitro culture experiments were carried tion at 1000•~g for 10 min, heat-inactivated at 45•~ for out. The composition of the different media in each 20 min according to Yano (1992) and immediately stored treatment is presented in Table 1. Seawater used was at-80•~ prior to use. The epithelial cells (JF1 cells, gift filter-sterilized (0.22ƒÊm) and each treatment was repli from Dr. Shau-Chi Chi) were cultured as a monolayer in cated three times. Leibovitz L15 medium (supple cell culture flasks using L-15 medium supplemented with mented with 3% NaCl) and trypticase soya agar (TSA, 5% FCS. supplemented with 3% NaCl) were prepared separately The culture of C. irritans was performed in 12-well and sterilized as recommended by manufacturers. culture plates, each well containing 2 mL liquid media. Fetal calf serum (FCS) was heat-inactivated at 56•Ž for TSA strips were added into T1 and T2 as solid substrate 20 min and immediately stored at-80•Ž prior to for the attachment of the parasites. The monolayer of use. Incubation temperature for the in vitro growth of the JF1 cells was added in T3 as another attachment the parasite in culture flasks and plates was maintained substrate. The tomonts seeded into the wells were pre at 23 to 25•Ž in a cell culture incubator. Monitoring of pared according to the procedure described above. the parasite growth in culture flasks and plates was done Each well was seeded with three tomonts. Since bacte two times daily using an inverted microscope. rial contamination was observed in the culture flasks in Surviving theronts and trophonts were assessed as Experiment 1, ciproxin was used as antibiotics and intro alive based on ciliary beating and intact bodies. duced at a dose of 100ƒÊg mL-1 into each well. Photographic documentation of the in vitro raised trophonts at 5-day post-seeding was done to record their Experiment 3 sizes and other features. The culture of the parasite was carried out in 12-well tissue culture plates using four treatments: T1 (50% sea Experiment 1 water, 30% L15, 20% FCS, TSA strips), T2 (50% seawa Late stage tomonts of C. irritans with moving ter, 30% L15, 20% FCS), T3 (50% seawater, 30% L15, theronts inside the cysts (ready to excyst) were collected 20% grouper serum, TSA strips) and T4 (50% seawater, from the in vivo maintenance of the parasite. The 30% L15, 20% grouper serum). The serum concentra tomonts were further cleaned of debris and washed tion was increased to 20% to provide more essential three times with seawater. The tomonts were then nutrients following that of the primary culture of animal washed and soaked three times in filtered seawater with cells (Chi et al., 1999; Freshney, 2000). Collection of antibiotics consisting of 400 IU mL-1 penicillin, 400ƒÊg blood from the grouper (300 g body weight) and serum mL-1 streptomycin and 1ƒÊg mL-1 fungizone for 5 min preparation were performed as described above. each wash, with a quick dip into seawater without antibi Each well contained 2 mL liquid media. The otics between the washes. tomonts were cleaned as described above. Three Ten tomonts were seeded into each of 50-mL tissue tomonts were introduced into each well. To compare culture flasks. Liquid medium was maintained at 20 mL the sizes of in vitro raised trophonts and in vivo in each flask.
Recommended publications
  • Unfolding the Secrets of Coral–Algal Symbiosis
    The ISME Journal (2015) 9, 844–856 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Unfolding the secrets of coral–algal symbiosis Nedeljka Rosic1, Edmund Yew Siang Ling2, Chon-Kit Kenneth Chan3, Hong Ching Lee4, Paulina Kaniewska1,5,DavidEdwards3,6,7,SophieDove1,8 and Ove Hoegh-Guldberg1,8,9 1School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia; 2University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia; 4The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia; 5Australian Institute of Marine Science, Townsville, Queensland, Australia; 6School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia; 7Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia; 8ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia and 9Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef- building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and o2% of sequences having bacterial or other foreign origin.
    [Show full text]
  • Growth and Grazing Rates of the Herbivorous Dinoflagellate Gymnodinium Sp
    MARINE ECOLOGY PROGRESS SERIES Published December 16 Mar. Ecol. Prog. Ser. Growth and grazing rates of the herbivorous dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean Suzanne L. Strom' School of Oceanography WB-10, University of Washington. Seattle. Washington 98195, USA ABSTRACT: Growth, grazing and cell volume of the small heterotroph~cdinoflagellate Gyrnnodin~um sp. Isolated from the open subarctic Pacific Ocean were measured as a funct~onof food concentration using 2 phytoplankton food species. Growth and lngestlon rates increased asymptotically with Increas- ing phytoplankon food levels, as did grazer cell volume; rates at representative oceanic food levels were high but below maxima. Clearance rates decreased with lncreaslng food levels when Isochrysis galbana was the food source; they increased ~vithlncreaslng food levels when Synechococcus sp. was the food source. There was apparently a grazlng threshold for Ingestion of Synechococcus: below an initial Synechococcus concentration of 20 pgC 1.' ingestion rates on this alga were very low, while above this initial concentratlon Synechococcus was grazed preferent~ally Gross growth efficiency varied between 0.03 and 0.53 (mean 0.21) and was highest at low food concentrations. Results support the hypothesis that heterotrophic d~noflagellatesmay contribute to controlling population increases of small, rap~dly-grow~ngphytoplankton specles even at low oceanic phytoplankton concentrations. INTRODUCTION as Gymnodinium and Gyrodinium is difficult or impos- sible using older preservation and microscopy tech- Heterotrophic dinoflagellates can be a significant niques; experimental emphasis has been on more component of the microzooplankton in marine waters. easily recognizable and collectable microzooplankton In the oceanic realm, Lessard (1984) and Shapiro et al.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Mixotrophic Protists Among Marine Ciliates and Dinoflagellates: Distribution, Physiology and Ecology
    FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Woraporn Tarangkoon Mixotrophic Protists among Marine Ciliates and Dinoflagellates: Distribution, Physiology and Ecology Academic advisor: Associate Professor Per Juel Hansen Submitted: 29/04/10 Contents List of publications 3 Preface 4 Summary 6 Sammenfating (Danish summary) 8 สรุป (Thai summary) 10 The sections and objectives of the thesis 12 Introduction 14 1) Mixotrophy among marine planktonic protists 14 1.1) The role of light, food concentration and nutrients for 17 the growth of marine mixotrophic planktonic protists 1.2) Importance of marine mixotrophic protists in the 20 planktonic food web 2) Marine symbiont-bearing dinoflagellates 24 2.1) Occurrence of symbionts in the order Dinophysiales 24 2.2) The spatial distribution of symbiont-bearing dinoflagellates in 27 marine waters 2.3) The role of symbionts and phagotrophy in dinoflagellates with symbionts 28 3) Symbiosis and mixotrophy in the marine ciliate genus Mesodinium 30 3.1) Occurrence of symbiosis in Mesodinium spp. 30 3.2) The distribution of marine Mesodinium spp. 30 3.3) The role of symbionts and phagotrophy in marine Mesodinium rubrum 33 and Mesodinium pulex Conclusion and future perspectives 36 References 38 Paper I Paper II Paper III Appendix-Paper IV Appendix-I Lists of publications The thesis consists of the following papers, referred to in the synthesis by their roman numerals. Co-author statements are attached to the thesis (Appendix-I). Paper I Tarangkoon W, Hansen G Hansen PJ (2010) Spatial distribution of symbiont-bearing dinoflagellates in the Indian Ocean in relation to oceanographic regimes. Aquat Microb Ecol 58:197-213.
    [Show full text]
  • Is Chloroplastic Class IIA Aldolase a Marine Enzyme&Quest;
    The ISME Journal (2016) 10, 2767–2772 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej SHORT COMMUNICATION Is chloroplastic class IIA aldolase a marine enzyme? Hitoshi Miyasaka1, Takeru Ogata1, Satoshi Tanaka2, Takeshi Ohama3, Sanae Kano4, Fujiwara Kazuhiro4,7, Shuhei Hayashi1, Shinjiro Yamamoto1, Hiro Takahashi5, Hideyuki Matsuura6 and Kazumasa Hirata6 1Department of Applied Life Science, Sojo University, Kumamoto, Japan; 2The Kansai Electric Power Co., Environmental Research Center, Keihanna-Plaza, Kyoto, Japan; 3School of Environmental Science and Engineering, Kochi University of Technology, Kochi, Japan; 4Chugai Technos Corporation, Hiroshima, Japan; 5Graduate School of Horticulture, Faculty of Horticulture, Chiba University, Chiba, Japan and 6Environmental Biotechnology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan Expressed sequence tag analyses revealed that two marine Chlorophyceae green algae, Chlamydo- monas sp. W80 and Chlamydomonas sp. HS5, contain genes coding for chloroplastic class IIA aldolase (fructose-1, 6-bisphosphate aldolase: FBA). These genes show robust monophyly with those of the marine Prasinophyceae algae genera Micromonas, Ostreococcus and Bathycoccus, indicating that the acquisition of this gene through horizontal gene transfer by an ancestor of the green algal lineage occurred prior to the divergence of the core chlorophytes (Chlorophyceae and Treboux- iophyceae) and the prasinophytes. The absence of this gene in some freshwater chlorophytes, such as Chlamydomonas reinhardtii, Volvox carteri, Chlorella vulgaris, Chlorella variabilis and Coccomyxa subellipsoidea, can therefore be explained by the loss of this gene somewhere in the evolutionary process. Our survey on the distribution of this gene in genomic and transcriptome databases suggests that this gene occurs almost exclusively in marine algae, with a few exceptions, and as such, we propose that chloroplastic class IIA FBA is a marine environment-adapted enzyme.
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • 23.3 Groups of Protists
    Chapter 23 | Protists 639 cysts that are a protective, resting stage. Depending on habitat of the species, the cysts may be particularly resistant to temperature extremes, desiccation, or low pH. This strategy allows certain protists to “wait out” stressors until their environment becomes more favorable for survival or until they are carried (such as by wind, water, or transport on a larger organism) to a different environment, because cysts exhibit virtually no cellular metabolism. Protist life cycles range from simple to extremely elaborate. Certain parasitic protists have complicated life cycles and must infect different host species at different developmental stages to complete their life cycle. Some protists are unicellular in the haploid form and multicellular in the diploid form, a strategy employed by animals. Other protists have multicellular stages in both haploid and diploid forms, a strategy called alternation of generations, analogous to that used by plants. Habitats Nearly all protists exist in some type of aquatic environment, including freshwater and marine environments, damp soil, and even snow. Several protist species are parasites that infect animals or plants. A few protist species live on dead organisms or their wastes, and contribute to their decay. 23.3 | Groups of Protists By the end of this section, you will be able to do the following: • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes • Identify defining features of protists in each of the six supergroups of eukaryotes. In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes.
    [Show full text]
  • Unraveling a Mystery of Dinoflagellate Genomic Architecture 3 May 2021
    Unraveling a mystery of dinoflagellate genomic architecture 3 May 2021 environments, and are predominantly known to humans as the cause of toxic "red tides" and as the source of most ocean bioluminescence. Some photosynthetic dinoflagellates are also crucial to the health of coral reefs. These algae are taken up by individual coral cells and form mutually beneficial relationships through which nutrients are exchanged. Ocean warming and pollution can cause this relationship between the alga and animal to break down, resulting in ghostly white "bleached" corals that are at risk of starvation, which could lead to the death of reef ecosystems. "Like animals and plants, dinoflagellates are complex eukaryotic organisms and are evolutionarily interesting because their genetic material is packaged in a way that is unique among organisms with complex cellular architecture," said lead author Georgi Marinov of Stanford University. Microzooplankton, the major grazers of the plankton: One defining characteristic of eukaryotes is that spiny-globe Protoperidinium dinoflagellate. Credit: their DNA is housed inside a nucleus within each Wikimedia / Creative Commons Attribution-Share Alike cell and is organized as separate units called 4.0 International license. chromosomes. Furthermore, in most eukaryotes, segments of DNA are wound around a spool-like complex of proteins called a nucleosome. This organization is thought to predate the common New work from a Stanford University-led team of ancestor of all eukaryotes. It helps to condense the researchers including Carnegie's Arthur Grossman genetic material into a small space and control and Tingting Xiang unravels a longstanding access to the DNA and how the genes encoded in mystery about the relationship between form and it are activated to direct the cell's physiological function in the genetic material of a diverse group functions.
    [Show full text]
  • Range Expansion of the Red Tide Dinoflagellate Noctiluca Scintillans
    State and Trends of Australia’s Oceans Report 3.6 Range expansion of the red tide dinoflagellate Noctiluca scintillans Gustaaf Hallegraeff1, Claire Davies2 and Wayne Rochester3 1 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia 2 CSIRO Oceans and Atmosphere, Hobart, TAS, Australia 3 CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct (QBP), St Lucia, QLD, Australia Summary The dinoflagellate Noctiluca exhibited a range expansion and biomass increase in the Australian region from the 1990s onwards, putatively driven by eutrophication promoting diatom prey (NSW), strengthening of the East Australian Current (Tas) and ship ballast water transport (Darwin, Rottnest, Cairns). Key Data Streams State and Trends of Australia’s Ocean Report www.imosoceanreport.org.au Ships of Opportunity National Reference Time-Series published Stations 10 January 2020 doi: 10.26198/5e16ad2e49e85 3.6 I Range expansion of Noctiluca scintillans exert predatory pressure on copepods. We thus explored Rationale whether the expansion of Noctiluca in Australian waters could Noctiluca scintillans is a conspicuous, large (200 – 1000 μm be negatively impacting the abundance of copepods. For diameter) dinoflagellate that commonly forms red tide surface data from Port Hacking and Maria Island National Reference slicks (Figure 1) and spectacular bioluminescent spectacles. Stations, we explored the relationship between Noctiluca and It does not photosynthesise, but ingests small cells and copepod abundances by removing the climatology signal particles. Noctiluca was first documented in Australian waters from the abundance data and comparing residual values. in Sydney Harbour in 1860. Up till the end of the 1980s, it A negative relationship between Noctiluca abundance and was rarely seen, but had been newly reported from Moreton copepod abundance would mean that higher abundances Bay and the Gulf of Carpentaria.
    [Show full text]
  • Infectious Diseases of Laboratory Zebrafish
    INFECTIOUS DISEASES OF LABORATORY ZEBRAFISH Justin L. Sanders Department of Biomedical Sciences Infectious Diseases – ZIRC Diagnostic Service Summaries 2006-2014 About 7,000 fish and 100 facilities • Pseudoloma : 48% labs, 16% fish • Mycobacteriosis: 40% labs, 6% fish • Edwardsiella ictaluri: 3 labs in 2011. • Pseudocapillaria: 11% labs, 1.3% fish • Gut Hyperplasia/Neoplasia: 12% labs, 2.8% fish • Myxidium: 19% labs, 2.4% fish • Piscinoodinium (max 2 %), Pleistophora (max 7%) Pathogens in Zebrafish Facilities 2006-2015: – ca 10,000 fish, 100 laboratories Parasitic Diseases: general pathology • Space replacement/pressure atrophy • Respiratory impediment – gill parasites • Osmoregulatory – gill & skin infections • Perforation of gut & 2 nd bacterial infections • Inflammatory changes Common parasites of research zebrafish Parasite Group Species Reference Dinoflagellate Piscinoodinium pillulare Westerfield 2000 Ciliate Ichthyophthirius multifiliis Matthews 2004 Nematode Pseudocapillaria tomentosa Kent et al. 2002 Myxozoan Myxidium streisingeri Whipps et al. 2015 Digenea Transversotrema patialense Womble et al. 2015 Microsporidia Pseudoloma neurophilia de Kinkelin 1980; Matthews et al. 2001 Pleistophora Sanders et al. 2010 hyphessobryconis Myxidium streisingeri Whipps et al 2015 Myxidium streisingeri Whipps et al 2015 Myxidium streisingeri Whipps et al 2015 Myxidium streisingeri Pathogenesis Mode of Diagnosis Control/Treament transmission Found in lumen Unknown: Wet mount: light Avoidance/quarantine of mesonephric microscopy; and kidney Direct?
    [Show full text]
  • "Plastid Originand Evolution". In: Encyclopedia of Life
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Queensland eSpace Plastid Origin and Advanced article Evolution Article Contents . Introduction Cheong Xin Chan, Rutgers University, New Brunswick, New Jersey, USA . Primary Plastids and Endosymbiosis . Secondary (and Tertiary) Plastids Debashish Bhattacharya, Rutgers University, New Brunswick, New Jersey, USA . Nonphotosynthetic Plastids . Plastid Theft . Plastid Origin and Eukaryote Evolution . Concluding Remarks Online posting date: 15th November 2011 Plastids (or chloroplasts in plants) are organelles within organisms that emerged ca. 2.8 billion years ago (Olson, which photosynthesis takes place in eukaryotes. The ori- 2006), followed by the evolution of eukaryotic algae ca. 1.5 gin of the widespread plastid traces back to a cyano- billion years ago (Yoon et al., 2004) and finally by the rise of bacterium that was engulfed and retained by a plants ca. 500 million years ago (Taylor, 1988). Photosynthetic reactions occur within the cytosol in heterotrophic protist through a process termed primary prokaryotes. In eukaryotes, however, the reaction takes endosymbiosis. Subsequent (serial) events of endo- place in the organelle, plastid (e.g. chloroplast in plants). symbiosis, involving red and green algae and potentially The plastid also houses many other reactions that are other eukaryotes, yielded the so-called ‘complex’ plastids essential for growth and development in algae and plants; found in photosynthetic taxa such as diatoms, dino- for example, the
    [Show full text]