CPCX Cardone Reman Diesel Fuel Injection Pump Mkt(BRO)

Total Page:16

File Type:pdf, Size:1020Kb

CPCX Cardone Reman Diesel Fuel Injection Pump Mkt(BRO) Remanufactured DIESEL FUEL INJECTION PUMP CARDONE Remanufactured Diesel Fuel Injection Pumps are re-engineered, Product Description built and tested to match O.E. performance. Our unique re-engineering process allows us to identify application-specific failure modes to address and Features and Benefits correct during re-assembly. Each unit features 100% new O-rings and gaskets to ensure leak-free, long-lasting performance. Every injector is tested at Good Maintenance Practices operating pressure ranges to measure fuel delivery and response time. • All gaskets and O-rings are replaced 100% to ensure Signs of Wear and optimal performance. Troubleshooting • All products are completely disassembled, thoroughly cleaned FAQs and inspected. All components are renewed or replaced as necessary to ensure high-quality and durability. • Each assembled unit is individually tested to ensure it meets or exceeds O.E. form, fit and function. • Improvements based on typical failure modes of the original fuel injection pumps are incorporated into the remanufacturing of the replacement unit, where applicable. This translates into longer service life, lower cost and reduced down time for the driver. Good Maintenance Practices • Use of fuels with higher sulfur content will impair the function of the emission components. • Replace fuel filter(s) at intervals specified by the O.E. manufacturer. • Do not allow fuel tank level to drop below one-quarter of the tank. • Do not use diesel fuel or additives not recommended for your vehicle. Subscribe to receive email notification whenever cardone.com we introduce new products or technical videos. Tech Service: 888-280-8324 Click Fuel/Air Systems Tech Help for technical tips, articles and installation videos. Rev Date: 062018 Signs of Wear and Troubleshooting Product Description • Illumination of MIL/SES indicator Features and Benefits • Diagnostic trouble codes present Good Maintenance Practices • Lack of performance Signs of Wear and • No power Troubleshooting • Engine runs rough FAQs • Vehicle may not start FAQs Do I need to replace the engine oil at regular intervals? • Yes, most turbocharger failures are caused by oil starvation from old or contaminated oil. What’s the purpose of a Diesel Fuel Injection Pump? • The diesel fuel injection pump pressurizes and distributes diesel fuel to the injector nozzles to exceed the compression pressure in the combustion chambers of a diesel engine. How does a Diesel Fuel Injection Pump operate? • The diesel fuel injection pump is driven indirectly by the crankshaft through the use of gears, chains or a timing belt that also drives the camshaft. The diesel fuel injection pump is driven at half the crankshaft speed in a conventional four-stroke diesel engine. Fuel timing is controlled by injecting the pressurized diesel fuel just before top dead center of each cylinder’s compression stroke. What causes a Diesel Fuel Injection pump to fail? • Poor quality diesel fuel can cause sludge to form in the tank and throughout the entire fuel system. Sludge forms a coating that can plug fuel filters, affect the combustion process and create acids that compromise the tank’s fuel pump, fuel injectors and fuel injection pump. A lack of lubricity is another common cause of failure. This can occur if the vehicle is constantly running on a low fuel tank level. How much pressure does a Diesel Fuel Injection Pump generate? • Early design pumps generated 10,000 to 15,000 psi. Modern pumps have the capability of generating 20,000 to 30,000 psi, depending on the design of the pump. Is the quality of Diesel Fuel really that important? Product Description • Yes, using poor quality fuel can lead to debris and sludge build up in Features and Benefits the fuel tank and fuel system. This build up can result in a loss of power, excessive exhaust smoke, foul odor coming from the fuel tank and Good Maintenance corrosive pitting in the fuel injectors and fuel injection pump. Practices How can I tell if the diesel fuel I’m using is of poor quality? Signs of Wear and Troubleshooting • Look for a clogged and slimy filter or diesel fuel that is dark or hazy. FAQs.
Recommended publications
  • Terms and Definitions of Fuel Injection Management Systems
    THROTTLE BODY TERMS AND DEFINITIONS OF INJECTION (TBI) — In TBI FUEL INJECTION systems the throttle body assembly has two major MANAGEMENT SYSTEMS functions: regulate the air- flow, and house the fuel Throttle Body Assembly (TBA) — The throttle body injectors and the fuel pres- assembly (also called air valve), controls the airflow to the sure regulator. The choices engine through one, two or four butterfly valves and of throttle bodies range provides valve position feedback via the throttle position from single barrel/single sensor. Rotating the throttle lever to open or close the injector unit generally sized for less than 150 HP to four bar- passage into the intake manifold controls the airflow to the rel/four injector unit capable of supporting fuel and air flow for engine. The accelerator pedal controls the throttle lever posi- 600 HP. The injectors are located in an injector pod above the tion. Other functions of the throttle body are idle bypass air throttle valves. The quantity of fuel the injector spray into the control via the idle air control valve, coolant heat for avoiding intake manifold is continuously controlled by the ECU. Most of icing conditions, vacuum signals for the the TBI systems use bottom fed fuel injectors. ancillaries and the sensors. MULTI-POINT FUEL INJECTION (MPFI) — In the multi point fuel FUEL INJECTOR — There are basically three approaches in injection system an injector is located in the intake manifold delivering the fuel to the engine: passage. The fuel is supplied to the injectors via a fuel rail in • Above the throttle plate as in throttle body injection the case of top fed fuel injectors and via a fuel galley in the • In the intake port toward the intake valves as in multi-port injec- intake manifold in the case of bottom fed fuel injectors.
    [Show full text]
  • Service Manual W-46 Marine Diesel Engine
    -(£R/J· ((, " .... ·• 1-_,. l 1ft ~0 q "" ~to""' SERVICE MANUAL W-46 MARINE DIESEL ENGINE .. AND 15/12: BTD MARINE DIESEL GENERATOR SINGLE AND THREE PHASE PUBLICATION. N0.34907 REVISION. 2 OCTOBER. 2017 l~ rWESTERBEKE. ~ WESTERBEKE CORPORATION • 150 JOHN HANCOCK ROAD .J MYLES STANDISH INDUSTRIAL PARK• TAUNTONMA 02780 WEBSITE: WWW.WESTERBEKE.COM .. , A wARNING Exhaust gasses contain Carbon Monoxide, an odorless and colorless gas. Carbon Monoxide is poisonous and can cause unconsciousness and death. Symptoms of Carbon Monoxide exposure can include: •Dizziness • Throbbing in Temples •Nausea • Muscular Twitching •Headache • Vomiting • Weakness and Sleepiness • Inability to Think Coherently IF YOU OR ANYONE ELSE EXPERIENCE ANY OF THESE SYMPTOMS, GET OUT INTO THE FRESH AIR IMMEDIATELY. If symptoms persist, seek medical attention. Shut down the unit and do not restart until it has been inspected and repaired. A WARNING DECAL is provided by WESTERBEKE and should be fixed to a bulkhead near your engine or generator. WESTERBEKE also recommends installing CARBON MONOXIDE DETECTORS in the living/sleeping quarters of your vessel. They are inexpensive and easily obtainable at your local marine store. CALIFORNIA PROPOSITION 65 WARNING Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm. TABLE OF CONTENTS INTRODUCTION ............................................... ...... 2 Serial Numbcr ................................................ 2 TEmNG FOR OVERHAUl .................................. .... 3 Compression Test .......................................... 3 Compression Pressure ................................... 3 ENGINE TROUBLESHOOTING (Pages 4-7) .............. 4 ENGINE DISASSEMBLY (Pages 8-15) .................... 8 Fuel lnjectiun Pump Removal ....................... 8 Order of Engine Disassembly ..................... 10 INSPECTION AID REPAIR (Pages 16-35) ........... 16 ENGINE ASSEMBLY (Pages 36-47) ....................
    [Show full text]
  • Fuel Injection Basics and Governor Principles Chapter 20 OBJECTIVES
    Fuel Injection Basics and Governor Principles Chapter 20 OBJECTIVES • Understand the objectives of a fuel management system. • Interpret the contents of later chapters dealing with hydromechanical and electronic engine management. • Define timing and explain the need to vary it for optimum performance and emissions. OBJECTIVES (Cont.) • Define metering and its application in a fuel system. • Explain atomization and the droplet sizings required for a direct-injected diesel engine. • Describe the factors that determine emitted droplet sizing. OBJECTIVES (Cont.) • Explain the overall objectives of an engine fuel system. • Describe the relationship between cylinder pressure and crank throw to crank axis angle. • Relate how the fuel system manages engine cylinder pressures. OBJECTIVES (Cont.) • Describe the relationship between pumping, injection, and combustion in hydromechanical and electronic engines. • Understand why “smart” injector nozzles are required on most post-2007 diesel engines. • Outline the reasons why diesel engines have to be governed. OBJECTIVES (Cont.) • Classify governors by management mode. • Interpret electronic governor performance terminology. • Interpret a flat profile diesel engine fuel map. OVERVIEW OF DIESEL FUEL INJECTION PRINCIPLES • The fuel system manages the engine. • The timing and quantity of fuel introduced into the engine cylinders determine: Engine power and engine emissions. OVERVIEW OF DIESEL FUEL INJECTION PRINCIPLES Diesel engines can be managed in two ways: 1. Hydromechanical engine management (engines managed without a computer). 2. Electronic management (engines managed by computer). Managing Fueling Outcomes • Timing • Pressurizing and atomization • Metering • Distribution Managing Fueling Outcomes • Timing, Fuel delivery timing is critical during all engine operating phases. • Typically, fuel injection begins just slightly before the piston completes its compression stroke.
    [Show full text]
  • Nos Roots-Type Nitrous Systems Supercharger Series
    NOS ROOTS-TYPE NITROUS SYSTEMS SUPERCHARGER SERIES P/N 13350NOS & 02520NOS INSTRUCTION P/N A5118-SNOS APPLICATIONS: These kits are designed to work on highly modified domestic V-8 engines using 671 and 871 roots-type superchargers, with mechanical fuel injection or carburetion. PERFORMANCE POTENTIAL: These kits come with jetting that allows power gain to be easily adjusted to 225-250 HP. Typical power gains for the roots-type supercharger systems are as follows: Nitrous/Fuel Power Gain (BHP) Jetting 16/20* 80 20/24* 120 26/29 175 32/36* 200 36/38* 200+ *Not supplied with kits. At the 200+ horsepower level, the Cheater nitrous solenoid is flowing at maximum capability. Increasing jetting sizes beyond this point will probably not result in any performance increase. If performance greater than 200+ horsepower is desired, it is recommended that the roots-type supercharger plate system be upgraded with a Pro Shot nitrous solenoid. This will increase maximum power capability to 325+. TUNING SUGGESTIONS: The tuning combinations listed on the next page are for engines using a moderate amount of supercharger boost (5-10 psi). If attempting to use one of these systems with elevated boost, extreme care should be taken in arriving at proper ignition timing setting. Ignition timing will vary with engine combination, but you can expect at least 4°-8° less than the value recommended in these tables. When using kit P/N 02520NOS at higher power levels, gasoline of at least 116 octane is required. Suggested Tuning Combinations for NOS Roots-Type Super
    [Show full text]
  • FUEL INJECTION SYSTEM for CI ENGINES the Function of a Fuel
    FUEL INJECTION SYSTEM FOR CI ENGINES The function of a fuel injection system is to meter the appropriate quantity of fuel for the given engine speed and load to each cylinder, each cycle, and inject that fuel at the appropriate time in the cycle at the desired rate with the spray configuration required for the particular combustion chamber employed. It is important that injection begin and end cleanly, and avoid any secondary injections. To accomplish this function, fuel is usually drawn from the fuel tank by a supply pump, and forced through a filter to the injection pump. The injection pump sends fuel under pressure to the nozzle pipes which carry fuel to the injector nozzles located in each cylinder head. Excess fuel goes back to the fuel tank. CI engines are operated unthrottled, with engine speed and power controlled by the amount of fuel injected during each cycle. This allows for high volumetric efficiency at all speeds, with the intake system designed for very little flow restriction of the incoming air. FUNCTIONAL REQUIREMENTS OF AN INJECTION SYSTEM For a proper running and good performance of the engine, the following requirements must be met by the injection system: • Accurate metering of the fuel injected per cycle. Metering errors may cause drastic variation from the desired output. The quantity of the fuel metered should vary to meet changing speed and load requirements of the engine. • Correct timing of the injection of the fuel in the cycle so that maximum power is obtained. • Proper control of rate of injection so that the desired heat-release pattern is achieved during combustion.
    [Show full text]
  • Diesel Systems INJECTION PUMP SPECIFICATION
    INJECTION PUMP MODEL J D B 6 3 5 J T 2 48 8 SUPERSEDES MODEL SPECIFICATION diesel systems CUSTOMER PART NO. AR52416 CUSTOMERS’ NAME 0 ADDRESS EDITION NO. 12 DATED I-&66‘ John Deere Waterloo Tractor Works ENGINE 6404T FULL LOAD RPM 2400 Waterloo, Iowa AFPLlCATloN JD644 LOADER GOV. REGULATION 10 % ISSUED BY 6. DuPont NOTE: ALL SPEEDS ARE IN ENGINE RPM UNLESS OTHERWISE NOTED TEST STAND 1. INJECTION LINES. 3/32”l.D. BY 20”LONC 8. CHECK POINT.. 2200 80-90 9. CHECK POINT . 1500 90-94 2. TEST OIL TEMPERATURE. .110-l 15” F. IO. CHECK POINT . 2400 85-89 3. NOZZLE OPENING PRESSURE. llZSD12 NOZZLES1 2500 PSI I. SET TORQUE SCREW.. 2. CHECK SHUT-OFF (WOT). 2400 3 MAX. 4 CALIBRATING OIL (S.B. 201) 3. HIGH IDLE (WOT). 2650 11-13 4. GOVERNOR CUT.OFF.. 2700 6 MAX. ;;;~,;E;;;;s;;P;,;N‘ 162 :?!/l$$< :~$l$#?ff ’ SPEED 5. LOW IDLE . 800 15-17 PUMP ACCESSORIES 6 TRANS. PUMP PRESS. (WOT) I Delivery Valve 7. CHECK SHUT-OFF (WOT). 400 3 MAX. 2. Speed Advance 8. MIN. CRANK SPEED DEL.. 150 60 MIN. 12 MIN 3. Electric Shut-off (12V E.T.R.) 4. Push-Pull Trimmer NOTE: Return Oil to be 150-500 CC/Min. at Rated RPM. PUMP SETTINGS] t . ..lTEMS APPLY TO SERVICE ONLY] I 9. NAME PLATE. R!GHT lo, TIMED. jq?kf ’ . VlEWNG’ TRANS. PUMP END I. ROLLER TO ROLLER DIMENSION . 1.972 VI W GTRANS. PUMP ND _+.0005" CAM(Fbr FRe%tive End of Enjection)* 2. GOVERNOR LINKAGE GAP .
    [Show full text]
  • AP-42, Vol. I, 3.3: Gasoline and Diesel Industrial Engines
    3.3 Gasoline And Diesel Industrial Engines 3.3.1 General The engine category addressed by this section covers a wide variety of industrial applications of both gasoline and diesel internal combustion (IC) engines such as aerial lifts, fork lifts, mobile refrigeration units, generators, pumps, industrial sweepers/scrubbers, material handling equipment (such as conveyors), and portable well-drilling equipment. The three primary fuels for reciprocating IC engines are gasoline, diesel fuel oil (No.2), and natural gas. Gasoline is used primarily for mobile and portable engines. Diesel fuel oil is the most versatile fuel and is used in IC engines of all sizes. The rated power of these engines covers a rather substantial range, up to 250 horsepower (hp) for gasoline engines and up to 600 hp for diesel engines. (Diesel engines greater than 600 hp are covered in Section 3.4, "Large Stationary Diesel And All Stationary Dual-fuel Engines".) Understandably, substantial differences in engine duty cycles exist. It was necessary, therefore, to make reasonable assumptions concerning usage in order to formulate some of the emission factors. 3.3.2 Process Description All reciprocating IC engines operate by the same basic process. A combustible mixture is first compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture is then ignited, and the resulting high-pressure products of combustion push the piston through the cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston returns, pushing out exhaust gases, and the cycle is repeated. There are 2 methods used for stationary reciprocating IC engines: compression ignition (CI) and spark ignition (SI).
    [Show full text]
  • May 4, 1943. H. R. RICARDO 2,318,333 INTERNAL COMBUSTION ENGINE OPERATING on the - TWO-STROKE CYCLE with LIQUID FUEL Injection Filed Jan
    May 4, 1943. H. R. RICARDO 2,318,333 INTERNAL COMBUSTION ENGINE OPERATING ON THE - TWO-STROKE CYCLE WITH LIQUID FUEL INJEcTIoN Filed Jan. 17, 1940 ‘ 4 Sheets-Sheet 1 May 4, 1943. H. R. RICARDO ~ 2,318,333 INTERNAL COMBUSTION ENGINE OPERATING ON THE TWO-STROKE CYCLE WITH LIQUID FUEL INJECTION Filed Jan. 17, 1940 \ 4 Sheets-Sheet 2 mu,’ 7 A ttIn'ney .( May 4, 1943. ' H, R, RICAYRDO I 2,318,333 INTERNAL COMBUSTION ENGINE OPERATING ON THE TWO-STROKE CYCLE WITH LIQUID FUEL INJECTION , Filed Jan. 17, 1940 4 Sheets-Sheet 3 . D3 _' ' H, ' » Fig. 231 E > ‘B2 \\ \\ M, Invuntor A Home): May 4, 1943. ' H. R. RICARD/O 2,318,333 . INTERNAL COMBUSTION ENGINE OPERATING ON THE TWO-STROKE CYCLE WITH LIQUID FUEL INJECTION Filed Jan. 17, 1940 4 Sheets-Sheét 4 ‘ w 1? m‘ Invent!» ' . b v A Home) ‘Patented. May 4, 1943 I 2,318,333 , UNITED; STATES PATENT OFFICE ’ INTERNAL COMBUSTION ENGINE organ- ING ON The 'rwo-s'rnoxn CYCLE wrrII uoom FUEL INJECTION - _ Harry Ralph Ricardo,_ London, England Application January 17, 1940, Serial No. 314,323 Q / In Great Britain‘ January 17, 1939 c _ 4 Claims. ((1123-32) This invention relates internal combustion s only through one or more relatively narrow pas engines operating on the two-stroke cycle with sages. " v > / liquid fuel injection but employing fuel which is ' Where the combustion chamber in the cylinder always spark-ignited and thus distinctfrom en- ’ head, is of a bulbous form, theidiameter of the gines operating with compression ignition.
    [Show full text]
  • Condition/Concern Recommendation/Instructions
    Bulletin No.: PIP4949D Date: Aug-2014 Subject: Duramax Diesel Hard Start No Start P0087 P0088 P0191 P128E Or Injection Pump Replacement Models: 2010 - 2015 Chevrolet Express and Silverado 2010 - 2015 GMC Savana and Sierra Equipped with the 6.6L Duramax Diesel RPO codes LGH and LML This PI was superseded to update Recommendation/Instructions. Please discard PIP4949C. The following diagnosis might be helpful if the vehicle exhibits the symptom(s) described in this PI. Condition/Concern A dealer may encounter a customer concern of a hard start or a no start. DTCs P0087, P0088, P0191 or P128e may also be found. Normal SI Diagnostics may be inconclusive or lead to Fuel Injection Pump replacement. Recommendation/Instructions Complete the current SI diagnostics for any symptoms or DTCs found. If the current SI diagnostic has led to Fuel Injection Pump replacement, Fuel Pressure Regulator 1 must be inspected for magnetic metal debris. Note: Clean the area around regulator 1 before removal. It is possible that road debris could find its way to the regulator when it is removed. A small piece of dirt does not qualify the fuel system for the repairs recommended in this PI. Please see the pictures below for examples. Remove the Fuel Injection Pump / Pressure Regulator 1 for inspection. 1 The picture above is an example of a clean Pressure Regulator 1. If Pressure Regulator 1 is clean and there is no magnetic metal debris found, complete the SI repair procedure and replace the Fuel Injection Pump. 2 The pictures above are examples of Pressure Regulator 1 with the magnetic debris described If Pressure Regulator 1 is contaminated with debris as shown above, complete the following repairs: If working on a C/K Truck, it is strongly recommended to remove the engine from the vehicle and secure it to an engine stand to properly complete the repairs.
    [Show full text]
  • Bosch Inline Injection Pump Install, Cummins Application
    Inline Pump Removal and Installation Cummins engine with “lock timed” inline injection pump Removal 1. Clean the exterior of the injection pump and mounting surfaces. 2. Remove the fuel supply line and return lines, note the position of the overflow valve. 3. Remove the injection lines to the pump. 4. Remove the control linkage. See the OEM service manual. 5. Remove the fuel shutoff solenoid assembly, if equipped. 6. Remove the air fuel control (AFC) air line. 7. Disconnect Wastegate turbocharger control line (if applicable). 8. Disconnect the external oil feed line at the inboard side of the fuel injection pump (if applicable) and the main oil rifle. 9. Disconnect the external oil feed line at the rear of the pump or AFC latch- out if applicable. 10. Locate top dead center for cylinder Number 1. Push the top dead center pin into the hole in the camshaft gear while slowly barring the engine. Injection NOTE: Be certain to disengage the timing pin after locating top dead center. Fuel 11. Remove the fuel injection pump rear support mounting bracket. 12. Remove the gear cover access cap. 13. Remove the nut and washer use a gear puller to pull the fuel injection pump drive gear loose from the shaft. NOTE: Do not drop the nut and washer. Dropping the nut and washer will result in the need to remove the front cover. Oregon EUGENE 4036 West 1st Ave. Eugene, OR 97402 (541) 485-1434 www.oregonfuelinjection.com 14. Remove the four mounting nuts. 15. Remove the fuel injection pump. Inspection 1.
    [Show full text]
  • Electronically Controlled Diesel Injection Systems for Cars
    ELECTRONICALLY CONTROLLED DIESEL INJECTION SYSTEMS FOR CARS DIESEL KNOW-HOW DIESEL KNOW-HOW 2 | 3 HISTORY OF THE DIESEL ENGINE Diesel engines have long been established in passenger cars. Nearly every other new vehicle has a compression-ignition engine under the hood. These engines feature high torque and running smoothness, low consumption and low emissions. Their history is more than 100 years old. Milestones of the diesel engine 1897 1936 First diesel engine is introduced First series passenger car with 1927 diesel engine 1975 Diesel injection pump is ready for Distributor-type injection pump used series production in mass-produced models In 1892, Rudolf Diesel began researching his idea for a their trucks and agricultural vehicles with the new diesel completely new internal combustion engine with self-ignition. injection system. Not until five years later was he able to present the first diesel engine to the world. Increasing application variety It was 20 up at 175 RPM. Compared to the popular engine The diesel engine found more and more areas of application. concepts of the time, such as steam-engines and gasoline Along with trucks and tractors, diesel locomotives, ships, engines, Diesel‘s design had crucial advantages: Its engine airships and even airplanes (1929 Junkers, 1930 Fiat) were burned less fuel and was able to be set up for higher outputs. equipped with compression-ignition engines. Diesel‘s invention was first implemented in stationary and ship engines. High-speed diesel engines could not be implemented Injection systems for passenger cars, the most lucrative in the beginning because, in the early days, the fuel was product field in terms of numbers, initially remained injected into the combustion chamber using compressed air.
    [Show full text]
  • Gasoline Direct Injection: an Efficient Technology
    Available online at www.sciencedirect.com ScienceDirect Energy Procedia 90 ( 2016 ) 666 – 672 5th International Conference on Advances in Energy Research, ICAER 2015, 15-17 December 2015, Mumbai, India Gasoline Direct Injection: An Efficient Technology S.P. Chincholkara,*, Dr. J. G. Suryawanshib aDept of Mech Engg, KITS, Ramtek, 441106, India bDept. of Mech Engg, VNIT, Nagpur, 440010 India Abstract Most of the researchers wanted to work with diesel engine because of complexity in the gasoline engine. Author tried to review gasoline direct injection (GDI) a new technology in the gasoline engine with the objective to motivate the researchers to work with this field. This paper reviews the benefits of direct injection in the gasoline engine in terms of fuel consumption and emission. The effect of stratified and homogeneous mode on the performance parameter along with combustion system (wall guided/ spray guided and air guided), its extend feasibility and complexity in the individual and combine mode of operation is reviewed in detail. The review comes up with the need of optimization in mixture formation to reduce in-cylinder wall wetting, increase combustion stability, and extend up to which charge cooling occurs and feasibility of stratified mode operation in GDI engine. Optical diagnostic and CFD are the tools which can help in optimizing this complex system © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license © 2016 The Authors.Published by Elsevier Ltd. (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility ofthe organizing committee of ICAER 2015.
    [Show full text]