How Geography "Mapped" East Asia, Part One: China by Craig Benjamin, Big History Project, Adapted by Newsela Staff on 01.26.17 Word Count 1,354 Level 1020L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Landscape Analysis of Geographical Names in Hubei Province, China
Entropy 2014, 16, 6313-6337; doi:10.3390/e16126313 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Landscape Analysis of Geographical Names in Hubei Province, China Xixi Chen 1, Tao Hu 1, Fu Ren 1,2,*, Deng Chen 1, Lan Li 1 and Nan Gao 1 1 School of Resource and Environment Science, Wuhan University, Luoyu Road 129, Wuhan 430079, China; E-Mails: [email protected] (X.C.); [email protected] (T.H.); [email protected] (D.C.); [email protected] (L.L.); [email protected] (N.G.) 2 Key Laboratory of Geographical Information System, Ministry of Education, Wuhan University, Luoyu Road 129, Wuhan 430079, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +86-27-87664557; Fax: +86-27-68778893. External Editor: Hwa-Lung Yu Received: 20 July 2014; in revised form: 31 October 2014 / Accepted: 26 November 2014 / Published: 1 December 2014 Abstract: Hubei Province is the hub of communications in central China, which directly determines its strategic position in the country’s development. Additionally, Hubei Province is well-known for its diverse landforms, including mountains, hills, mounds and plains. This area is called “The Province of Thousand Lakes” due to the abundance of water resources. Geographical names are exclusive names given to physical or anthropogenic geographic entities at specific spatial locations and are important signs by which humans understand natural and human activities. In this study, geographic information systems (GIS) technology is adopted to establish a geodatabase of geographical names with particular characteristics in Hubei Province and extract certain geomorphologic and environmental factors. -
Mississippi Alluvial Plain
Mississippi Alluvial Plain Physical description This riverine ecoregion extends along the Mississippi River, south to the Gulf of Mexico. It is mostly a flat, broad floodplain with river terraces and levees providing the main elements of relief. Soils tend to be poorly drained, except for the areas of sandy soils. Locations with deep, fertile soils are sometimes extremely dense and poorly drained. The combination of flat terrain and poor drainage creates conditions suitable for wetlands. Bottomland deciduous forest vegetation covered the region before much of it was cleared for cultivation. Winters are mild and summers are hot. The wetlands of the Mississippi Alluvial Plain are an internationally important winter habitat for migratory waterfowl. The White River National Wildlife Refuge alone offers migration habitat to upwards of 10,000 Canada geese and 300,000 ducks every year. These large numbers account for one-third of the total found in Arkansas, and 10% of the waterfowl found in the Mississippi Flyway. At one time, wetlands were very abundant across the Mississippi Alluvial Plain. The decline in wetlands began several centuries ago when the first ditches were dug to drain extensive areas. Clearing bottomland hardwood forests for agriculture and other activities resulted in the loss of more than 70% of the original wetlands. Presently, most of the ecoregion is agricultural, cleared of natural vegetation and drained by a system of ditches. Dominant vegetation On the Mississippi Alluvial Plain, changes in elevation of only a few inches can result in great differences in soil saturation characteristics, and therefore the species of plants that thrive. -
Ecoregions of the Mississippi Alluvial Plain
92° 91° 90° 89° 88° Ecoregions of the Mississippi Alluvial Plain Cape Girardeau 73cc 72 io Ri Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of This level III and IV ecoregion map was compiled at a scale of 1:250,000 and depicts revisions and Literature Cited: PRINCIPAL AUTHORS: Shannen S. Chapman (Dynamac Corporation), Oh ver environmental resources; they are designed to serve as a spatial framework for the research, subdivisions of earlier level III ecoregions that were originally compiled at a smaller scale (USEPA Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Omernik, J.M., 1987, Ecoregions of the conterminous United States (map Barbara A. Kleiss (USACE, ERDC -Waterways Experiment Station), James M. ILLINOIS assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing 2003, Omernik, 1987). This poster is part of a collaborative effort primarily between USEPA Region Ecoregions and subregions of the United States (map) (supplementary supplement): Annals of the Association of American Geographers, v. 77, no. 1, Omernik, (USEPA, retired), Thomas L. Foti (Arkansas Natural Heritage p. 118-125, scale 1:7,500,000. 71 the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the VII, USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), table of map unit descriptions compiled and edited by McNab, W.H., and Commission), and Elizabeth O. Murray (Arkansas Multi-Agency Wetland Bailey, R.G.): Washington, D.C., U.S. Department of Agriculture - Forest Planning Team). 37° environment by its probable response to disturbance (Bryce and others, 1999). -
Confucianism, "Cultural Tradition" and Official Discourses in China at the Start of the New Century
China Perspectives 2007/3 | 2007 Creating a Harmonious Society Confucianism, "cultural tradition" and official discourses in China at the start of the new century Sébastien Billioud Édition électronique URL : http://journals.openedition.org/chinaperspectives/2033 DOI : 10.4000/chinaperspectives.2033 ISSN : 1996-4617 Éditeur Centre d'étude français sur la Chine contemporaine Édition imprimée Date de publication : 15 septembre 2007 ISSN : 2070-3449 Référence électronique Sébastien Billioud, « Confucianism, "cultural tradition" and official discourses in China at the start of the new century », China Perspectives [En ligne], 2007/3 | 2007, mis en ligne le 01 septembre 2010, consulté le 14 novembre 2019. URL : http://journals.openedition.org/chinaperspectives/2033 ; DOI : 10.4000/chinaperspectives.2033 © All rights reserved Special feature s e v Confucianism, “Cultural i a t c n i e Tradition,” and Official h p s c r Discourse in China at the e p Start of the New Century SÉBASTIEN BILLIOUD This article explores the reference to traditional culture and Confucianism in official discourses at the start of the new century. It shows the complexity and the ambiguity of the phenomenon and attempts to analyze it within the broader framework of society’s evolving relation to culture. armony (hexie 和谐 ), the rule of virtue ( yi into allusions made in official discourse, we are interested de zhi guo 以德治国 ): for the last few years in another general and imprecise category: cultural tradi - Hthe consonance suggested by slogans and tion ( wenhua chuantong ) or traditional cul - 文化传统 themes mobilised by China’s leadership has led to spec - ture ( chuantong wenhua 传统文化 ). ((1) However, we ulation concerning their relationship to Confucianism or, are excluding from the domain of this study the entire as - more generally, to China’s classical cultural tradition. -
Transboundary River Basin Overview – Salween
0 [Type here] Irrigation in Africa in figures - AQUASTAT Survey - 2016 Transboundary River Basin Overview – Salween Version 2011 Recommended citation: FAO. 2011. AQUASTAT Transboundary River Basins – Salween River Basin. Food and Agriculture Organization of the United Nations (FAO). Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licencerequest or addressed to [email protected]. -
Characteristics of the Distribution-Initiation-Motion-And
Characteristics of the Distribution, Initiation, Motion, and Evolution of the Thunderstorms over the Yangtze River Delta Region DAI Jianhua*, TAO Lan, and SUN Min Shanghai Central Meteorological Observatory China Meteorological Administration Shanghai, China * [email protected] Abstract —Using the WSR-88D Doppler Weather radar and Topography, surface features and the urban heat island all the Vaisala lightning detection data, some characteristics (the play important roles in YRD’s weather. In the YRD, for spatiotemporal distributions and motion features) of example like Shanghai, receives an average annual rainfall of thunderstorms over the Yangtze River Delta (YRD) region are 1,200 mm; nearly 60% of the precipitation comes during the investigated. Local storms tend to be cluster over cities, isolated April-September warm season. During July and September, mountains or hills, and water-land borders. Storm intensifying thunderstorms with lightning strikes, heavy rain, hail and centers are found about 10-30 km downwind of the city centers, damaging winds (squalls) become frequent. On average there while the medium-path storms also show a downwind effect with are 15 rainy days and 8 thunderstorm days per month in the a distance of from medium-sized cities and centers of larger cities warm seasons. about 10 km farther than those of local storms. In Shanghai, sea- breeze front is found to be more important for local Using the WSR-88D Doppler Weather radar and the thunderstorm initiation and development than the urban heat Vaisala lightning detection data, some characteristics (the island effect. Vertical structure of storm cell and lightning spatiotemporal distributions and motion features) of activity during the evolutionary stages of several types of thunderstorms over the Yangtze River Delta region are thunderstorms are also analyzed, and a basic conceptual model investigated. -
Holocene Environmental Archaeology of the Yangtze River Valley in China: a Review
land Review Holocene Environmental Archaeology of the Yangtze River Valley in China: A Review Li Wu 1,2,*, Shuguang Lu 1, Cheng Zhu 3, Chunmei Ma 3, Xiaoling Sun 1, Xiaoxue Li 1, Chenchen Li 1 and Qingchun Guo 4 1 Provincial Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; [email protected] (S.L.); [email protected] (X.S.); [email protected] (X.L.); [email protected] (C.L.) 2 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China 3 School of Geograpy and Ocean Science, Nanjing University, Nanjing 210023, China; [email protected] (C.Z.); [email protected] (C.M.) 4 School of Environment and Planning, Liaocheng University, Liaocheng 252000, China; [email protected] * Correspondence: [email protected] Abstract: The Yangtze River Valley is an important economic region and one of the cradles of human civilization. It is also the site of frequent floods, droughts, and other natural disasters. Conducting Holocene environmental archaeology research in this region is of great importance when studying the evolution of the relationship between humans and the environment and the interactive effects humans had on the environment from 10.0 to 3.0 ka BP, for which no written records exist. This Citation: Wu, L.; Lu, S.; Zhu, C.; review provides a comprehensive summary of materials that have been published over the past Ma, C.; Sun, X.; Li, X.; Li, C.; Guo, Q. -
“Major World Deltas: a Perspective from Space
“MAJOR WORLD DELTAS: A PERSPECTIVE FROM SPACE” James M. Coleman Oscar K. Huh Coastal Studies Institute Louisiana State University Baton Rouge, LA TABLE OF CONTENTS Page INTRODUCTION……………………………………………………………………4 Major River Systems and their Subsystem Components……………………..4 Drainage Basin………………………………………………………..7 Alluvial Valley………………………………………………………15 Receiving Basin……………………………………………………..15 Delta Plain…………………………………………………………...22 Deltaic Process-Form Variability: A Brief Summary……………………….29 The Drainage Basin and The Discharge Regime…………………....29 Nearshore Marine Energy Climate And Discharge Effectiveness…..29 River-Mouth Process-Form Variability……………………………..36 DELTA DESCRIPTIONS…………………………………………………………..37 Amu Darya River System………………………………………………...…45 Baram River System………………………………………………………...49 Burdekin River System……………………………………………………...53 Chao Phraya River System……………………………………….…………57 Colville River System………………………………………………….……62 Danube River System…………………………………………………….…66 Dneiper River System………………………………………………….……74 Ebro River System……………………………………………………..……77 Fly River System………………………………………………………...…..79 Ganges-Brahmaputra River System…………………………………………83 Girjalva River System…………………………………………………….…91 Krishna-Godavari River System…………………………………………… 94 Huang He River System………………………………………………..……99 Indus River System…………………………………………………………105 Irrawaddy River System……………………………………………………113 Klang River System……………………………………………………...…117 Lena River System……………………………………………………….…121 MacKenzie River System………………………………………………..…126 Magdelena River System……………………………………………..….…130 -
Alluvial Fans
GY 111 Lecture Notes D. Haywick (2008-09) 1 GY 111 Lecture Note Series Sedimentary Environments 1: Alluvial Fans Lecture Goals A) Depositional/Sedimentary Environments B) Alluvial fan depositional environments C) Sediment and rocks that form on alluvial fans Reference: Press et al., 2004, Chapter 7; Grotzinger et al., 2007, Chapter 18, p 449 GY 111 Lab manual Chapter 3 Note: At this point in the course, my version of GY 111 starts to diverge a bit from my colleagues. I tend to focus a bit more on sedimentary processes then they do mostly because we live in an area that is dominated by sedimentation and I figure that you should be as familiar as possible with the subject. As it turns out, the web notes are also more comprehensive than what you'll find in your text book A) Depositional/sedimentary environments Last time we met, we discussed how sediment moved from one place to another. Remember that sediment is produced in a lot of different locations, but it seldom stays where it is produced. The action of water, wind and ice transport it from the sediment source to the sediment sink. The variety of sediment sinks that exist on the planet is truly amazing. There are river basins, lakes, deserts, lagoons, swamps, deltas, beaches, barrier islands, reefs, continental shelves, the abyssal plains (very deep!), trenches (even deeper!) etc. As we discussed last time, these places are called depositional environments (also known as sedimentary environments). Each depositional environment may also have several subdivisions. For example, there are open beaches, sheltered beaches, shingle beaches, sand beaches, strandline beaches, even mud beaches. -
Appendix 2: Lower Sutlej Sub Basin
TA7417-IND Support for the National Action Plan for Climate Change Support to the National Water Mission TA 7417- IND: Support for the National Action Plan on Climate Change Support to the National Water Mission Final Report September 2011 Appendix 2 Lower Sutlej Sub Basin PREPARED FOR Government of India Governments of Punjab, Madhya Pradesh and Tamil Nadu Asian Development Bank Support to the National Water Mission NAPCC ii Appendix 2 Lower Sutlej Sub Basin Appendix 2 Lower Sutlej Sub Basin Punjab Support to the National Water Mission NAPCC iv Appendix 2 Lower Sutlej Sub Basin Support to the National Water Mission NAPCC v Appendix 2 Lower Sutlej Sub Basin SUMMARY OF ABBREVIATIONS A1B IPCC Climate Change Scenario A1 assumes a world of very rapid economic growth, a global population that peaks in mid-century and rapid introduction of new and more efficient technologies. A1 is divided into three groups that describe alternative directions of technological change: fossil intensive (A1FI), non-fossil energy resources (A1T) and a balance across all sources (A1B). A2 IPCC climate change Scenario A2 describes a very heterogeneous world with high population growth, slow economic development and slow technological change. ADB Asian Development Bank AGTC Agriculture Technocrats Action Committee of Punjab AOGCM Atmosphere Ocean Global Circulation Model APHRODITE Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources - a observed gridded rainfall dataset developed in Japan APN Asian Pacific Network for Global Change Research AR Artificial Recharge AR4 IPCC Fourth Assessment Report AR5 IPCC Fifth Assessment Report AWM Adaptive Water Management B1 IPCC climate change Scenario B1 describes a convergent world, with the same global population as A1, but with more rapid changes in economic structures toward a service and information economy. -
Physical Geography of the Punjab
19 Gosal: Physical Geography of Punjab Physical Geography of the Punjab G. S. Gosal Formerly Professor of Geography, Punjab University, Chandigarh ________________________________________________________________ Located in the northwestern part of the Indian sub-continent, the Punjab served as a bridge between the east, the middle east, and central Asia assigning it considerable regional importance. The region is enclosed between the Himalayas in the north and the Rajputana desert in the south, and its rich alluvial plain is composed of silt deposited by the rivers - Satluj, Beas, Ravi, Chanab and Jhelam. The paper provides a detailed description of Punjab’s physical landscape and its general climatic conditions which created its history and culture and made it the bread basket of the subcontinent. ________________________________________________________________ Introduction Herodotus, an ancient Greek scholar, who lived from 484 BCE to 425 BCE, was often referred to as the ‘father of history’, the ‘father of ethnography’, and a great scholar of geography of his time. Some 2500 years ago he made a classic statement: ‘All history should be studied geographically, and all geography historically’. In this statement Herodotus was essentially emphasizing the inseparability of time and space, and a close relationship between history and geography. After all, historical events do not take place in the air, their base is always the earth. For a proper understanding of history, therefore, the base, that is the earth, must be known closely. The physical earth and the man living on it in their full, multi-dimensional relationships constitute the reality of the earth. There is no doubt that human ingenuity, innovations, technological capabilities, and aspirations are very potent factors in shaping and reshaping places and regions, as also in giving rise to new events, but the physical environmental base has its own role to play. -
MIS 6) Loess (Dust) Accumulation in the Lower Danube at Harletz (Bulgaria
Quaternary Science Reviews 207 (2019) 80e100 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev A remarkable Late Saalian (MIS 6) loess (dust) accumulation in the Lower Danube at Harletz (Bulgaria) * Pierre Antoine a, , France Lagroix b, Diana Jordanova c, Neli Jordanova c, Johanna Lomax d, Markus Fuchs d, Maxime Debret e, Denis-Didier Rousseau f, g, Christine Hatte h, Caroline Gauthier h, Olivier Moine a, Samuel N. Taylor b, Jessica L. Till b, i, Sylvie Coutard j, a a Laboratoire de Geographie Physique: Environnements Quaternaires et Actuels, CNRS-Univ. Paris 1-UPEC, 92195, Meudon, France b Institut de Physique du Globe de Paris, Sorbonne Paris Cite, Univ Paris Diderot, UMR 7154 CNRS, 75005, Paris, France c National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 3, 1113, Sofia, Bulgaria d Department of Geography, Justus-Liebig-University Giessen, 35390, Giessen, Germany e UFR Sciences et Techniques, Universite de Rouen, 76821, Mont-Saint-Aignan, France f Laboratoire de Meteorologie Dynamique, UMR CNRS-ENS 8539, Institute Pierre Simon Laplace, IPSL, Paris Sciences & Lettres (PSL) Research University, 75231, Paris, France g Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10964, USA h Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Universite Paris-Saclay, 91198, Gif-sur-Yvette, France i Institute of Earth Sciences, University of Iceland, 101 Reykjavik, Iceland j INRAP Hauts-de-France, 32 Avenue de l’Etoile du Sud, 80440, Glisy, France article info abstract Article history: While numerous high-resolution studies concerning Last Glacial aeolian sequences are available for Received 16 April 2018 Europe, the approach of the penultimate glacial in this geographical area is still poorly developed.