Planned Oocyte Cryopreservation for Women Seeking to Preserve Future Reproductive Potential: an Ethics Committee Opinion

Total Page:16

File Type:pdf, Size:1020Kb

Planned Oocyte Cryopreservation for Women Seeking to Preserve Future Reproductive Potential: an Ethics Committee Opinion Planned oocyte cryopreservation for women seeking to preserve future reproductive potential: an Ethics Committee opinion Ethics Committee of the American Society for Reproductive Medicine American Society for Reproductive Medicine, Birmingham, Alabama Planned oocyte cryopreservation (‘‘planned OC’’) is an emerging but ethically permissible procedure that may help women avoid future infertility. Because planned OC is new and evolving, it is essential that women who are considering using it be informed about the un- certainties regarding its efficacy and long-term effects. (Fertil SterilÒ 2018;110:1022–8. Ó2018 by American Society for Reproductive Medicine.) Discuss: You can discuss this article with its authors and other readers at https://www.fertstertdialog.com/users/16110-fertility- and-sterility/posts/37565-26808 KEY POINTS informed decision-making. Pro- dotoxic medical treatment, the chance viders should disclose their own to have biologically related children in For women who want to try to pro- clinic-specific statistics, or lack the future. The history of cryopreserva- tect against future infertility due to thereof, for successful freeze-thaw tion of sperm, embryos, and oocytes is reproductive aging or other causes, and for live birth. Patients should set forth in the ASRM Practice Commit- advance oocyte cryopreservation be informed that medical benefits tee document, ‘‘Mature oocyte preser- ‘‘ ’’ ( OC ) is ethically permissible. The are uncertain and harms that are vation: a guideline’’ (1). While the first Ethics Committee will refer to this not fully understood may emerge human birth from a previously frozen ‘‘ procedure as planned oocyte cryo- from planned OC. oocyte occurred in 1986, the more ’’ ‘‘ ’’ preservation or planned OC. To improve scientific understanding recent use of vitrification, an ultrarapid Planned OC serves women's legiti- of planned OC, including efficacy, cooling technique, has led to a marked mate interests in reproductive advisability, and long-term effects, improvement in the efficacy of oocyte autonomy. medical professionals offering this cryopreservation (1). Planned OC is relatively new, and procedure are encouraged to collect OC initially was classified by ASRM fi uncertainties exist regarding its ef - outcome data, conduct research, as experimental. In 2012, the ASRM cacy, appropriate use, and long-term and report planned OC cycles to the Practice Committee removed the exper- effects. Society for Assisted Reproductive imental label after a thorough review of Providers should ensure that women Technology (SART). the scientific literature. The report who request planned OC are concluded that in vitro fertilization fi informed about its ef cacy, safety, (IVF) and pregnancy rates with cryo- fi bene ts, and risks, including the un- BACKGROUND preserved oocytes compared favorably known long-term health effects for Cryopreservation of reproductive tis- to those with fresh oocytes. In addition, offspring. Because of the uncer- sues has created important reproduc- short-term studies of health of tainties that accompany this devel- tive options. It has given individuals offspring from OC revealed no in- oping procedure, there are distinct facing potential loss of reproductive creases in congenital anomalies when obligations regarding disclosure and capacity, such as those receiving gona- compared with other IVF offspring (1). While the ASRM Practice Committee Received August 8, 2018; accepted August 8, 2018. and Ethics Committee approved the Correspondence: Ethics Committee, American Society for Reproductive Medicine, 1209 Montgomery Highway, Birmingham, Alabama 35216 (E-mail: [email protected]). use of OC for patients facing therapies likely to be gonadotoxic (1–3), the Fertility and Sterility® Vol. 110, No. 6, November 2018 0015-0282/$36.00 Practice Committee declined at that Copyright ©2018 American Society for Reproductive Medicine, Published by Elsevier Inc. https://doi.org/10.1016/j.fertnstert.2018.08.027 time to recommend OC ‘‘for the sole 1022 VOL. 110 NO. 6 / NOVEMBER 2018 Fertility and Sterility® purpose of circumventing reproductive aging in healthy than maternal age. The critical difference between the women,’’ on the grounds that there were insufficient data oocyte cryopreservation examined in this Opinion and that on the ‘‘safety, efficacy, ethics, emotional risks, and cost- which is done when gonadotoxic therapy is imminent is its effectiveness’’ for that indication (1). non-emergency nature. It is being undertaken as a matter of Since that time, further research on efficacy has been re- planning before a medical indication has materialized and assuring (4, 5). Increasing numbers of women are seeking will be referred to as ‘‘planned oocyte cryopreservation’’ or planned OC and increasing numbers of physicians are ‘‘planned OC.’’ providing it (6–8). In 2014, ASRM published a fact sheet on its patient education website, describing how women may use OC even if they are not facing a fertility-threatening dis- Rationales for Planned OC ease (9). All these factors point to planned OC as a medical It is not only the aforementioned medical advances that make innovation that is moving into practice. As such, it raises planned OC attractive to women at this time. For decades, ‘‘ethical issues involving evaluation of evidence, balancing women in the United States have been having children at benefits and harms, supporting patient autonomy, avoiding older ages. Nationwide, the rate of first births to women conflict of interest, and promoting advances in health care’’ ages 35–39 has been rising since the 1970s, though now pla- (10). The Committee here addresses the ethical issues that arise teaued; the rate of first births to women 40–44 has been rising when OC is used by women whose goal is to protect their abil- since the early 1980s (14, 15). Many factors contribute to this ity to have children in the future apart from an immediate trend, but it is well recognized that women's increased access threat from gonadotoxic therapy. to education and participation in the workplace are central. For all stakeholders who provide and use planned OC, The critical periods of advancement in these pursuits caution is warranted. There is a risk of misplaced confidence usually take place when women are in their 20s and 30s, in the effectiveness of this procedure, as well as scientific un- which is also the time when female fertility has reached its knowns concerning long-term or transgenerational offspring peak and is beginning to decline (16). health. Mindful of these cautions, however, this Committee Sometimes this trend is described as women ‘‘delaying’’ or finds the use of OC for women attempting to safeguard their ‘‘postponing’’ childbearing, a statement that suggests affirma- reproductive potential for the future to be ethically permis- tive choice or even blame that women have brought the diffi- sible. It bears emphasis that most of the medical procedures culty upon themselves (17). Rather, the data show that many involved in planned OC are well established; ovarian stimula- women who want to have children face conflicts about their tion, oocyte retrieval, embryo culture, and embryo transfer preferred life path in a culture where the optimal time for are all regular components of IVF that are well tested, used educational and career advancement coincides directly with worldwide, and regarded as safe. the period that the body is best suited for reproduction. More- The Ethics Committee previously supported OC for over, many women report that their life circumstances (part- women facing immediate, medically induced loss of fertility nership, marriage, finances) are not as they want them, or as (3). But there are many less-immediate developments that society supports or regards as acceptable, and these circum- could also threaten women's ability to have children in the stances are what prevent them from starting a family at an future. These developments include diseases, primary ovarian earlier time (18–21). Finally, what may appear to be insufficiency, traumatic injury, planned female-to-male affirmative delay may actually be the unwitting product of gender transition, and the fertility loss that occurs as a woman a ‘‘knowledge gap’’: the widespread and persistent ages. Planned OC may also benefit women seeking children in overestimation of both female reproductive potential with response to unanticipated future events such as remarriage or age and the ability of reproductive medicine to restore that the death of an existing child (11). potential (22). Given these societal and personal reasons for procreation later in life, a biological truth comes into play: older female Terminology age increases the risk of inability to conceive due to reduced The appropriate language to describe the process of preser- oocyte quantity and quality, with increased chromosomal ab- ving oocytes for future fertility is unsettled. ‘‘Oocyte cryopres- normalities leading to more fetal abnormalities and preg- ervation’’ or ‘‘OC’’ is the most generic terminology and does nancy losses. Fertility and offspring health are affected by not distinguish the rationale for oocyte preservation. When men's age, too, although not until men are older, generally OC is used in contexts other than to avoid immediate gonado- past age 40 or 50. For both sexes, the more time that passes toxic effects, observers have criticized terms like ‘‘social egg before they reproduce, the greater the chance some illness, freezing,’’ ‘‘freezing for nonmedical reasons,’’ and ‘‘elective’’
Recommended publications
  • CRYOPRESERVATION 2021 Research and Resources ORIP’S MISSION ORIP Advances the NIH Mission by Supporting Orip.Nih.Gov Infrastructure for Innovation
    OFFICE OF RESEARCH INFRASTRUCTURE PROGRAMS CRYOPRESERVATION 2021 Research and Resources ORIP’S MISSION ORIP advances the NIH mission by supporting orip.nih.gov infrastructure for innovation. This support is focused on research resources, including animal twitter.com/NIH_ORIP models for human diseases, cutting-edge scientific instrumentation, construction and modernization of research facilities, and research training Program Contacts: opportunities for veterinary scientists. Through Miguel Contreras, Ph.D. Desiree von Kollmar continued engagement with NIH Institutes, [email protected] [email protected] Centers, and Offices and the biomedical research Phone: 301-435-0045 Phone: 301-594-9410 community, ORIP empowers and expands existing Oleg Mirochnitchenko, Ph.D. Sige Zou, Ph.D. programs and develops new initiatives to support [email protected] [email protected] NIH research at the forefront of scientific progress. Phone: 301-435-0748 Phone: 301-435-0749 projects on developing efficient OVERVIEW germplasm preservation methods, including cryopreservation, for diverse Animal models are essential to understanding diseases and animal models. These projects maintaining health of humans through development of are improving existing methods diagnostic approaches and therapeutic interventions. These to preserve embryos (including disease models are being generated at an unprecedented NHP embryos), eggs, or sperm rate due to rapidly evolving technological advancements, for a variety of animal model such as gene editing. This rapid increase in animal models, species or are developing new however, is creating challenges in how to maintain these preservation methods, such critical resources in reliable and cost-effective ways. Long- as for zebrafish or Drosophila term preservation of the genetic stock of such models is melanogaster embryos.
    [Show full text]
  • Molecular Beacon Nanosensors for Live Cell Detection and Tracking Differentiation and Reprogramming
    Downloaded from orbit.dtu.dk on: Oct 03, 2021 Molecular beacon nanosensors for live cell detection and tracking differentiation and reprogramming Ilieva, Mirolyuba Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Ilieva, M. (2013). Molecular beacon nanosensors for live cell detection and tracking differentiation and reprogramming. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Molecular beacon nanosensors for live cell detection and tracking differentiation and reprogramming Mirolyuba Ilieva PhD Thesis April 2013 Mirolyuba Simeonova Ilieva Molecular beacon nanosensors for live cell detection and tracking differentiation and reprogramming PhD Thesis April 2013 Supervisor Assoc. Prof. Martin Dufva Co-supervisor Professor Jenny Emnéus Department of Micro- and Nanotechnology Technical University of Denmark Abstract High-sensitive and high-affinity methods to measure gene expression inside living cells have proven to be invaluable in regards to understanding fundamental processes such as cell differentiation, reprogramming, regeneration and cancer genesis.
    [Show full text]
  • Oocyte Cryopreservation for Fertility Preservation in Postpubertal Female Children at Risk for Premature Ovarian Failure Due To
    Original Study Oocyte Cryopreservation for Fertility Preservation in Postpubertal Female Children at Risk for Premature Ovarian Failure Due to Accelerated Follicle Loss in Turner Syndrome or Cancer Treatments K. Oktay MD 1,2,*, G. Bedoschi MD 1,2 1 Innovation Institute for Fertility Preservation and IVF, New York, NY 2 Laboratory of Molecular Reproduction and Fertility Preservation, Obstetrics and Gynecology, New York Medical College, Valhalla, NY abstract Objective: To preliminarily study the feasibility of oocyte cryopreservation in postpubertal girls aged between 13 and 15 years who were at risk for premature ovarian failure due to the accelerated follicle loss associated with Turner syndrome or cancer treatments. Design: Retrospective cohort and review of literature. Setting: Academic fertility preservation unit. Participants: Three girls diagnosed with Turner syndrome, 1 girl diagnosed with germ-cell tumor. and 1 girl diagnosed with lymphoblastic leukemia. Interventions: Assessment of ovarian reserve, ovarian stimulation, oocyte retrieval, in vitro maturation, and mature oocyte cryopreservation. Main Outcome Measure: Response to ovarian stimulation, number of mature oocytes cryopreserved and complications, if any. Results: Mean anti-mullerian€ hormone, baseline follical stimulating hormone, estradiol, and antral follicle counts were 1.30 Æ 0.39, 6.08 Æ 2.63, 41.39 Æ 24.68, 8.0 Æ 3.2; respectively. In Turner girls the ovarian reserve assessment indicated already diminished ovarian reserve. Ovarian stimulation and oocyte cryopreservation was successfully performed in all female children referred for fertility preser- vation. A range of 4-11 mature oocytes (mean 8.1 Æ 3.4) was cryopreserved without any complications. All girls tolerated the procedure well.
    [Show full text]
  • Cryopreservation of Mouse Resources Toru Takeo1* , Satohiro Nakao1, Yoshiko Nakagawa1, Jorge M
    Takeo et al. Laboratory Animal Research (2020) 36:33 Laboratory Animal Research https://doi.org/10.1186/s42826-020-00066-w REVIEW Open Access Cryopreservation of mouse resources Toru Takeo1* , Satohiro Nakao1, Yoshiko Nakagawa1, Jorge M. Sztein1 and Naomi Nakagata2 Abstract The cryopreservation of sperm and embryos is useful to efficiently archive valuable resources of genetically engineered mice. Till date, more than 60,000 strains of genetically engineered mice have been archived in mouse banks worldwide. Researchers can request for the archived mouse strains for their research projects. The research infrastructure of mouse banks improves the availability of mouse resources, the productivity of research projects, and the reproducibility of animal experiments. Our research team manages the mouse bank at the Center for Animal Resources and Development in Kumamoto University and continuously develops new techniques in mouse reproductive technology to efficiently improve the system of mouse banking. In this review, we introduce the activities of mouse banks and the latest techniques used in mouse reproductive technology. Keywords: Genetically engineered mice, Mouse bank, Reproductive technology, Sperm, Embryo, Cryopreservation, In vitro fertilization, Cold storage, Hands-on workshop Introduction Resource Database (CARD R-BASE, http://cardb.cc.ku- A genetically engineered mouse is a powerful tool to eluci- mamoto-u.ac.jp/transgenic/). Till date, the international date the complex communications between genes or organs collaboration of mouse banks (International Mouse in health and diseases [1]. Moreover, humanized mouse Strain Resource: IMSR) has successfully collected more models derived from immunosuppressed mice are helpful than 60,000 strains of genetically engineered mice to bridge the gap of discovery and the development of new (Table 1).
    [Show full text]
  • Oocyte Or Embryo Donation to Women of Advanced Reproductive Age: an Ethics Committee Opinion
    ASRM PAGES Oocyte or embryo donation to women of advanced reproductive age: an Ethics Committee opinion Ethics Committee of the American Society for Reproductive Medicine American Society for Reproductive Medicine, Birmingham, Alabama Advanced reproductive age (ARA) is a risk factor for female infertility, pregnancy loss, fetal anomalies, stillbirth, and obstetric com- plications. Oocyte donation reverses the age-related decline in implantation and birth rates of women in their 40s and 50s and restores pregnancy potential beyond menopause. However, obstetrical complications in older patients remain high, particularly related to oper- ative delivery and hypertensive and cardiovascular risks. Physicians should perform a thorough medical evaluation designed to assess the physical fitness of a patient for pregnancy before deciding to attempt transfer of embryos to any woman of advanced reproductive age (>45 years). Embryo transfer should be strongly discouraged or denied to women of ARA with underlying conditions that increase or exacerbate obstetrical risks. Because of concerns related to the high-risk nature of pregnancy, as well as longevity, treatment of women over the age of 55 should generally be discouraged. This statement replaces the earlier ASRM Ethics Committee document of the same name, last published in 2013 (Fertil Steril 2013;100:337–40). (Fertil SterilÒ 2016;106:e3–7. Ó2016 by American Society for Reproductive Medicine.) Key Words: Ethics, third-party reproduction, complications, pregnancy, parenting Discuss: You can discuss
    [Show full text]
  • The Surrogacy Plan Plus Estimating the Costs
    The Surrogacy Plan Plus Estimating the Costs Initial Consultation Initial Consultation complimentary Pre-Conception Screening and Pre-Conception Screening Diagnostic and Diagnostic Testing Testing per intended parent $ 1,397.50 Egg Donor Selection Egg Donor Selection with Circle Donor* $ 2,830.00 IVF Cycle IVF Cycle and Embryo Transfers (2) with medications $ 44,000.00 PGTA Testing PGTA Testing Cryopreservation Up to 10 Embryos $ 3,650.00 of Embryos Gestational Gestational Carrier Carrier Selection & Screening $ 2,819.00 Selection & Screening Approximate Total Costs > > Without PGTA $ 51,046.50 Embryo Transfer > > With PGTA $ 54,696.50 * Does not include compensation or psychological evaluations. SPP/CD November 2019 | Costs are subject to change The Surrogacy Plan Plus The Surrogacy Plan Plus is available to individuals and couples who want to build a family using a gestational carrrier. In this process, eggs from an egg donor are retrieved and combined with sperm to create embryos. One or two embryos are then transferred into the uterus of the gestational carrier to achieve a pregnancy. How the Surrogacy Plan Plus Works The Surrogacy Plan Plus includes: cycle medication for the oocyte donor and gestational carrier, anesthesia for the retrieval of oocytes, oocyte donor cycle monitoring completed at RMACT, oocyte retrieval, embryology laboratory charges, A simpler approach cryopreservation of embryos, cycle monitoring for the last ultrasound and blood tests to treatment that prior to embryo transfer, embryo transfer into the gestational carrier, and the first year of embryo and specimen storage. If the donor cycle is cancelled prior to retrieval, helps you control the Surrogacy Plan Plus covers the cancellation cost, as well as the cost to rescreen costs with the the same or alternate donor.
    [Show full text]
  • Infertility Services
    Medical Policy Assisted Reproductive Services/Infertility Services Document Number: 002 *Commercial and Qualified Health Plans MassHealth Authorization required X No notification or authorization Not covered X *Not all commercial plans cover this service, please check plan’s benefit package to verify coverage. Contents Overview ....................................................................................................................................................... 2 Coverage Guidelines ..................................................................................................................................... 2 MassHealth, and Certain Custom Plans ........................................................................................................ 2 Covered Services/Procedures ....................................................................................................................... 3 General Eligibility Coverage Criteria ............................................................................................................. 3 SERVICE -SPECIFIC INFERTILITY COVERAGE FOR MEMBERS WITH UTERI and OVARIES ............................... 5 Artificial Insemination (AI)/Intrauterine Insemination (IUI) ......................................................................... 5 Conversion from IUI to In Vitro Fertilization (IVF) ........................................................................................ 6 In Vitro Fertilization (IVF) for Infertility .......................................................................................................
    [Show full text]
  • Cryopreserved Oocyte Versus Fresh Oocyte Assisted Reproductive Technology Cycles, United States, 2013
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Fertil Steril Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 January 01. Published in final edited form as: Fertil Steril. 2017 January ; 107(1): 110–118. doi:10.1016/j.fertnstert.2016.10.002. Cryopreserved oocyte versus fresh oocyte assisted reproductive technology cycles, United States, 2013 Sara Crawford, Ph.D.a, Sheree L. Boulet, Dr.P.H., M.P.H.a, Jennifer F. Kawwass, M.D.a,b, Denise J. Jamieson, M.D., M.P.H.a, and Dmitry M. Kissin, M.D., M.P.H.a aDivision of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Emory University, Atlanta, Georgia bDivision of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia Abstract Objective—To compare characteristics, explore predictors, and compare assisted reproductive technology (ART) cycle, transfer, and pregnancy outcomes of autologous and donor cryopreserved oocyte cycles with fresh oocyte cycles. Design—Retrospective cohort study from the National ART Surveillance System. Setting—Fertility treatment centers. Patient(s)—Fresh embryo cycles initiated in 2013 utilizing embryos created with fresh and cryopreserved, autologous and donor oocytes. Intervention(s)—Cryopreservation of oocytes versus fresh. Main Outcomes Measure(s)—Cancellation, implantation, pregnancy, miscarriage, and live birth rates per cycle, transfer, and/or pregnancy.
    [Show full text]
  • CRYOPRESERVATION Cryoprotectant Chemicals an Integral Part of Cell Culture Involves the Successful Preservation of Im- Portant Cell Lines
    CRYOPRESERVATION Cryoprotectant Chemicals An integral part of cell culture involves the successful preservation of im- portant cell lines. A primary factor for success is developing an appropri- DIMETHYL SULFOXIDE 25 ml 8.90 196055 100 ml 15.40 ate protocol for a particular cell line. A common misconception among RT [67-68-5] (DMSO) 500 ml 27.40 scientists is that preserving methods for a given cell type are transfer- Cell Culture Reagent 1 liter 45.60 able to similar cell types. Although, this may be true on occassion, it is Purity: ≥99% far from the general rule. Protocols require modification for each cell Ideal for use as a cryoprotectant. NOT FOR HUMAN USE! type. Another key factor for successful preservation is the use of an ef- C2H6SO MW 78.13 fective cryoprotectant. The discovery of glycerol as a preservation me- ETHYLENE GLYCOL 250 ml 10.80 dium led to the rapid discovery of other protectants such as methanol, 151089 1 liter 22.50 RT [107-21-1] ethylene glycol, and DMSO (dimethyl sulfoxide). Purity: 99% min. 1 ml = approx. 1.11 g With any cryopreservation process, the primary objective is maximum C2H6O2 MW 62.1 recovery with minimal damage to the cells. The absence of an effective D-(+)-GLUCOSE 100 g 15.00 cryoprotectant leads to the formation of intracellular ice crystals which 194672 1 kg 23.50 RT [50-99-7] puncture organelles and cell membranes. Also, as water within the me- (Dextrose; Corn sugar) 5 kg 94.00 dium freezes, cells become dehydrated altering the salt concentration Cell Culture Reagent Anhydrous and causing morphological or biological changes after recovery.
    [Show full text]
  • Social Freezing: Pressing Pause on Fertility
    International Journal of Environmental Research and Public Health Review Social Freezing: Pressing Pause on Fertility Valentin Nicolae Varlas 1,2 , Roxana Georgiana Bors 1,2, Dragos Albu 1,2, Ovidiu Nicolae Penes 3,*, Bogdana Adriana Nasui 4,* , Claudia Mehedintu 5 and Anca Lucia Pop 6 1 Department of Obstetrics and Gynaecology, Filantropia Clinical Hospital, 011171 Bucharest, Romania; [email protected] (V.N.V.); [email protected] (R.G.B.); [email protected] (D.A.) 2 Department of Obstetrics and Gynaecology, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu St., 020021 Bucharest, Romania 3 Department of Intensive Care, University Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu St., 020021 Bucharest, Romania 4 Department of Community Health, “Iuliu Hat, ieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania 5 Department of Obstetrics and Gynaecology, Nicolae Malaxa Clinical Hospital, 020346 Bucharest, Romania; [email protected] 6 Department of Clinical Laboratory, Food Safety, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; [email protected] * Correspondence: [email protected] (O.N.P.); [email protected] (B.A.N.) Abstract: Increasing numbers of women are undergoing oocyte or tissue cryopreservation for medical or social reasons to increase their chances of having genetic children. Social egg freezing (SEF) allows women to preserve their fertility in anticipation of age-related fertility decline and ineffective fertility treatments at older ages. The purpose of this study was to summarize recent findings focusing on the challenges of elective egg freezing.
    [Show full text]
  • Effects of Sample Treatments on Genome Recovery Via Single-Cell Genomics
    The ISME Journal (2014) 8, 2546–2549 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej SHORT COMMUNICATION Effects of sample treatments on genome recovery via single-cell genomics Scott Clingenpeel1, Patrick Schwientek1, Philip Hugenholtz2 and Tanja Woyke1 1DOE Joint Genome Institute, Walnut Creek, CA, USA and 2Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia Single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we show that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing. The ISME Journal (2014) 8, 2546–2549; doi:10.1038/ismej.2014.92; published online 13 June 2014 Relatively little is known about the functioning of genomes from single cells. Three methods of sample complex microbial communities, largely due to the preservation were tested: cryopreservation with difficulty in culturing most microbes (Rappe and 20% glycerol as a cryoprotectant, preservation in Giovannoni, 2003). Although metagenomics can 70% ethanol, and preservation in 4% paraformalde- provide information on the genetic capabilities of hyde. Because paraformaldehyde treatment causes the entire community, it is difficult to connect crosslinks between nucleic acids and proteins, we predicted gene functions to specific organisms using tested cells exposed to 4% paraformaldehyde with metagenomics (Morales and Holben, 2011).
    [Show full text]
  • Approaches and Technologies in Male Fertility Preservation
    International Journal of Molecular Sciences Review Approaches and Technologies in Male Fertility Preservation Mahmoud Huleihel 1,2,* and Eitan Lunenfeld 2,3,4 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel 2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; lunenfl[email protected] 3 Department of OB/GYN, Soroka Medical Center, Beer Sheva 8410501, Israel 4 Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel * Correspondence: [email protected]; Tel.: +972-86479959 Received: 28 May 2020; Accepted: 29 July 2020; Published: 31 July 2020 Abstract: Male fertility preservation is required when treatment with an aggressive chemo-/-radiotherapy, which may lead to irreversible sterility. Due to new and efficient protocols of cancer treatments, surviving rates are more than 80%. Thus, these patients are looking forward to family life and fathering their own biological children after treatments. Whereas adult men can cryopreserve their sperm for future use in assistance reproductive technologies (ART), this is not an option in prepubertal boys who cannot produce sperm at this age. In this review, we summarize the different technologies for male fertility preservation with emphasize on prepubertal, which have already been examined and/or demonstrated in vivo and/or in vitro using animal models and, in some cases, using human tissues. We discuss the limitation of these technologies for use in human fertility preservation. This update review can assist physicians and patients who are scheduled for aggressive chemo-/radiotherapy, specifically prepubertal males and their parents who need to know about the risks of the treatment on their future fertility and the possible present option of fertility preservation.
    [Show full text]