Wax Microemulsion Formulations Used As Fruit Coatings

Total Page:16

File Type:pdf, Size:1020Kb

Wax Microemulsion Formulations Used As Fruit Coatings Proc. Fla. State Hart. Soc. 111:251-255. 1998. WAX MICROEMULSION FORMULATIONS USED AS FRUIT COATINGS Robert D. Hagenmaier Materials and Methods U.S. Citrus and Subtropical Products Laboratory USDA, ARS, SAA Polyethylene waxes E10 and E20 were from Eastman P.O. Box 1909 Chemical (Kingsport, TN); AC629, AC680, AC673 and AC316 Winter Haven, FL 33883-1909 were from Allied Signal Inc. (Morristown, NJ); and PED121 e-mail: [email protected] was from Clariant Corp. (Charlotte, NC). FDA approval for polyethylene wax (oxidized polyethylene) is given in 21 CFR Additional index words. Edible coatings, 'Hamlin' oranges, 172.260 (FDA, 1995). The candelilla wax (21 CFR 184.1976) 'Sunburst' tangerines. was bleached (No. 75 from Strahl & Pitsch Inc., W. Babylon, NY, type cbw2 from Berial, S. A., Mexico D. F., or No. 7808 Abstract. Wax microemulsions were made with three emulsifi- from Botanical Wax, Arlington Heights, IL) or unbleached cation techniques. Formulations are presented for making an- 'filtrada' from Berial, S. A. The beeswax (21 CFR 184.1973) ionic microemulsions with carnauba wax, candelilla wax, was from Koster Keunen Inc. (Sayville, NY). The rice bran oxidized polyethylene, beeswax, paraffin, montan wax and var wax (21 CFR 172.890) was from Strahl & Pitsch or Koster Ke ious hydrocarbon waxes, and also for making nonionic micro unen Inc. Yellow No. 3 and No. 1 carnauba wax (21 CFR emulsions with squalene, hydrocarbon waxes and rice bran 184.1978) were from Strahl & Pitsch Inc. The petroleum wax wax. Citrus fruit were coated with various mixtures of a wax (21 CFR 172.88 and 178.3710) with 61°C m.p., was Parvan emulsion and rosin. Those coatings with higher percentage wax had lower internal CO2 and higher O2. 4450 from Exxon (Houston, TX). The paraffin wax (CFR 178.3710) type 126, also with 61°C m.p., was from Koster Ke unen Inc. Rosin modified maleic wood resin (21 CFR In recent years we have evaluated the performance of var 172.210) was type 807Afrom Resinall Corp. (Stamford, CT). ious wax microemulsions as food and fruit coatings (Hagen Hydrogenated wood rosin (21 CFR 172.210) was Foral AX maier and Baker, 1993, 1994a, 194b, 1996, 1997). In the from Hercules Inc., (Wilmington, DE). The montan wax (21 course of those studies, more than 600 microemulsions were CFR 172.210) was type KPS from Clariant Corp. Hydrocarbon made in our laboratory, in attempts to develop better coat waxes Polywax 500 (21 CFR 172.888) and Be Squarel95 (21 ings. In our published studies <10% of the microemulsions CFR 172.886) were from Petrolite Corp. (Tulsa, OK). The were used, as there was insufficient time to thoroughly evalu oleic acid (21 CFR 172.860) was Emersol 6321, from Henkel ate all of those made. Here now is a summary of all formula Corp. (Cincinnati, OH). The myristic acid was Hystrene 9014 tions, not just the 10% included in our publications. from Witco Corp. (Memphis, TN) and Emery 655 from Hen Why were so many different formulations made? First, in kel Corp. Mineral oil (21 CFR 172.878z) was from Squibb 8c the course of work on coatings it became evident that the per Sons (Princeton, NJ) and petrolatum jelly (21 CFR 172.880) formance of any particular wax as a coating depended consid was from Albertson's (Boise, ID). The surfactants were sorbi- erably on the quality of the emulsions and also the presence tan monostearate (21 CFR 172.842), Capmul S from Abitec of minor ingredients in the formula. Thus, a conclusion Corp. (Janesville, WI) or Durtan 60 from Durkee Industrial about the potential as edible coating of any given wax would Foods (Cleveland, OH). Glycerol mono/di-oleate (21 seem to require the testing of a number of different formula CFR182.4505,GRAS) was GMO-Kfrom Abitec Corp. Polysor- tions. Secondly, in order to make progress in developing wax bate 60 (21 CFR 172.836) was Capmul POE-S from Abitec coatings, it was considered necessary to know the composi Corp. or Tween 60Kfrom ICI Surfactants (Wilmington, DE) tion of any coatings used. In early work, the wax microemul Microemulsions were made by three methods. For the wa sions evaluated in our laboratory were samples received from ter-to-wax method, the wax and other ingredients (less the suppliers whose formulations were proprietary information. water) were heated 10-20°C above the melting point of the We found that much trial and error was involved in arriving wax, hot water (95-100°) slowly added with stirring, and the at suitable formulations, which resulted in many trials. In gen mixture cooled to 50°C in a water bath, with stirring. For the eral, little information on wax microemulsion formulations was found in the literature (Bennett, 1975), especially formu wax-to-water method the same molten wax mixture was poured into the vortex of hot water being rapidly stirred in a lations whose ingredients were restricted to those approved beaker, and the mixture cooled in the same manner. For the for use in foods. pressure method, which is similar to the water-to-wax method, The purpose here is to make available the techniques and the unmelted wax, together with part of water (the initial wa ingredients used in our laboratory to make wax microemul ter) was placed in a 2-liter pressure cell (Parr Instrument Co., sions, in order to make it easier for others to make and test Moline, IL), heated to approximately 10-30°C above the melt these, particularly for use as food and fruit coatings. ing point of the wax, hot water forced into the cell with a pump (Haskel Inc., Burbank, CA) and the emulsion cooled South Atlantic Area, Agricultural Research Service, U.S. Department of to 50°C. For all three methods the total amount of water in Agriculture. Mention of a trademark or proprietary product is for identifica corporated was that required to make an emulsion contain tion only and does not imply a guarantee or warranty of the product by the ing 60-80% water. U.S. Department of Agriculture. The U.S. Department of Agriculture prohib The quality of the emulsions was evaluated by appearance its discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual ori and performance. Appearance was primarily evaluated by entation, and marital or family status. measurement of turbidity with the Ratio/XR turbidimeter Proc. Fla. StateHort. Soc. Ill: 1998. 251 (Hach Co., Loveland, CO). This measures turbidity over the acceptable by the Code of Federal Regulations for use in food range 0-2000 nephelometric turbidity units (NTU). In addi and/or fruit coatings. The ingredients for all of these coat tion, the amount of cream that separated by gravity was ob ings consist only of water, wax, fatty acids and a base (morpho served after storage at about 25°C for at least one week. line or ammonia, sometimes supplemented with KOH). For measurement of gloss, the emulsions were dried on The ranges indicated for various ingredients in Table 1 polystyrene weigh boats (0.5 g on an area of 25 cm2) or ap mean only that good emulsions were made in our laboratory plied to apples or citrus (0.3 ml per fruit). Gloss was evaluated within that range. Sometimes our only attempts were within by panel or by measurement of gloss units (G.U.) with a re that range, and sometimes poor emulsions were made with in flectance meter (micro-TRI-gloss, BYK Gardner Inc., Silver gredients outside that range. Table 1 shows only the successes Spring, MD). Tendency of coatings to 'fracture' was deter and not the many failures. mined subjectively after hitting and rubbing together two Carnauba wax emulsions. The type of carnauba wax used pieces of fruit, then wiping the contact surfaces with a black was Yellow No. 3 for most of our carnauba wax formulations. cloth, and rating the amount of coating found on the cloth Those made in the pressure cell generally had lower turbidity (1.0 = none; 2.0 = minimal; 3.0 = significant but acceptable; and cream than those made in beakers by water-to-wax or 4.0 = heavy and unacceptable; and 5.0 = virtually all coating wax-to-water methods, and the same was true for other waxes removed). as well. This is generally well known (Burns and Straus, 1965). The coatings applied to citrus fruit consisted of mixtures However, pressure vessels are expensive and not always avail of a wax microemulsion made of various mixtures of a wax able. The water-to-wax method was used extensively for mor- emulsion and a wood rosin solution. The wax microemulsion pholine-based carnauba wax emulsions, and these were contained 7.6% carnauba No. 3, 8.2% E20, 0.8% Foral AX generally very easy to make. As a demonstration, a good qual and 4.5% morpholine and the balance water. The rosin solu ity carnauba wax microemulsion (turbidity = 530 NTU) was tion contained 16.4% Resinall 807A, 4.6% oleic acid, 8.8% made with a stirring rod being the only mixing equipment morpholine and the balance water. The five coatings used (data not shown). Carnauba emulsions made by the wax-to- consisted of 0, 5, 15, 30 and 100% of the rosin solution and water method, by contrast, generally were quite turbid, ex the balance wax microemulsion. The coated fruit were stored cept when Foral AX was added before emulsification (5% was 7 days at 21°C. Internal gases and air flux were measured (10 sufficient, data not shown).
Recommended publications
  • Pdf, 11.42 Mb
    FOTO: SAMUEL PORTELA INSTITUTIONS PARTICIPATING IN THE OVERALL COORDINATION VALIDATION WORKSHOP TECHNICAL TEAM AD2M CAATINGA ASSOCIATION ADECE Daniel Fernandes ASSOCIAÇÃO CAATINGA Kelly Cristina Luana Ribeiro CAPOL Lucas Moura CARNAÚBA DO BRASIL Marília Nascimento CEROEPER Sandino Silva COETRAE Samuel Portela EMBRAPA SDA FAEC Marcílio Melo FETRAECE FIEC EMBRAPA Vicente de Paula Queiroga FONCEPI GIZ FAEC HARIBO Ivonisa Holanda INSS Ossian Dias Jucileide Nogueira MEMORIAL DA CARNAÚBA MAPA GIZ MMA Octávio Nogueira MPT-CE Louisa Lösing MPT-PI INSS MPT-RN Ruiter Lima NATURA Irisa Viana NATURAL WAX Rafael Ferreira NRSC NUTEC PONTES INDÚSTRIA DE CERA Alessandra Nascimento Souza de Oliveira RODOLFO G. MORAES - ROGUIMO Iêda Nadja Silva Montenegro SDA SEJUS MMA Daniel Barbosa SINDCARNAÚBA SRTE-CE UEBT SRTE-RN Ronaldo Freitas STDS Rodrigo de Próspero UEBT ESPECIALISTAS CONVIDADOS UECE Carolina Serra INVITED EXPERTS Jessika Sampaio GRAPHIC DESIGN AND LAYOUT Luana Ribeiro e Kelly Cristina FOTO: RENATO STOCKLER ACKNOWLEDGEMENTS This handbook was developed through a partnership between the Ministry of Agriculture, Livestock and Food Supply (MAPA), the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the Associação Caatinga, within the framework of the Private Sector Action for Biodiversity Project, as part of the International Climate Initiative (IKI). The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) supports this initiative based on a decision taken by the Bundestag. Acronyms ABNT - Brazilian
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,755,550 Shuman Et Al
    United States Patent (19) 11 Patent Number: 4,755,550 Shuman et al. (45) Date of Patent: Jul. 5, 1988 (54 READHERING AND REMOVABLE 56 References Cited ADHESIVE U.S. PATENT DOCUMENTS 4,644,026 2/1987 Shuman et al. .. ... 524/270 (75) Inventors: Ralph J. Shuman, Needham; Barbara 4,657,960 4/1987 Shuman et al. .. ... 524/270 Burns, Auburn, both of Mass. 4,684,685 8/1987 Shuman et al. ..................... 524/270 73) Assignee: Dennison Manufacturing Company, Primary Examiner-Ronald W. Griffin Framingham, Mass. Attorney, Agent, or Firm-Barry D. Josephs 57 ABSTRACT *) Notice: The portion of the term of this patent Agelled solid adhesive for coating substrates, typically subsequent to Feb. 17, 2004 has been paper. The adhesive can be made available in stick form disclaimed. and is easily applied in even coats to any surface area of the substrate. The adhesive has sufficient tack enabling the coated substrate to instantly adhere to essentially (21) Appl. No.: 29,031 any free contact surface upon gently pressing the sub strate to the free surface. The adhesive coated substrate (22 Filed: Mar. 23, 1987 is easily removable from the contact surface by manu ally lifting it thereform. The adhesive permits readher ence of the adhesive coated substrate to the same or Related U.S. Application Data different free contact surfaces. An adhesive coated 63 Continuation of Ser. No. 900, 112, Aug. 25, 1986, Pat. paper substrate will readhere many times to free paper No. 4,684,685, which is a continuation-in-part of Ser. contact surface. The preferred gelled adhesive product No.
    [Show full text]
  • Morpholine: a Glazing Agent for Fruits and Vegetables Coating/Waxing (IJSTE/ Volume 2 / Issue 11 / 119) with Glazing Agent
    IJSTE - International Journal of Science Technology & Engineering | Volume 2 | Issue 11 | May 2016 ISSN (online): 2349-784X Morpholine: A Glazing Agent for Fruits and Vegetables Coating/Waxing Rupak Kumar Suman Kapur Research Scholar Senior Professor Department of Biological Sciences Department of Biological Sciences BITS-Pilani, Hyderabad Campus, Hyderabad-500078, India BITS-Pilani, Hyderabad Campus, Hyderabad-500078, India Abstract The saying “an apple a day keeps the doctor away” probably gives us the impression that apples are the healthiest fruits. But besides the fact that it rhymes, does it really have no adverse effects if we eat a bright red wax coated apple every day? Morpholine (C4H9NO) is a chemical used as emulsifier in the preparation of wax coatings for fruits and vegetables to help them last longer and remain fresh even during prolonged transit. Morpholine oleate is added to wax as it enables spreading wax in water based liquid for use as a protective coating to prevent contamination by pests and diseases. Morpholine alone does not appear to pose a health concern because morpholine itself is neither a carcinogen nor a teratogen and does not cause chronic toxicity. However, it is a precursor for potent carcinogenic nitrosamines. Keywords: Carcinogen, Emulsifier, Morpholine, Teratogen, Wax Coating ________________________________________________________________________________________________________ I. INTRODUCTION The practice of fruit/vegetable coating was accepted long before their associated chemistries were understood, and are still practiced till date. The first wax coating was applied to citrus fruits in 12th-13th centuries in China. Today, it has expanded rapidly for retaining quality of a wide variety of foods/vegetables, with total annual revenue exceeding $100 million [1].
    [Show full text]
  • Extracts and Tinctures of Cannabis
    WHO Expert Committee on Drug Dependence Critical Review …………….. Extracts and tinctures of cannabis This report contains the views of an international group of experts, and does not necessarily represent the decisions or the stated policy of the World Health Organization © World Health Organization 2018 All rights reserved. This is an advance copy distributed to the participants of the 41st Expert Committee on Drug Dependence, before it has been formally published by the World Health Organization. The document may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means without the permission of the World Health Organization. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use.
    [Show full text]
  • Packaging Food and Dairy Products for Extended Shelf-Life Active Packaging: Films and Coatings for Ex- 426 Shelf Life, ESL Milk and Case-Ready Meat
    Packaging Food and Dairy Products for Extended Shelf-Life Active packaging: Films and coatings for ex- 426 shelf life, ESL milk and case-ready meat. In the last two years, there tended shelf life. Paul Dawson*, Clemson University. has been substantial growth in extended shelf life milk packaged in sin- gle serve PET or HDPE containers. The combination of ESL processing Shelf life encompasses both safety and quality of food. Safety and and a plastic container results in an extended shelf life of 60 to 90 days, spoilage-related changes in food occur by three modes of action; bi- and at the same time provides consumers with the attributes they are ological (bacterial/enzymatic), chemical (autoxidation/pigments), and demanding from the package: convenience, portability, and resealabil- physical. Active packaging may intervene in the deteriorative reactions ity. The second example of how polymers are part of the solution to by; altering the package film permeability, selectively absorbing food extend shelf life is focused on case-ready beef. Here, a combination of components or releasing compounds to the food. The focus of this re- a polymer with the appropriate gas barrier and a modified atmosphere port will consider research covering impregnated packaging films that re- allows beef to retain its bright red color longer, extending its shelf life. lease compounds to extend shelf life. The addition of shelf life extending Plastics are increasingly used in food packaging and will be part of the compounds to packaging films rather than directly to food can be used future of extended shelf life products. to provide continued inhibition for product stabilization.
    [Show full text]
  • HISTORY of WESTERN OIL SHALE HISTORY of WESTERN OIL SHALE
    / _... i';C4 - SHELF , Historyof Western Oil Shale Paul L. Russell . " The Center for Professional Advancement Paul Russell received his degree from the University of Arizona. After working for Industry for five years, he began his involvement with oil shale in 1948 when he joined the U.S. Bureau of Mines and was assigned to Rifle, Colorado, to work at Anvil Points. During the middle fifties, he was assigned to the Atomic Energy Com­ mission to study the extraction of ura­ nium from the Chattanooga Shales in Tennessee. He became Research Director of the U.S. Bureau ofMines in 1967 and served in this capacity until he retired in 1979. During these years his involvement with oil shale intensified. Currently, he is an engineering consultant. ISBN: 0-86563-000-3 ,._-------_._.. V.D.ALLRED 6016 SOUTH BANNOCK LI7TLETON. COLO. 80120 ....~ ...........~..... This compelling history spans 65 years of western oil shale development from its begin­ ning to the present day. These were the years in which most of the present-day retorting pro­ cesses were invented and devel­ oped,leading to present studies of in-situ retorting, and to the resumption of leasing of fed­ eral oil shale lands. The many excellent illustra­ tions and contemporary photo­ graphs in themselves provide a pictorial record of an era when the United States was "wild over oil"-an era when Gov­ ernment estimates of billions of barrels of oil in western oil shales were used to advan­ tage for questionable-if not fraudulent-stock promotions designed to raise capital for development, or to fatten the promoters' pockets.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0021385 A1 SMITH Et Al
    US 20170021385A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0021385 A1 SMITH et al. (43) Pub. Date: Jan. 26, 2017 (54) METHODS OF PREPARING SOLID Publication Classification PARTICLE SOLUTIONS FOR FORMING (51) Int. Cl. TEXTURED SURFACES BSD L/12 (2006.01) (71) Applicant: LiquiGlide Inc., Cambridge, MA (US) BOSD 3/02 (2006.01) (52) U.S. Cl. (72) Inventors: J. David SMITH, Arlington, MA (US); CPC ............... B05D 1/12 (2013.01); B05D3/0254 Tao CONG, Quincy, MA (US); (2013.01); B05D 2320/00 (2013.01) Ravikumar VASUDEVAN, Somerville, MA (US); Hamideh Mohammad (57) ABSTRACT ALIPOUR, Cambridge, MA (US); Embodiments described herein relate to methods of forming JiaPeng XU, Newton, MA (US); liquid-impregnated Surfaces, and in particular to methods of Charles W. HIBBEN, Darien, CT preparing Solid particle solutions for forming textured Sur (US); Brian John JORDAN, faces which can be impregnated with an impregnating liquid Winchester, MA (US) to form a liquid-impregnated Surface. In some embodiments, a method of forming a textured Surface includes dissolving (21) Appl. No.: 15/053,660 a solid in a solvent to form a solution. The solid has a concentration, which is less than a first Saturation concen (22) Filed: Feb. 25, 2016 tration of the solid in the solvent at a first temperature and greater than a second saturation concentration of the solid in the solvent at a second temperature. The solution is allowed Related U.S. Application Data to form a solid particle solution. The solid particle solution (60) Provisional application No. 62/120,630, filed on Feb.
    [Show full text]
  • Add-On Rice-Bran-Wax-2018.Pdf [Pdf]Download
    SPECIALTY WAXES FROM KAHL WAX Rice bran is covered by a waxy layer which protects the rice grain against humidity and other environmental influences. In the extraction process of rice bran oil the wax arises as byproduct and would be disposed of if not used as a raw material. Rice bran wax is suitable for a wide variety of color cosmetics, skin and hair care products. KahlWax offers this finest specialty wax in three different forms: 2811 Rice Bran Wax, 2811P Rice Bran Wax Beads, and 2811P7 Rice Powder. The new KahlWax product 2811P7 Rice Powder is a very mild scrubbing ingredient for extremely gentle deep-cleansing of the skin without causing any redness or irritation. Even formulations with 2811P7 Rice Powder which are used daily just carefully polish the skin, giving a healthy radiance and a perfect complexion. 2811P7 Rice Powder can also be used as a natural, soft-focus agent. It has a strong mattifying effect thanks to its influence on light reflection. Additionally it reduces skin gloss by absorbing sebum. Used in a cream or foundation it optically reduces wrinkles and blurs perfectly, allowing claims such as porcelain-like complexion and camera-ready look. The powder particles are round-shaped and roll over the skin leaving a pleasant, dry, and velvety skin feel. 2811P7 Rice Powder should be added to formulations at temperatures below 50 °C to avoid melting. RECOMMENDED FORMULATION WITH RICE POWDER IT'S NO CRIME TO PRIME | FACE PRIMER | SC-FAC-007-02 | TUBE Applying this face primer smoothes texture, boosts coverage and improves wear and lasting.
    [Show full text]
  • Rosin-Modified Phenolic Resin Compositions and Their Production
    Europaisches Patentamt 0 041 838 ® ê European Patent Office ® Publication number: Office européen des brevets B1 EUROPEAN PATENT SPECIFICATION ® Date of publication of patent spécification: 05.02.86 © Intel.4: C 08 G 8/34, C 08 L 61/14, C 09 D 11/10 (§) Application number: 81302492.4 (S) Date offiling: 04.06.81 (54) Rosin-modified phenolic resin compositions and their production. (§) Priority: 05.06.80 JP 74920/80 (§) Proprietor: DAINIPPON INK AND CHEMICALS, 30.09.80 JP 135184/80 INC. 30.09.80 JP 135185/80 35-58, Sakashita 3-chome 30.09.80 JP 135186/80 Itabashi-ku, Tokyo 174 (JP) (43) Dateof publication of application: (72) Inventor: Homma, Minoru 16.12.81 Bulletin 81/50 3-9-7 Kurosunadai Chiba-shi Chiba-ken (JP) Inventor: Kudo, Kin-ichi (§) Publication of the grant of the patent: c/o Mr. Muramatsu 2-21-8 Matsunami-cho 05.02.86 Bulletin 86/06 Chiba-shi Chiba-ken (JP) Inventor: Okoshi, Noboru 5-3-2-305 Masago (H) Designated Contracting States: Chiba-shi Chiba-ken (JP) DEFRGB Inventor: Shimoyama, Shoichi 3-6-14 Tsubakimori-cho Chiba-shi Chiba-ken (JP) (§) References cited.: . Inventor: Tashiro, Nansei DE-A-2 549 902 2848-100 Kubota 0Q DE-C- 831 323 Sodegaura-machi Kimitsu-gun Chiba-ken (JP) FR-A- 693 899 00 GB-A-486341 C0 @ Representative: Myerscough, Philip Boyd et al 00 J.A. Kemp & Co. 14, South Square Gray's Inn London, WC1R5EU (GB) The file contains technical information submitted after the application was filed and o not included in this specification o Note: Within nine monthsfrom the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Mineral Oil (Medium Viscosity)
    MINERAL OIL (MEDIUM VISCOSITY) Prepared at the 76th JECFA, published in FAO JECFA Monographs 13 (2012), superseding specifications for Mineral oil (Medium and low viscosity), class I prepared at the 59th JECFA (2002), published in FNP 52 Add 10 (2002) and republished in FAO JECFA Monographs 1 (2005). An ADI of 0-10 mg/kg bw was established at the 59th JECFA for mineral oil (medium and low), class I. At the 76th JECFA the temporary ADI and the specifications for mineral oils (Medium and low viscosity), class II and class III were withdrawn. SYNONYMS Liquid paraffin, liquid petrolatum, food grade mineral oil, white mineral oil, INS No. 905e DEFINITION A mixture of highly refined paraffinic and naphthenic liquid hydrocarbons with boiling point above 200°; obtained from mineral crude oils through various refining steps (eg. distillation, extraction and crystallisation) and subsequent purification by acid and/or catalytic hydrotreatment; may contain antioxidants approved for food use. C.A.S. number 8012-95-1 DESCRIPTION Colourless, transparent, oily liquid, free from fluorescence in daylight; odourless FUNCTIONAL USES Release agent, glazing agent CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Insoluble in water, sparingly soluble in ethanol, soluble in ether Burning Burns with bright flame and with paraffin-like characteristic smell PURITY Viscosity, 100° 8.5-11 mm2/s See description under TESTS Carbon number at 5% Not less than 25 distillation point The boiling point at the 5% distillation point is higher than: 391°. See description under TESTS Average molecular 480-500 weight See description under TESTS Acidity or alkalinity To 10 ml of the sample add 20 ml of boiling water and shake vigorously for 1 min.
    [Show full text]
  • Anti-Oxidant and Anti-Bacterial Properties of 1-Octacosanol
    chem io ist t B ry n & la P P h f y Sengupta et al., J Plant Biochem Physiol 201, 6:1 o s l i Journal of a o l n DOI: 10.4172/2329-9029.1000206 o r g u y o J ISSN: 2329-9029 Plant Biochemistry & Physiology Research Article Article Open Access Anti-Oxidant and Anti-Bacterial Properties of 1-Octacosanol Isolated from Rice Bran Wax Sengupta S1*, Nandi I1, Bhattacharyya DK2 and Ghosh M1 1Department of Chemical Technology, University College of Science and Technology, University of Calcutta, Kolkata, West Bengal, India 2School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur (BESUS), Howrah, India Abstract Octacosanol, a primary alcohol, was isolated from rice bran wax and characterized by GCMS and XRD techniques, which confirmed the identity and purity of the isolated octacosanol. Five different concentrations of the compound ranging from 0.01 mg/ml, 0.05 mg/ml, 0.1 mg/ml, 0.5 mg/ml to 1.0 mg/ml were prepared in isopropanol. The antioxidant activities of octacosanol were studied at these concentrations for four in vitro assay systems including DPPH radical scavenging activity, reducing activity, metal chelation activity and inhibition of lipid peroxidation. Maximum antioxidant potency was displayed at 1.0 mg/ml for all the assays except the metal-chelation assay which demonstrated highest activity at 0.5 mg/ml. Octacosanol also showed anti-bacterial activities against Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis as observed by disc assay against concentrations of 1 mg/ml and 2 mg/ml.
    [Show full text]
  • Salicylic Acid
    Treatment Guide to Common Skin Conditions Prepared by Loren Regier, BSP, BA, Sharon Downey -www.RxFiles.ca Revised: Jan 2004 Dermatitis, Atopic Dry Skin Psoriasis Step 1 - General Treatment Measures Step 1 - General Treatment Measures Step 1 • Avoid contact with irritants or trigger factors • Use cool air humidifiers • Non-pharmacologic measures (general health issues) • Avoid wool or nylon clothing. • Lower house temperature (minimize perspiration) • Moisturizers (will not clear skin, but will ↓ itching) • Wash clothing in soap vs detergent; double rinse/vinegar • Limit use of soap to axillae, feet, and groin • Avoid frequent or prolonged bathing; twice weekly • Topical Steroids Step 2 recommended but daily bathing permitted with • Coal Tar • Colloidal oatmeal bath products adequate skin hydration therapy (apply moisturizer • Anthralin • Lanolin-free water miscible bath oil immediately afterwards) • Vitamin D3 • Intensive skin hydration therapy • Limit use of soap to axillae, feet, and groin • Topical Retinoid Therapy • “Soapless” cleansers for sensitive skin • Apply lubricating emollients such as petrolatum to • Sunshine Step 3 damp skin (e.g. after bathing) • Oral antihistamines (1st generation)for sedation & relief of • Salicylic acid itching give at bedtime +/- a daytime regimen as required Step 2 • Bath additives (tar solns, oils, oatmeal, Epsom salts) • Topical hydrocortisone (0.5%) for inflammation • Colloidal oatmeal bath products Step 2 apply od-tid; ointments more effective than creams • Water miscible bath oil • Phototherapy (UVB) may use cream during day & ointment at night • Humectants: urea, lactic acid, phospholipid • Photochemotherapy (Psoralen + UVA) Step 4 Step 3 • Combination Therapies (from Step 1 & 2 treatments) • Prescription topical corticosteroids: use lowest potency • Oral antihistamines for sedation & relief of itching steroid that is effective and wean to twice weekly.
    [Show full text]