The Pennsylvania State University the Graduate School College Of

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School College Of The Pennsylvania State University The Graduate School College of Agricultural Sciences SPECIES-SPECIFICITY OF THREE COMMONLY USED AND TWO NOVEL MOSQUITO FIELD-SAMPLING DEVICES A Thesis in Entomology by Loyal Philip Hall © 2012 Loyal Philip Hall Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2012 ii The thesis of Loyal Philip Hall was reviewed and approved* by the following: Gary Felton Professor and Department Head of Entomology Thomas Baker Distinguished Professor of Entomology Thesis Advisor James Marden Professor of Biology Michael Saunders Professor of Entomology Matthew Thomas Professor of Entomology *Signatures are on file in the Graduate School. iii Abstract Effective sampling is a stepping-stone to efficient use of resources, targeted control efforts, and success in nuisance or vector mosquito management. Effective sampling to identify locations where disease-vectoring mosquitoes are present and to monitor population levels allows control measures to be targeted towards medically important mosquitoes, and can reduce the environmental and financial costs associated with widespread, indiscriminate pesticide application while also preventing the failure to initiate control in an area due to a perception that there are few important mosquitoes present. A comparative study between the CDC light trap, ABC light trap, Reiter-Cummings gravid trap, and two traps developed by the author was conducted to test for species-specificity of each trap type. It was found that while no trap was superior over-all, certain species of mosquitoes are more likely to be detected and their populations monitored by some types of traps compared to others and the novel traps were shown to often be as effective in sampling certain important target species of mosquito as the tested commercial mosquito traps. As with the other devices, for some species the novel traps were superior and for others they appeared to be a less effective sampling device. For example, Co. perturbans tended to prefer CDC light traps, Cx. salinarius tended to prefer Hall light traps, and Cx. pipiens tended to prefer Hall gravid and Reiters-Cummings gravid traps over the other traps included in the study. 14 different species were analyzed for trap preference; results were also analyzed for WNV-infections and variety of species. iv Contents List of Figures v List of Tables vii List of Abbreviations viii Acknowledgements ix Chapter 1, An introduction to mosquito sampling 1 Chapter 2. Species specificity of three commonly used mosquito sampling devices and two novel devices in the field. 9 Introduction 9 Materials and Methods 10 Results 18 Discussion 36 References 43 Appendix A: Number of Mosquitoes In Each Trap Type By Species 46 Appendix B: Minitab Output of Statistical Tests 47 v Figures Chapter 1. Figure 1. Larvae. Figure 2. Pupae. Figure 3. Standard dipper Figure 4. New Jersey light trap Figure 5. ABC and CDC light traps Figure 6. Reiter-Cummings gravid trap Chapter 2. Figure 7. Hall trap base Figure 8. Hall light trap Figure 9. Hall gravid trap Figure 10. ABC light trap Figure 11. CDC light trap Figure 12. RC gravid trap Figure 13. A typical set-up of a randomized complete block Figure 14. Histogram of the number of individuals of each species caught at a wastewater treatment plant site using the data from all 5 trap-types combined Figure 15. Histogram of the number of individuals of each species caught at a human-made wetland site using the data from all 5 trap-types combined Figure 16. Histogram of the number of individuals of each species caught at a wooded site prone to flooding using the data from all 5 traps combined Figure 17. Mean number of Culex pipiens captured per trap in the five different trap-types Figure 18. Mean number of Culex restuans captured per trap in the five different trap types Figure 19. Mean number of Culex salinarius captured per trap in the five different trap types Figure 20. Mean number of WNV-positive sub-samples per trap in the five different trap- types Figure 21. Mean number of Ochlerotatus trivitattus captured per trap in the five different trap-types Figure 22. Mean number of Aedes vexans captured per trap in the five different trap-types Figure 23. Mean number of Psorophora ferox captured per trap in the five different trap- types Figure 24. Mean number of Anopheles quadrimaculatus captured per trap in the five different trap-types Figure 25. Mean number of Coquillettidia perturbans captured per trap in the five different trap-types Figure 26. Mean number of Anopheles punctipennis captured per trap in the five different trap-types Figure 27. Mean number of Ochlerotatus canadensis captured per trap in the five different trap-types Figure 28. Mean number of Ochlerotatus japonicus captured per trap in the five different trap-types Figure 29. Mean number of Ochlerotatus triseriatus captured per trap in the five different trap-types Figure 30. Mean number of Psorophora columbiae captured per trap in the five different trap-types vi Figure 31. Mean number of Psorophora horrida captured per trap in the five different trap- types. Figure 32. Mean number of mosquitoes, for all species combined, captured per trap in the five different trap-types Figure 33. Mean number of different species captured per trap in the five different trap-types Figure 34. Mean number of species (non- Culex pipiens/restuans) captured per trap in the five different trap-types vii Tables Table 1. Number of mosquitoes in each trap type by species A Table 2. Number of mosquitoes in each trap type by species B Table 3. Number of mosquitoes in each trap type by species C Table 4. Raw two-way ANOVA test results. viii Abbreviations ABC American Biophysics Corporation Ae. Aedes An. Anopheles CDC Centers for Disease Control Co. Coquillettidia Cx. Culex EEE Eastern Equine Encephalitis Och. Ochlerotatus Ps. Psorophora RC Reiters-Cummings WNV West Nile Virus ix Acknowledgements. The Pennsylvania West Nile Program was instrumental to the success of this study. Their laboratory performed all of the identifications with the highest levels of skill and professionalism. The management allowed the use of this valuable Commonwealth resource because they saw the value in this study and the benefit it could bring to disease management and making their own program more effective at protecting human and animal health. 1 Chapter 1. An overview concerning mosquito sampling. Mosquito-vectored diseases, including malaria, yellow fever, eastern equine encephalitis, and West Nile virus, among others, kill millions of people each year and sicken hundreds of millions more. These numbers make mosquitoes the deadliest animals on earth. According to the Centers for Disease Control, a major priority in combating mosquito-vectored diseases is controlling mosquito populations through integrated pest management practices that incorporate surveillance, habitat modification, and changes in human behavior, along with pesticide applications that employ the least environmentally damaging yet effective control products available (Gubler et al., 2003). Effective sampling to identify locations where disease-vectoring mosquitoes are present and to monitor population levels allows control measures to be targeted towards medically important mosquitoes, and can reduce the environmental and financial costs associated with widespread, indiscriminate pesticide application while also preventing the failure to initiate control in an area due to a perception that there are few medically important mosquitoes present. The goal when sampling mosquitoes is to develop an accurate picture of the population of important species. There may be dozens of species present in a particular area. However, only certain species are important to a mitigation program or to public health officials. This study focuses on determining the efficacy of widely used mosquito sampling devices along with experimental devices developed by the author for specific mosquito species. Pennsylvania is well suited to mosquito studies. It is on the frost line, and here the ranges of northern and southern species overlap. The geologic history of the region has resulted in a wide variety of ecosystems located in close proximity. Human development of large swaths of land has resulted in the fracturing of natural habitats, reducing predators and allowing r- 2 strategists, like mosquitoes, to flourish. These urbanized areas provide prime habitats for many anthropophilic species. This all results in a large variety of disease-vectoring and nuisance species in Pennsylvania, where 59 species of mosquito are recognized by the state’s West Nile Virus Program. In Pennsylvania and the surrounding areas, several mosquito-vectored maladies are endemic, including West Nile virus (WNV), St. Louis encephalitis (SLE), LaCrosse encephalitis, eastern equine encephalitis (EEE), and dog heartworm. The introduction/reintroduction of other mosquito-vectored diseases is a concern of the state’s WNV program with the increase in international travel and invasive species. Malaria and chikungunya have appeared in sporadic outbreaks in border states. Dengue is a concern for introduction due to the invasive species Aedes albopictus that is now common in many parts of Pennsylvania, although it is currently not found in Lebanon County where the trials reported herein were conducted. There are many methods for sampling mosquitoes. Because mosquitoes have an aquatic larval stage and a flying adult stage the sampling processes can be divided into adult and larval sampling techniques. Mosquito larvae are aquatic, but do breathe air. Many genera, Figure 1. Larvae. such as Culex and Aedes have a snorkel-like “siphon” on their dorsal posterior, whereas the genera Anopheles simply have spiracles in the same location through which they breathe (Fig. 1). Pupae of all species have two breathing tubes located dorsally called “trumpets” (Fig. 2). Most Figure 2. Pupae. mosquito larvae and pupae hang on the surface tension of the water, with their breathing apparatus exposed to the air and the rest of the organism under water.
Recommended publications
  • 1 It's All Geek to Me: Translating Names Of
    IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Nuevos Registros De Especies De Mosquitos (Diptera: Culicidae) De La Comarca
    doi.org/10.21640/ns.v12i25.2651 Ciencias Naturales e Ingenierías Nuevos registros de especies de mosquitos (Diptera: Culicidae) de la Comarca Lagunera de Durango, México New records of mosquito species (Diptera: Culicidae) in La Comarca Lagunera, Durango, Mexico Rafael Vázquez-Marroquín1,2 Mónica Duarte-Andrade1 Luis M. Hernández-Triana3 Aldo I. Ortega-Morales4 Rahuel J. Chan-Chable1 1 Universidad Autónoma Agraria Antonio Narro, Postgrado en Ciencias en Producción Agropecuaria, Unidad Laguna 2 Instituto de Salud del Estado de Chiapas, Distrito de Salud No. X, Motozintla 3 Animal and Plant Health Agency, Virology Department, Rabies and Viral Zoonoses (VI1), London 4 Universidad Autónoma Agraria Antonio Narro, Departamento de Parasitología, Unidad Laguna Autor para correspondencia: Rafael Vázquez-Marroquín, E-mail: [email protected] Resumen Introducción: Un número notable de mosquitos tienen gran importancia médica y veterinaria debido a que transmiten numerosos patógenos que causan enfermedades en los animales y los seres humanos, por lo que conocer su taxonomía y distribución es fundamental para aplicar estrategias de control correctas. El objetivo de este estudio fue determinar la presencia de especies de mosquitos y su distribución en la Comarca Lagunera del estado de Durango, México. Método: Entre agosto y noviembre de 2018 fueron colectados mosquitos adultos utilizando aspiradores de campo (Insectzookas) en diferentes sitios de reposo en cuatro municipios. También se tomaron muestras de los hábitats acuáticos para la colecta de etapas inmaduras. Los especímenes adultos se mataron utilizando cámaras letales con vapores de trietilamina, mientras que las larvas y las pupas se almacenaron en tubos individuales para obtener los estadios adultos y las exuvias asociadas.
    [Show full text]
  • A Mosquito Psorophora Ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V
    EENY-540 A Mosquito Psorophora ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V. Ragasa and Phillip E. Kaufman2 Introduction For additional information on mosquitoes, see http://edis. ifas.ufl.edu/IN652. Psorophora ciliata (Fabricius) is a large mosquito (Cutwa and O’Meara 2005) that has developed an outsized reputa- tion because of its relatively intimidating heft and persistent Synonymy biting behavior (Gladney and Turner 1969), including Psorophora ciliata (Fabricius 1794) anecdotal historical accounts of its legendary aggressiveness Culex ciliata Fabricius (1794) (Wallis and Whitman 1971) and ‘frightening appearance’ Culex conterrens Walker (1856) (King et al. 1960). The ‘gallinipper’ or ‘shaggy-legged Culex molestus Weidemann (1820) gallinipper’ was used as a common name for Psorophora Culex rubidus Robineau-Desvoidy (1827) ciliata in various published reports (Ross 1947; King et al. Psorophora boscii Robineau-Desvoidy (1827) 1960; Breeland et al. 1961; Goddard et al. 2009). The term Psorophora ctites Dyar (1918) was mentioned much earlier by Flanery (1897) describing (From ITIS 2011) the mosquito as ‘the little zebra-legged thing—the shyest, slyest, meanest, and most venomous of them all’ [sic] but Distribution did not specify what species it was. The word gallinipper Psorophora ciliata usually is associated with other flood- originated as a vernacular term in the southeastern region water mosquitoes, including many species from the Aedes of the United States referring to ‘a large mosquito or other genera (Breeland et al. 1961), and has a wide distribution insect that has a painful bite or sting’ and has appeared in the New World. Floodwater mosquitoes often lay in folk tales, traditional minstrel songs, and a blues their eggs in low-lying areas with damp soil and grassy song referencing a large mosquito with a ‘fearsome bite’ overgrowth.
    [Show full text]
  • Psorophora Columbiae (Dyar & Knab) (Insecta: Diptera: Culicidae)1 Christopher S
    EENY-735 Dark Rice Field Mosquito (suggested common name) Psorophora columbiae (Dyar & Knab) (Insecta: Diptera: Culicidae)1 Christopher S. Bibbs, Derrick Mathias, and Nathan Burkett-Cadena2 Introduction Psorophora columbiae is a member of the broader Psorphora confinnis species complex (a group of closely-related spe- cies) that occurs across much of North and South America. This mosquito is associated with sun-exposed ephemeral water sources such as pooled water in agricultural lands and disturbed or grassy landscapes. The ubiquity of these habitats among agrarian and peridomestic landscapes contribute to explosive abundance of Psorophora columbiae following periods of high precipitation. Psorophora colum- biae is both a common nuisance mosquito and significant livestock pest. Common names of Psorophora columbiae vary by Figure 1. Psorophora columbiae (Dyar & Knab) adult female. region. In rice-growing regions of Arkansas, Florida, and Credits: Nathan Burkett-Cadena, UF/IFAS Louisiana Psorophora columbiae is known as the dark rice field mosquito because of its overall dark coloration and Synonymy proliferation in flooded rice fields. In the Atlantic Seaboard Janthinosoma columbiae Dyar & Knab (1906) region Psorophora columbiae is colloquially referred to as the glades mosquito or the Florida glades mosquito (King Janthinosoma floridense Dyar & Knab (1906) et al. 1960) due to its association with grasslands (glades) in otherwise forested areas. Janthinosoma texanum Dyar & Knab (1906) From the Integrated Taxonomic Information System and International Commission on Zoological Nomenclature. 1. This document is EENY-735, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date August 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.
    [Show full text]
  • Disturbance and Mosquito Diversity in the Lowland Tropical Rainforest of Central Panama Received: 28 October 2016 Jose R
    www.nature.com/scientificreports OPEN Disturbance and mosquito diversity in the lowland tropical rainforest of central Panama Received: 28 October 2016 Jose R. Loaiza1,2,3, Larissa C. Dutari1, Jose R. Rovira1,2, Oris I. Sanjur2, Gabriel Z. Laporta 4,5, Accepted: 28 June 2017 James Pecor6, Desmond H. Foley6, Gillian Eastwood7, Laura D. Kramer7, Meghan Radtke8 & Published: xx xx xxxx Montira Pongsiri8 The Intermediate Disturbance Hypothesis (IDH) is well-known in ecology providing an explanation for the role of disturbance in the coexistence of climax and colonist species. Here, we used the IDH as a framework to describe the role of forest disturbance in shaping the mosquito community structure, and to identify the ecological processes that increase the emergence of vector-borne disease. Mosquitoes were collected in central Panama at immature stages along linear transects in colonising, mixed and climax forest habitats, representing diferent levels of disturbance. Species were identifed taxonomically and classifed into functional categories (i.e., colonist, climax, disturbance-generalist, and rare). Using the Huisman-Olf-Fresco multi-model selection approach, IDH testing was done. We did not detect a unimodal relationship between species diversity and forest disturbance expected under the IDH; instead diversity peaked in old-growth forests. Habitat complexity and constraints are two mechanisms proposed to explain this alternative postulate. Moreover, colonist mosquito species were more likely to be involved in or capable of pathogen transmission than climax species. Vector species occurrence decreased notably in undisturbed forest settings. Old-growth forest conservation in tropical rainforests is therefore a highly-recommended solution for preventing new outbreaks of arboviral and parasitic diseases in anthropic environments.
    [Show full text]
  • 11B 3911 MOSQUITOS Corregido.Indd
    Parra-HenaoBiomédica 2012;32:252-62 G, Suárez L Biomédica 2012;32:252-62 ARTÍCULO ORIGINAL Mosquitos (Díptera: Culicidae) vectores potenciales de arbovirus en la región de Urabá, noroccidente de Colombia Gabriel Parra-Henao1,2, Laura Suárez1 1 Grupo Biología CES-EIA, Universidad CES, Medellín, Colombia 2 Laboratorio de Entomología, Instituto Colombiano de Medicina Tropical, Medellín, Colombia Lugar donde se realizó el trabajo: Instituto Colombiano de Medicina Tropical y Programa de Biología, Universidad CES, Medellín, Colombia Introducción. Los estudios encaminados a conocer los parámetros ecológicos de las poblaciones de mosquitos selváticos, permiten establecer el riesgo de transmisión de arbovirus y aportar recomendaciones sobre prevención, vigilancia y control a las autoridades de salud. Objetivo. Determinar la diversidad y abundancia de mosquitos nocturnos y crepusculares, potenciales vectores de arbovirus en zonas rurales de Apartadó y Turbo, Antioquia. Materiales y métodos. Se realizaron muestreos trimestrales. Para la recolección de mosquitos se usaron trampas CDC, Shannon y cebo humano protegido, en fragmentos de bosque, entre las 18:00 y las 06:00 horas. Se estimaron los índices de diversidad y abundancia de especies. Resultados. Se capturaron 583 mosquitos de 10 géneros y 27 especies. Las especies más abundantes fueron Coquilletidia venezuelensis (14,6 %), Aedes scapularis (14,08 %), Psorophora ferox (10,82 %) y Culex quinquefasciatus (10,3 %). La riqueza específica y los índices ecológicos calculados fueron mayores en Turbo; el fragmento de bosque estudiado en Turbo se considera de mayor riqueza y uniformidad de especies. El hallazgo de Cx. pedroi, Ae. scapularis, Ae. angustivittatus, Cq. venezuelensis, Cx. nigripalpus, Cx. quinquefasciatus, Cx. declarator, Mansonia titillans, Ma.
    [Show full text]
  • A Mosquito Psorophora Ferox (Humboldt 1819) (Insecta: Diptera: Culicidae)1 Chris Holderman and C
    EENY632 A Mosquito Psorophora ferox (Humboldt 1819) (Insecta: Diptera: Culicidae)1 Chris Holderman and C. Roxanne Connelly2 Introduction Janthinosoma sayi Theobald (1907) Psorophora ferox, (Figures 1 and 2) known unofficially Janthinosoma jamaicensis Theobald (1907) as the white-footed woods mosquito (King et al. 1942), is a mosquito species native to most of North and South Aedes pazosi Pazos (1908) America. It is a multivoltine species, having multiple generations each year. The mosquito is typical of woodland Janthinosoma centrale Brethes (1910) environments with pools that intermittently fill with rain or flood water. Several viruses have been isolated from the Compiled by WRBU (2013b) mosquito, but it is generally not thought to play a major role in pathogen transmission to humans. However, the mosquito is known to frequently and voraciously bite people. Synonymy Culex posticatus Wiedemann (1821) Culex musicus Say (1829) Janthinosoma echinata Grabham (1906) Janthinosoma sayi Dyar and Knab (1906) Janthinosoma terminalis Coquillett (1906) Janthinosoma vanhalli Dyar and Knab (1906) Figure 1. Adult female Psorophora ferox (Humboldt), a mosquito (lateral view). Janthinosoma coquillettii Theobald (1907) Credits: Chris Holderman, UF/IFAS 1. This document is EENY632, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date August 2015. Reviewed September 2018. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication. This document is also available on the Featured Creatures website at http://entomology.ifas.ufl.edu/creatures. 2. Christopher J. Holderman, graduate student; and C. Roxanne Connelly, associate professor, Department of Entomology and Nematology; UF/IFAS Extension, Gainesville, FL 32611.
    [Show full text]
  • Diversity and Ecology of Host-Seeking Mosquitoes in Irrigated Agro-Ecosystems of Clay County, Nebraska Alister K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 5-2014 Diversity and ecology of host-seeking mosquitoes in irrigated agro-ecosystems of Clay County, Nebraska Alister K. Bryson University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/entomologydiss Part of the Biodiversity Commons, Entomology Commons, and the Terrestrial and Aquatic Ecology Commons Bryson, Alister K., "Diversity and ecology of host-seeking mosquitoes in irrigated agro-ecosystems of Clay County, Nebraska" (2014). Dissertations and Student Research in Entomology. 31. http://digitalcommons.unl.edu/entomologydiss/31 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. DIVERSITY AND ECOLOGY OF HOST-SEEKING MOSQUITOES IN IRRIGATED AGRO-ECOSYSTEMS OF CLAY COUNTY, NEBRASKA By Alister Kinoshita Bryson A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Entomology Under the Supervision of Professor M. Roberto Cortiñas Lincoln, Nebraska May, 2014 DIVERSITY AND ECOLOGY OF HOST-SEEKING MOSQUITOES IN IRRIGATED AGRO-ECOSYSTEMS IN CLAY COUNTY, NEBRASKA Alister Kinoshita Bryson, M.S. University of Nebraska, 2014 Advisor: Roberto Cortiñas In the United States, Nebraska has the third highest incidence of human West Nile virus (WNV). Since WNV was first detected in the state in 2002, 3,422 confirmed cases and 57 deaths have been reported.
    [Show full text]
  • The Biodiversity of Water Mites That Prey on and Parasitize Mosquitoes
    diversity Review The Biodiversity of Water Mites That Prey on and Parasitize Mosquitoes 1,2, , 3, 4 1 Adrian A. Vasquez * y , Bana A. Kabalan y, Jeffrey L. Ram and Carol J. Miller 1 Healthy Urban Waters, Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI 48202, USA; [email protected] 2 Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA 3 Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA; bana.kabalan@ufl.edu 4 Department of Physiology, School of Medicine Wayne State University, Detroit, MI 48201, USA; jeff[email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 2 May 2020; Accepted: 4 June 2020; Published: 6 June 2020 Abstract: Water mites form one of the most biodiverse groups within the aquatic arachnid class. These freshwater macroinvertebrates are predators and parasites of the equally diverse nematocerous Dipterans, such as mosquitoes, and water mites are believed to have diversified as a result of these predatory and parasitic relationships. Through these two major biotic interactions, water mites have been found to greatly impact a variety of mosquito species. Although these predatory and parasitic interactions are important in aquatic ecology, very little is known about the diversity of water mites that interact with mosquitoes. In this paper, we review and update the past literature on the predatory and parasitic mite–mosquito relationships, update past records, discuss the biogeographic range of these interactions, and add our own recent findings on this topic conducted in habitats around the Laurentian Great Lakes.
    [Show full text]
  • P2699 Identification Guide to Adult Mosquitoes in Mississippi
    Identification Guide to Adult Mosquitoes in Mississippi es Identification Guide to Adult Mosquitoes in Mississippi By Wendy C. Varnado, Jerome Goddard, and Bruce Harrison Cover photo by Dr. Blake Layton, Mississippi State University Extension Service. Preface Entomology, and Plant Pathology at Mississippi State University, provided helpful comments and Mosquitoes and the diseases they transmit are in- other supportIdentification for publication and ofGeographical this book. Most Distri- creasing in frequency and geographic distribution. butionfigures of used the inMosquitoes this book of are North from America, Darsie, R. North F. and As many as 1,000 people were exposed recently ofWard, Mexico R. A., to dengue fever during an outbreak in the Florida Mos- Keys. “New” mosquito-borne diseases such as quitoes of, NorthUniversity America Press of Florida, Gainesville, West Nile and Chikungunya have increased pub- FL, 2005, and Carpenter, S. and LaCasse, W., lic awareness about disease potential from these , University of California notorious pests. Press, Berkeley, CA, 1955. None of these figures are This book was written to provide citizens, protected under current copyrights. public health workers, school teachers, and other Introduction interested parties with a hands-on, user-friendly guide to Mississippi mosquitoes. The book’s util- and Background ity may vary with each user group, and that’s OK; some will want or need more detail than others. Nonetheless, the information provided will allow There has never been a systematic, statewide you to identify mosquitoes found in Mississippi study of mosquitoes in Mississippi. Various au- with a fair degree of accuracy. For more informa- thors have reported mosquito collection records tion about mosquito species occurring in the state as a result of surveys of military installations in and diseases they may transmit, contact the ento- the state and/or public health malaria inspec- mology staff at the Mississippi State Department of tions.
    [Show full text]
  • Forest Culicinae Mosquitoes in the Environs of Samuel Hydroeletric
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 91(4): 427-432, Jul./Aug. 1996 427 Forest Culicinae Mosquitoes in the Environs of Samuel Hydroeletric Plant, State of Rondônia, Brazil SLB Luz+ , R Lourenço-de-Oliveira Departamento de Entomologia, Instituto Oswaldo Cruz, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brasil Data on frequency and seasonal distribution of culicinae were recorded in the forest near a recently constructed hydroelectric plant - Samuel, in the State of Rondônia, Brazilian Amazon. Collections were performed almost daily from August 1990 to July 1991, between 6 and 9 p.m., using human bait. A total of 3,769 mosquitoes was collected, representing 21 species, including seven new records for the State of Rondônia. The most frequently collected species were Aedes fulvus (25%) and Ae. pennai (12.3%). The highest density for the majority of mosquito species coincided with the rainy season. Key words: Diptera: Culicidae - Culicinae mosquitoes - seasonal frequence - hydroeletric plant The major objectives of the entomological sur- MATERIALS AND METHODS veys carried out during the last decades in the Bra- Description of the study area - The studies were zilian Amazon, mainly in the State of Rondônia, performed from August 1990 to July 1991 at the were to investigate the biology of local anophelines Ecological Station of Samuel, in the municipality and determine the vectors of human malaria para- of Candeias do Jamari, State of Rondônia, Brazil sites. Few data on the Amazonian Culicinae have (8º 50’S 9º 04’S and 63º 08’W 63º 19’W), nearly been obtained during these malaria surveys.
    [Show full text]