Study of the Role of the Histone Demethylase JMJD3 As a Transcriptional Regulator Raquel Fueyo Arévalo

Total Page:16

File Type:pdf, Size:1020Kb

Study of the Role of the Histone Demethylase JMJD3 As a Transcriptional Regulator Raquel Fueyo Arévalo ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Strangers on this road we are on, we are not two we are one. The Kinks, “Strangers” A mi compañero vital Alberto Gamazo, por hacerme más libre. Acknowledgements Acknowledgements “Though no man can draw a stroke between the confines of day and night, yet light and darkness are upon the whole tolerably distinguishable” (Edmund Burke). Esta pomposa frase resume lo que estos años de tesis doctoral me han aportado como investigadora: una inconmensurable resistencia al fracaso y toneladas de pragmatismo. Con esto quiero comenzar a dar las gracias a Marian Martínez-Balbás, por haberme formado en competencias científicas y en competencias transversales como la idiosincrasia de la ciencia y sus científicos. El hecho de que no me pueda imaginar dedicándome a otra cosa en el futuro te lo debo en gran medida a ti. Gracias por las discusiones regadas con café (quizás más café del que deberíamos) y por no estar siempre de acuerdo conmigo. Eres una de las personas que más ha marcado mi vida y si retrocediera en el tiempo, elegiría de nuevo tu laboratorio para hacer la tesis. Gracias por motivarme de manera extraordinaria, apoyarme y darme espacio para crear. Mis éxitos científicos siempre serán en gran medida tuyos. Continuaré dando las gracias a mi familia. Primeramente, a mi madre, que desde mi nacimiento sacrificó su bienestar por el mío y luchó para que las dos saliéramos ilesas en una carrera llena de obstáculos. Gracias por enseñarme a ser generosa y solidaria y por transmitirme tu buen humor. Lo único que no te agradezco es el gen de la impaciencia, no ha sido un buen complemento para esta tesis, ¿o sí?, jaja. Aunque nuestros mundos sean ahora tan diferentes, siempre serás un orgullo para mí, nunca lo olvides. Continúo dando las gracias a mis abuelas y a mi abuelo, que aunque lleven años muertos siguen presentes en mi mente como en mi infancia. Por un lado, gracias a mi abuela María “la Andaluza” por haberme querido sin medida y por haber participado activamente en mi educación. Solo lamento no haber podido enseñarte a leer y aunque no sirva de nada, de manera simbólica prometo que todo lo que la lectura me enseñe lo aplicaré con valor y estrategia como tú hiciste durante tu vida. Gracias también a mi abuelo Juan por confiar ciegamente en mí, ¡cuánto me avergonzaba que presumieras de nieta!... Gracias por hacerme sentir que te fortalecía hasta el último día de tu vida, te echo extraordinariamente de menos. Gracias a mi otra abuela María. Con los años me he dado cuenta de todos los valores feministas que me inculcabas y lamento infinitamente que los tuvieras que aprender de una manera atroz. Nunca se te agradecerá lo suficiente el esfuerzo que hiciste por todos los nietos y el amor que nos diste a todos y a cada uno, eras una persona admirable. Sigo con este emocionante ejercicio de memoria para dar las gracias a mi padre. Tantos años escuchando que somos tan parecidos me han hecho darme cuenta de lo difícil que es mantenerse cuerdo siendo idealista. Gracias por inculcarme valores éticos y este ansia por saber. Perdono tus fallos y utilizo tus fracasos como motivación en mi manera de vivir, ojalá pueda seguir compartiendo contigo mis vivencias muchos años. No podría terminar esta sección de agradecimientos sin dar las gracias a mi tío José Luis, que a pesar de ostentar el record mundial de ahijadas ha tenido tiempo y ganas de cuidar de mí. También gracias a mis tías Mari Carmen y Juana por ser mucho más que mis tías y celebrar mis triunfos como si fueran suyos. Gracias a José por tener ese corazón de oro, valoro mucho lo que has hecho por mí y sobre todo lo que haces por mi madre, te pido perdón por las veces que como adolescente me puse un poco rabuda jaja. Ahora que somos familia, tengo que añadir aquí los agradecimientos a mis suegros Conchi y Nacho. Gracias por acogerme sin peros y por contribuir con vuestra experiencia vital a mi vida. Acknowledgements Paso ahora a dar las gracias a mis compañeras del laboratorio de Marian. ¡Cuántas horas hemos compartido! Gracias a todas las que habéis pasado por ahí durante estos años, no hay ni una sola de vosotras que no me haya hecho aprender. Empiezo por estricto orden cronológico. Gracias a Conchi por ser mi primera mentora, el paso del tiempo me ha mostrado el estrés que supone estar en el último año de tesis y perdono que alguna vez fueras un poco impaciente conmigo. Gracias por enseñarme las técnicas de laboratorio y la responsabilidad que ser investigadora conlleva, te deseo lo mejor en el mundo científico, porque tu pasión lo merece. Continúo dando las gracias a Alejandra, la persona de la que más aprendí en el laboratorio. Gracias por no mirar el reloj a la hora de discutir sobre mi proyecto, por despertar en mí la curiosidad por la biología evolutiva y por reafirmarme en mi visión del mundo, espero que la vida te depare muchas alegrías. Gracias Mari por reírte de todas las bobadas que he dicho durante los años y por hacerme reír con tu amor por Jaume y por el actor, te deseo lo mejor en la vida y que sueñes todo lo que te propongas, como Alejandra y yo jaja...Gracias a Miriam Balada por hacerme crecer como mentora y hacerme sentir que podía transmitir mi motivación por la ciencia. Ευχαριώ a Stella, que a pesar de que siempre decimos mal su nombre nos quiere igual. Gracias por escucharme durante estos años y ayudarme con mi proyecto. Quiero decirte que envidio tu exactitud haciendo los experimentos... ¡ojalá algún día me salgan a mí así los controles!, me lo he pasado genial contigo este tiempo. Grazie mille a Simona por enseñarme que los postres pueden llevar pistacho... ¡es broma! Gracias por ser tan buena compañera y valorar mis consejos, ¡da gusto trabajar con gente como tú!, espero que no te hayan molestado mucho mis ganas constantes de hablar jaja. Gracias a Claudia por enseñarme tantos trucos técnicos y por enseñarme lo valioso que es tener las cosas claras, fue un placer trabajar contigo. Gracias a Marta por hacerme sentir tan orgullosa con sus logros durante el Máster y por estar tan loca como para querer trabajar con JMJD3 y los enhancers. Valoro muchísimo tu prudencia y madurez y te deseo lo mejor en esta aventura que comienzas. Por último, doy las gracias a Elia por ser tan risueña y alegrarse de mis triunfos a pesar de que nos conozcamos poco, seguro que tendrás un futuro brillante. No nos engañemos, en el IBMB todos nos debemos favores y eso es maravilloso. Agradezco aquí el buen ambiente que hay entre estudiantes y postdocs y ojalá que en mis futuros laboratorios sea la mitad de bueno. Empiezo dando las gracias a Sonia Najas, diosa de la corticogenesis. Gracias por valorarme tanto como científica y estar siempre ahí cuando te he necesitado. Espero que seas capaz de ver la gran investigadora que hay en ti y te confieso que cada vez que diseño un experimento intento ser paciente y reflexiva como tú. Gracias a Juan Arranz por ser tan buen compañero y por hacerme reír hasta el infinito, a Mariajo por ser tan pragmática, simpática y sobre todo, por odiar la homeopatía como yo jaja (aunque no está la cosa para reírse...). Gracias a Isa por quedarse siempre hasta tan tarde y no hacerme sentir una loca jaja, en serio, gracias por ser tan buena compañera. Muchas gracias a todos los del laboratorio de Elisa: Lucía, Elena, Murielle, José...y especialmente a Susana por ser la persona más amable que conozco y a Gwen por hacerme ser mejor científica y hacerme tener en cuenta la complejidad del sistema nervioso a la hora de interpretar mis resultados. Por supuesto gracias a Elisa que me ha hecho sentir muy apreciada en el laboratorio ¡nunca pierdas esa pasión que te caracteriza! Gracias al laboratorio de Albert Jordan por esos seminarios tan divertidos y especialmente gracias a Andrea por ser una tía de puta madre y a Carles por ser el adalid de la transmisión oral de cotilleos científicos de hoy, ayer y de siempre. Me encantan tus historias de como se hacía X técnica hace años o de cotilleos de los científicos, esos seres. Gracias a Ismael por ser Acknowledgements un derroche de bondad. Gracias a Carme Gallego por enseñarme a clonar, aunque quizás no te acuerdes. Gracias a Sara Gutiérrez, por enseñarme que hay muchas maneras de ser científica. Sobre todo, gracias a Raúl por todas las horas de conversación acerca de si los científicos estamos locos o no y por estar en el laboratorio días y horas intempestivas confirmándome que efectivamente, muy cuerdos no estamos. Ojalá nuestros caminos se vuelvan a cruzar, eres un gran amigo y compañero. Por último, quiero dar las gracias a los del laboratorio de Joaquím Roca, sois todos majísimos y siempre me habéis ayudado, sobre todo gracias a Toni que es una excelente persona y un gran conversador, ¡nos vemos en el Instituto de cromatina de Mallorca! También, aunque no haya participado directamente en mi tesis quiero dar las gracias a Leonor Calopa, la mujer que hace que el IBMB se mantenga en pie, gracias por toda la ayuda administrativa.
Recommended publications
  • Genetic Analysis of Retinopathy in Type 1 Diabetes
    Genetic Analysis of Retinopathy in Type 1 Diabetes by Sayed Mohsen Hosseini A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by S. Mohsen Hosseini 2014 Genetic Analysis of Retinopathy in Type 1 Diabetes Sayed Mohsen Hosseini Doctor of Philosophy Institute of Medical Science University of Toronto 2014 Abstract Diabetic retinopathy (DR) is a leading cause of blindness worldwide. Several lines of evidence suggest a genetic contribution to the risk of DR; however, no genetic variant has shown convincing association with DR in genome-wide association studies (GWAS). To identify common polymorphisms associated with DR, meta-GWAS were performed in three type 1 diabetes cohorts of White subjects: Diabetes Complications and Control Trial (DCCT, n=1304), Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR, n=603) and Renin-Angiotensin System Study (RASS, n=239). Severe (SDR) and mild (MDR) retinopathy outcomes were defined based on repeated fundus photographs in each study graded for retinopathy severity on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Multivariable models accounted for glycemia (measured by A1C), diabetes duration and other relevant covariates in the association analyses of additive genotypes with SDR and MDR. Fixed-effects meta- analysis was used to combine the results of GWAS performed separately in WESDR, ii RASS and subgroups of DCCT, defined by cohort and treatment group. Top association signals were prioritized for replication, based on previous supporting knowledge from the literature, followed by replication in three independent white T1D studies: Genesis-GeneDiab (n=502), Steno (n=936) and FinnDiane (n=2194).
    [Show full text]
  • Large-Scale Analysis of Genome and Transcriptome Alterations in Multiple Tumors Unveils Novel Cancer-Relevant Splicing Networks
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Research Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks Endre Sebestyén,1,5 Babita Singh,1,5 Belén Miñana,1,2 Amadís Pagès,1 Francesca Mateo,3 Miguel Angel Pujana,3 Juan Valcárcel,1,2,4 and Eduardo Eyras1,4 1Universitat Pompeu Fabra, E08003 Barcelona, Spain; 2Centre for Genomic Regulation, E08003 Barcelona, Spain; 3Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L’Hospitalet del Llobregat, Spain; 4Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We system- atically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alter- natively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferen- tiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1. We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome am- plification in nontumorigenic mammary epithelial cells.
    [Show full text]
  • A Novel Computational Algorithm for Predicting Immune Cell Types Using Single-Cell RNA Sequencing Data
    A novel computational algorithm for predicting immune cell types using single-cell RNA sequencing data By Shuo Jia A hesis submitted to the Faculty of Graduate Studies of The University of Manitoba n partial fulfillment of the requirements of the degree of MASTER OF SCIENCE Department of Biochemistry and Medical Genetics University of Manitoba Winnipeg, Manitoba, Canada Copyright © 2020 by Shuo Jia Abstract Background: Cells from our immune system detect and kill pathogens to protect our body against many diseases. However, current methods for determining cell types have some major limitations, such as being time-consuming and with low throughput rate, etc. These problems stack up and hinder the deep exploration of cellular heterogeneity. Immune cells that are associated with cancer tissues play a critical role in revealing the stages of tumor development. Identifying the immune composition within tumor microenvironments in a timely manner will be helpful to improve clinical prognosis and therapeutic management for cancer. Single-cell RNA sequencing (scRNA-seq), an RNA sequencing (RNA-seq) technique that focuses on a single cell level, has provided us with the ability to conduct cell type classification. Although unsupervised clustering approaches are the major methods for analyzing scRNA-seq datasets, their results vary among studies with different input parameters and sizes. However, in supervised machine learning methods, information loss and low prediction accuracy are the key limitations. Methods and Results: Genes in the human genome align to chromosomes in a particular order. Hence, we hypothesize incorporating this information into our model will potentially improve the cell type classification performance. In order to utilize gene positional information, we introduce chromosome-based neural network, namely ChrNet, a novel chromosome-specific re-trainable supervised learning method based on a one-dimensional 1 convolutional neural network (1D-CNN).
    [Show full text]
  • ZCCHC8, the Nuclear Exosome Targeting Component, Is Mutated in Familial Pulmonary Fibrosis and Is Required for Telomerase RNA Maturation
    Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation Dustin L. Gable,1,2,3 Valeriya Gaysinskaya,2,3 Christine C. Atik,2,3 C. Conover Talbot Jr.,4 Byunghak Kang,5 Susan E. Stanley,1,2,3 Elizabeth W. Pugh,6 Nuria Amat-Codina,2,3 Kara M. Schenk,7 Murat O. Arcasoy,8 Cory Brayton,5 Liliana Florea,6 and Mary Armanios2,3,6,9,10 1Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 2Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; 3Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; 4Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 5Department of Comparative and Molecular Pathobiology, 6Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; 7Osler Medical Housestaff Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; 8Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA; 9Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Mouse Rbm7 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Rbm7 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Rbm7 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Rbm7 gene (NCBI Reference Sequence: NM_144948 ; Ensembl: ENSMUSG00000042396 ) is located on Mouse chromosome 9. 5 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 5 (Transcript: ENSMUST00000170000). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Rbm7 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-147I23 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 4 starts from about 43.77% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 2468 bp, and the size of intron 4 for 3'-loxP site insertion: 859 bp. The size of effective cKO region: ~627 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 5 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Rbm7 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Structural Basis for MTR4–ZCCHC8 Interactions That Stimulate the MTR4 Helicase in the Nuclear Exosome-Targeting Complex
    Structural basis for MTR4–ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex M. Rhyan Punoa,b and Christopher D. Limaa,b,1 aStructural Biology Program, Sloan Kettering Institute, New York, NY 10065; and bHoward Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065 Edited by Lynne E. Maquat, University of Rochester School of Medicine and Dentistry, Rochester, NY, and approved May 9, 2018 (received for review February 27, 2018) The nuclear exosome-targeting (NEXT) complex functions as an complex (PPC) (17). NEXT is a nucleoplasmic ternary complex RNA exosome cofactor and is involved in surveillance and turnover consisting of RBM7, ZCCHC8, and MTR4 (15). RBM7 is a of aberrant transcripts and noncoding RNAs. NEXT is a ternary 31-kDa protein with a polyuridine-specific RNA recognition motif complex composed of the RNA-binding protein RBM7, the scaffold (RRM) (18), while the zinc-knuckle protein ZCCHC8 acts as a zinc-knuckle protein ZCCHC8, and the helicase MTR4. While RNA scaffold, mediating the interaction between RBM7 and MTR4 (16). interactions with RBM7 are known, it remains unclear how NEXT NEXT is involved in exosome-mediated surveillance and decay of subunits collaborate to recognize and prepare substrates for degra- noncoding RNAs, such as enhancer RNAs (eRNAs) and aberrant dation. Here, we show that MTR4 helicase activity is enhanced when 3′-extended transcripts from small nuclear RNA (snRNA), telo- associated with RBM7 and ZCCHC8. While uridine-rich substrates merase RNA, and replication-dependent histone genes (15, 19, 20). interact with RBM7 and are preferred, optimal activity is observed It ensures a unidirectional output from pervasive transcription of ′ when substrates include a polyadenylated 3 end.
    [Show full text]
  • RBM7 Subunit of the NEXT Complex Binds U-Rich Sequences and Targets
    4236–4248 Nucleic Acids Research, 2015, Vol. 43, No. 8 Published online 6 April 2015 doi: 10.1093/nar/gkv240 RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3-end extended forms of snRNAs Dominika Hrossova1,2, Tomas Sikorsky1,2, David Potesil1, Marek Bartosovic1,2, Josef Pasulka1, Zbynek Zdrahal1, Richard Stefl1,2,* and Stepanka Vanacova1,* 1CEITEC–Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic and 2National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic Downloaded from https://academic.oup.com/nar/article/43/8/4236/2414277 by guest on 01 October 2021 Received October 15, 2014; Revised March 05, 2015; Accepted March 06, 2015 ABSTRACT budding yeast are the Trf4/5-Air1/2-Mtr4 Polyadenylating (TRAMP) and Nrd1-Nab3-Sen1 (NNS) complexes (3–6). The Nuclear Exosome Targeting (NEXT) complex The TRAMP is composed of the non-canonical poly(A)- is a key cofactor of the mammalian nuclear exo- polymerase (PAP) Trf4p or Trf5p, the zinc-knuckle (ZnK) some in the removal of Promoter Upstream Tran- protein Air1p or Air2p and the RNA helicase Mtr4p (4– scripts (PROMPTs) and potentially aberrant forms of 7). TRAMP adds untemplated oligo(A) tail to the 3 end of other noncoding RNAs, such as snRNAs. NEXT is the RNA substrate which serves as a landing platform for composed of three subunits SKIV2L2, ZCCHC8 and the exosome. The NNS is formed by two RNA-binding pro- RBM7. We have recently identified the NEXT complex teins Nrd1p and Nab3p and an RNA helicase Sen1p (8).
    [Show full text]
  • The RNA Splicing Response to DNA Damage
    Biomolecules 2015, 5, 2935-2977; doi:10.3390/biom5042935 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Review The RNA Splicing Response to DNA Damage Lulzim Shkreta and Benoit Chabot * Département de Microbiologie et d’Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-819-821-8000 (ext. 75321); Fax: +1-819-820-6831. Academic Editors: Wolf-Dietrich Heyer, Thomas Helleday and Fumio Hanaoka Received: 12 August 2015 / Accepted: 16 October 2015 / Published: 29 October 2015 Abstract: The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
    [Show full text]
  • RNA Exosome Mutations in Pontocerebellar Hypoplasia Alter Ribosome Biogenesis and P53 Levels
    Published Online: 11 June, 2020 | Supp Info: http://doi.org/10.26508/lsa.202000678 Downloaded from life-science-alliance.org on 24 September, 2021 Research Article RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels Juliane S Müller1,2,*, David T Burns1,3,*, Helen Griffin1,* , Graeme R Wells3, Romance A Zendah3 , Benjamin Munro1,2 , Claudia Schneider3,* , Rita Horvath1,2,* The RNA exosome is a ubiquitously expressed complex of nine degrades a wide range of precursor RNAs, un-spliced pre-messenger core proteins (EXOSC1-9) and associated nucleases responsible RNAs, and cryptic transcripts (Allmang et al, 1999; Bousquet-Antonelli for RNA processing and degradation. Mutations in EXOSC3, et al, 2000; Kadaba et al, 2004; Wyers et al, 2005; Gudipati et al, 2012; EXOSC8, EXOSC9, and the exosome cofactor RBM7 cause ponto- Sayani & Chanfreau, 2012; Schneider et al, 2012a; Schneider & Tollervey, cerebellar hypoplasia and motor neuronopathy. We investigated 2013). Some reported that in the cytoplasm, the exosome degrades the consequences of exosome mutations on RNA metabolism and mRNAs that contain AU-rich elements (AREs) and RNAs that have cellular survival in zebrafish and human cell models. We observed evaded degradation in the nucleus (van Hoof et al, 2000; Mukherjee et that levels of mRNAs encoding p53 and ribosome biogenesis al, 2002); however, no new evidence is available to corroborate this. factors are increased in zebrafish lines with homozygous muta- Recessive mutations in EXOSC3, EXOSC8, and EXOSC9 have been tions of exosc8 or exosc9, respectively. Consistent with higher p53 associated with variable combinations of pontocerebellar hypoplasia levels, mutant zebrafish have a reduced head size, smaller brain, (PCH) and spinal motor neuron dysfunction (Pontocerebellar hypoplasia and cerebellum caused by an increased number of apoptotic cells type 1B, OMIM # 614678; Pontocerebellar hypoplasia type 1C, OMIM EXOSC8 EXOSC9 during development.
    [Show full text]
  • WO 2013/064702 A2 10 May 2013 (10.05.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/064702 A2 10 May 2013 (10.05.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12Q 1/68 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/EP2012/071868 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 5 November 20 12 (05 .11.20 12) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (26) Publication Language: English ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 1118985.9 3 November 201 1 (03. 11.201 1) GB kind of regional protection available): ARIPO (BW, GH, 13/339,63 1 29 December 201 1 (29. 12.201 1) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: DIAGENIC ASA [NO/NO]; Grenseveien 92, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, N-0663 Oslo (NO).
    [Show full text]