Turbocharger and Supercharger
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bentley Mulsanne Turbo and Turbo R Turbocharging System
Bentley Mulsanne Turbo and Turbo R Turbocharging System Extracts from Workshop Manuals TSD4400, TSD 4700, TSD4737 Basic Principles of Operation – Systems with Solex 4A-1 Carburettor The turbocharger is fitted to increase the power, and especially the low engine speed torque, of the engine. This it achieved by utilising the exhaust gas flow to pump pressurised air into the engine at wide throttle openings. Whenever this occurs, the turbocharger applies boost to the induction system. Under most conditions, the motor runs under naturally-aspirated principles. The inlet manifold may be under partial vacuum but the pressure chest partially pressurised under conditions of moderate power demand. The size of the turbocharger has been carefully chosen to give a substantial increase in torque at low engine speeds. The turbocharger is especially effective from 800rpm, with the engine achieving full torque at less than 1800RPM. Thus, maximum engine torque is available constantly between 1800RPM and 3800 RPM. By comparison to most turbocharging systems, the turbocharger capacity may appear decidedly oversized. This selection is intentional, and is fundamental to the achievement of full engine torque at low engine speeds and the absence of any noticeable delay when boost is demanded. It also minimises heating of exhaust gases by ensuring minimal resistance to gas flow under boost conditions. Furthermore, the design has been carefully chosen to avoid the need for the turbocharger to accelerate on demand, a feature commonly referred to as spool-up. By using a large turbocharger running but unloaded when not under demand, spool-up is not a phenomenon in the system. -
Executive Order D-425-50 Toyota Racing Development
State of California AIR RESOURCES BOARD EXECUTIVE ORDER D—425—50 Relating to Exemptions Under Section 27156 of the California Vehicle Code Toyota Racing Development TRD Supercharger System Pursuant to the authority vested in the Air Resources Board by Section 27156 of the Vehicle Code; and Pursuant to the authority vested in the undersigned by Section 39515 and Section 39516 of the Health and Safety Code and Executive Order G—14—012; IT IS ORDERED AND RESOLVED: That the installation of the TRD Supercharger System, manufactured and marketed by Toyota Racing Development, 19001 South Western Avenue, Torrance, California, has been found not to reduce the effectiveness of the applicable vehicle pollution control systems and, therefore, is exempt from the prohibitions of Section 27156 of the Vehicle Code for the following Toyota truck applications: Part No. Model Year Engine Disp. Model PTR29—34070 2007 to 2013 5.7L (3UR—FE) Tundra PTR29—00140 2014 to 2015 5.7L (3UR—FE) Tundra PTR29—34070 2008 to 2013 5.7L (3UR—FE) Sequoia PTR29—00140 2014 to 2015 5.7L (3UR—FE) Sequoia PTR29—60140 2008 to 2015 5.7L (3UR—FE) Land Cruiser/LX570 PTR29—35090 2005 to 2015 4.0L (1GR—FE) Tacoma PTR29—35090 2007 to 2009 4.0L (1GR—FE) FJ Cruiser PTR29—35090 2003 to 2009 4.0L (1GR—FE) 4—Runner PTR29—00130 2010 to 2014 4.0L (1GR—FE) FJ Cruiser PTR29—00130 2010 to 2015 4.0L (1GR—FE) 4—Runner The 5.7L Supercharger System includes a Magnuson supercharger (rated at a maximum boost of 8.5 psi.) with a 2.45 inch diameter supercharger pulley and the stock crankshaft pulley, high flow injectors to replace the stock injectors, a new ECU calibration, intercooler, intake manifold, an air bypass valve, and a new replacement fuel pump which is located in the fuel tank. -
110 Years Since Mercedes' Dad Bought His First
110Years Since Mercedes' Dad Bought His First Car In 1897, successful German-born businessman Emil Jellinek bought his first car from genius inventor Gottlieb Daimler. He became an enthusias- tic fan of the automobile, took part in the earliest motor races, and quickly became the largest distributor of Daimler cars. A few months after Herr Daimler's death in 1900, Jellinek persuaded the management of the Daimler-Motoren-Gesellschaft to have its chief designer, legendary and visionary engineer Wilhelm Maybach, build a fast, lightweight Emil Jellinek didn't only love Daimler cars; he also and safe car. Jellinek also made a second sugges- doted on his daughter, Mercédès. tion: the new car should bear the name of his daughter, Mercédès, who was then ten years old. And what a new car it was. More advanced than any other of the time, there's no disputing that it set the pattern for all that was to come for many decades. Essentially, it defined the car as we know it today. Of course, during the previous 15 years since Karl Benz had patented his three-wheeler, all sorts of contraptions, both European and American, had been produced that proved capable of moving under their own power, more or less, but none but the 1901 Mercedes deserved billing as "The This example of the first Mercedes was owned by U.S. World’s First Modern Automobile." Instead of a millionaire William K. Vanderbilt. Note how modern the wooden frame, it featured pressed-steel chassis essentials of its design are compared to other cars of members. -
Diesel Turbo-Compound Technology
Diesel Turbo-compound Technology ICCT/NESCCAF Workshop Improving the Fuel Economy of Heavy-Duty Fleets II February 20, 2008 Volvo Powertrain Corporation Anthony Greszler Conventional Turbocharger What is t us Compressor ha Turbocompound? Ex Key Components of a Mechanical Turbocompound t us ha System Ex Conventional Turbocharger Turbine Axial Flow Final Gear Power reduction to Turbine crankshaft Speed Reduction Gears Fluid Coupling Volvo D12 500TC Volvo Powertrain Corporation Anthony Greszler How Turbocompound Works • 20-25% of Fuel energy in a modern heavy duty diesel is exhausted • By adding a power turbine in the exhaust flow, up to 20% of exhaust energy recovery is possible (20% of 25% = 5% of total fuel energy) • Power turbine can actually add approximately 10% to engine peak power output • A 400 HP engine can increase output to ~440 HP via turbocompounding • However, due to added exhaust back pressure, gas pumping losses increase within the diesel, so efficiency improvement is less than T-C power output • Maximum total efficiency improvement is 3-5% • Turbine output shaft is connected to crankshaft through a gear train for speed reduction • Typical maximum turbine speed = 70,000 RPM; crankshaft maximum = 1800 RPM • An isolation coupling is required to prevent crankshaft torsional vibration from damaging the high speed gears and turbine Volvo Powertrain Corporation Anthony Greszler Turbocompound Thermodynamics • When exhaust gas passes through the turbine, the pressure and temperature drops as energy is extracted and due to losses • The power taken from the exhaust gases is about double compared to a typical turbocharged diesel engine • To make this possible the pressure in the exhaust manifold has to be higher • This increases the pump work that the pistons have to do • The net power increase with a turbo-compound system is therefore about half the power from the second turbine • E.G. -
Daimler-Benz AG Stuttgart Annual Report 1985
Daimler-Benz Highlights Daimler-Benz AG Stuttgart Annual Report 1985 Page Agenda for the Stockholders' Meeting 5 Members of the Supervisory Board and the Board of Management 8 Report of The Board of Management 11 Business Review 11 Outlook 29 100 Years of The Automobile 35 Research and Development 59 Materials Management 64 Production 67 Sales 71 Employment 77 Subsidiaries and Affiliated Companies 84 Report of the Supervisory Board 107 Financial Statements of Daimler-Benz AG 99 Notes to Financial Statements of Daimler-Benz AG 100 Proposal for the Allocation of Unappropriated Surplus 106 Balance Sheet as at December 31,1985 108 Statement of Income ForThe Year Ended December 31,1985 110 Consolidated Financial Statements 111 Notes to Consolidated Financial Statements 112 Consolidated Balance Sheet as of December 31,1985 122 Consolidated Statement of Income For The Year Ended December 31,1985 124 Tables and Graphs 125 Daimler-Benz Highlights 126 Sales and Production Data 129 Automobile Industry Trends in Leading Countries 130 3 for the 90th Stockholders' Meeting being held on Wednesday, July 2,1986 at 10:00 a.m. in the Hanns-Martin-Schleyer-Halle in Stuttgart-Bad Cannstatt, MercedesstraBe. 1. Presentation of the audited financial statements as of 3. Ratification of the Board of December 31,1985, the reports of the Board of Manage Management's Actions. ment and the Supervisory Board together with the con Board of Management and solidated financial statements and the consolidated annual Supervisory Board propose report for the year 1985. ratification. 2. Resolution for the Disposition of the Unappropriated 4. Ratification of the Supervi Surplus. -
Intake Throttle and Pre-Swirl Device for LP EGR Systems
Intake Throttle and Pre-swirl Device for Low-pressure EGR Systems Knowledge Library Knowledge Library Intake Throttle and Pre-swirl Device for Low-pressure EGR Systems Low-pressure EGR systems to reduce emissions are state of the art for diesel engines. They offer efficiency benefits compared to high-pressure EGR systems and will gain further importance. BorgWarner shows the potential of a so-called Inlet Swirl Throttle to make use of the losses and turn them into a pre-swirl motion of the intake air entering the turbocharger to improve the aerodynamics of the compressor. By Urs Hanig, Program Manager for PassCar Systems at BorgWarner and a member of BorgWarner’s Corporate Advanced R&D Organisation Technology to meet future Emission the compressor. Obviously, pre-swirl will have a Standards positive impact on the compressor also in are- Low-pressure EGR systems (LP EGR sys- as where no throttling is required. So the IST tems), see Figure 1 , for gasoline engines yield can be used to improve engine efficiency and significant fuel consumption benefits, they are performance also in regions where no throttling also an important technology to meet future or EGR is required. emission standards (e.g. Real Driving Emissi- ons) [1 ]. To achieve the targeted EGR rates in Approach and Modes of Operation particular on diesel engines throttling the LP With IST the throttling effect is achieved by ad- EGR path is necessary in some areas of the justable inlet guide vanes in the fresh air duct. engine operating map. This can be done either In other words, IST is an intake throttle desi- on the exhaust or the intake side but to throttle gned as a compressor pre-swirl device. -
MGA Supercharger System Installation Instructions for 1955 to 1962 MGA
MGA Supercharger System Installation Instructions For 1955 to 1962 MGA PART # 150-040 440 Rutherford St. P.O. Box 847 Goleta, CA 93117 1-800-667-7872 • FAX 805-692-2525 • www.mossmotors.com Please read and understand these valve between the barbed fitting and the instructions completely before you brake booster (closer to the booster) with begin the installation. the check valve arrow pointing toward the supercharger manifold. A few notes before you begin: Hose clamps: Re-use hose clamps, or Engine condition - Your car should have purchase new ones where necessary. Use a fresh tune up, including new spark plug new hose clamps on all fuel connections. wires, points, and a new distributor cap and rotor. Spark plugs are included in the If you have installed vacuum boosted supercharger system. brakes - you MUST install a check valve (Moss Part # 150-071) in the vacuum How superchargers work — line. This will prevent pressurized air from Superchargers compress the air/fuel mix- reaching the brake booster system and ture, filling cylinders with a greater charge damaging it. To install, remove the larger than when normally aspirated. Normally of the 3 plugs in the back of the super- aspirated engines produce vacuum, read charger manifold and install a barbed in inches of mercury, superchargers and fitting using teflon tape on the threads. turbochargers produce boost, read in posi- Using 3/8 in vacuum line, install the check tive pounds per square inch. 150-040 -1- Revised 1/11 Installation Instructions Boost capacity is determined by supercharger rod, jet, and slide have been altered to run prop- RPM which is, of course, affected by pulley size erly and safely on a wide range of supercharged, (the smaller the supercharger pulley, the faster unmodified engines. -
Mobile Stuttgart Many Ways Lead Through the Stuttgart Region
Press Release (Auto)Mobile Stuttgart Many ways lead through the Stuttgart Region Stuttgart is known as the cradle of the automobile. In 1883 Gottlieb Daimler invented the first fast-running, light engine for universal use, laying the cornerstone for its further development. And in the present day, too, the theme of mobility is still a key issue for Stuttgart's inhabitants in many different ways: The Mercedes-Benz Museum and the Porsche Museum have made the state capital a mecca for automobile enthusiasts from all over the world. Locals and visitors alike use many different means of transport each day, and learn about the history of mobility in various museums and during the tours offered by the Stuttgart-Marketing GmbH. At the "i-Punkt" Tourist Information there's also the so- called "m-Punkt" – the city of Stuttgart's mobility advisory service, which provides tips for residents and tourists on the most convenient mode of travel and the best route. In addition to its excellent ÖPNV public transport network, Stuttgart also scores with a wide range of electrically-powered transportation and sharing schemes, including cars, bikes or scooters. Why not hire an E-scooter to travel from one highlight to the next? Highlights Gottlieb Daimler's Birthplace The first fast-running, light engine for universal use was developed by Gottlieb Daimler, a baker's son who was born in 1834 in a half-timbered house in Schorndorf, near Stuttgart. Daimler's birthplace was acquired and restored by the Daimler-Benz AG and is today a museum and conference venue. Here, fans of this automobile pioneer will find treasures such as the legendary postcard sent by Gottlieb Daimler to his first wife, or his journeyman's piece. -
The Trojan Horse: Imported Automobiles
CHAPTER 5 suggested citation: Medrano-Bigas, Pau. The Forgotten Years of Bibendum. Michelin’s American Period in Milltown: Design, Illustration and Advertising by Pioneer Tire Companies (1900-1930). Doctoral dissertation. University of Barcelona, 2015 [English translation, 2018]. THE TROJAN HORSE: IMPORTED AUTOMOBILES In the last two decades of the nineteenth century, the furor for bicycles as a personal and economical means of transport led to the invasion of the French market by English and American firms—leading to fierce commercial competition with the country’s own industries—resulting in the collapse of 1898. In the early stages of the new century the full development of the European automobile industry and in particular the French sector—with the inseparable development of the tire—produced a similar effect. However, this time it was the American market that was invaded by imported European vehicles, pre- dominantly from France. 1. Transatlantic travel on wheels Between 1890 and 1891 the first French vehicles marketed by Peugeot—one of the major bicycle manu- facturers—and Panhard et Levassor, appeared on the scene and incorporated the internal combustion engine developed by the German Gottlieb Daimler. French and German investments in technology, which would be imposed on the rest, was based on gasoline-powered engines and collided with the English and North American options, diversified between vapor, electric and gas-powered automobiles. Production data from the United States in 1899 show that there were 2,500 vehicles—about 80% of which used electric or steam engines—manufactured by around 30 companies. Between 1900 and 1901, France was by far the world’s largest automobile producer. -
High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology
AMR 2015 NETL/DOE Award No. DE-EE0005981 High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology June 12, 2015 Charles Mendler, ENVERA PD/PI David Yee, EATON Program Manager, PI, Supercharging Scott Brownell, EATON PI, Valvetrain This presentation does not contain any proprietary, confidential, or otherwise restricted information. ENVERA LLC Project ID Los Angeles, California ACE092 Tel. 415 381-0560 File 020408 2 Overview Timeline Barriers & Targets Vehicle-Technology Office Multi-Year Program Plan Start date1 April 11, 2013 End date2 December 31, 2017 Relevant Barriers from VT-Office Program Plan: Percent complete • Lack of effective engine controls to improve MPG Time 37% • Consumer appeal (MPG + Performance) Budget 33% Relevant Targets from VT-Office Program Plan: • Part-load brake thermal efficiency of 31% • Over 25% fuel economy improvement – SI Engines • (Future R&D: Enhanced alternative fuel capability) Budget Partners Total funding $ 2,784,127 Eaton Corporation Government $ 2,212,469 Contributing relevant advanced technology Contractor share $ 571,658 R&D as a cost-share partner Expenditure of Government funds Project Lead Year ending 12/31/14 $733,571 ENVERA LLC 1. Kick-off meeting 2. Includes no-cost time extension 3 Relevance Research and Development Focus Areas: Variable Compression Ratio (VCR) Approx. 8.5:1 to 18:1 Variable Valve Actuation (VVA) Atkinson cycle and Supercharging settings Advanced Supercharging High “launch” torque & low “stand-by” losses Systems integration Objectives 40% better mileage than V8 powered van or pickup truck without compromising performance. GMC Sierra 1500 baseline. Relevance to the VT-Office Program Plan: Advanced engine controls are being developed including VCR, VVA and boosting to attain high part-load brake thermal efficiency, and exceed VT-Office Program Plan mileage targets, while concurrently providing power and torque values needed for consumer appeal. -
Vortech Engineering Performance Engine Parts
® FAQ How tight should I tighten the Vortech superchrrger retrnng rolt? About 25-30 ft./bb ib buggebted for the retiiiiig bo/tt tt ib i/bo recommeided thit i bmi// imouit of b/ue Loctte be ipp/ied to the threidb prior to iibertig the bo/t ii the iiput bhif iid ipp/y i bmi// imouit of iit-beiie oi the iiput bhif iid key before iibti//iig the buperchirger pu//eyt Why should I use Vortech pulleys? Some ioi-Vortech pu//eyb ivii/ib/e do iot provide the precibioi ft iid bi/iice which ire ebbeiti/ for performiice iid duribi/ity iid ire therefore iot recommeidedt Never force or himmer oi the pu//ey or buperchirger bhift The pu//ey bhou/d bire/y b/ip over the bhif whei it ib 75-80 degreeb Ft The key to keywiy ft ib i/bo critci/, ib ib bi/iicet A/wiyb ube i bmi// of oi/ or greibe oi the bhift Stee/ pu//eyb miy rubt thembe/veb to the bhif if iot /ubricitedt Why would r Vortech superchrrger relt come of or werr unevenly? The propeibity for grooved be/tb to move over oie or more grooveb, or come of comp/ete/y, ib i/wiyb due to ii i/igimeit prob/emt Either btitci//y (the pu//eyb ire mibi/igied due to ii iibti//itoi or to/eriice prob/em) or dyiimici//y (the /oidiig or ui/oidiig of the bybtem), miii/y the mouitig p/ite ciubeb mibi/igimeit due to fex or movemeitt Mibi/igimeit cii i/bo be ciubed by over-tghteiiig (iid fii/iig) of the be/t which miy be detrimeiti/ to the pu//ey beiriigt Crn I run r cog drve system wth r Vortech superchrrger? The oi/y Vortech buperchirger debigiitoib thit miy be drivei with i cogged type be/t drive ire heivy duty mode/bt -
CHARACTERIZATION of TURBOCHARGER PERFORMANCE and SURGE in a NEW EXPERIMENTAL FACILITY
CHARACTERIZATION of TURBOCHARGER PERFORMANCE and SURGE in a NEW EXPERIMENTAL FACILITY Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gregory David Uhlenhake, B.S. Graduate Program in Mechanical Engineering The Ohio State University 2010 Master‟s Examination Committee: Dr. Ahmet Selamet, Advisor Dr. Rajendra Singh Dr. Philip Keller Copyright by Gregory David Uhlenhake 2010 ABSTRACT The primary goal of the present study was to design, develop, and construct a cold turbocharger test facility at The Ohio State University in order to measure performance characteristics under steady state operating conditions and to investigate surge for a variety of automotive turbocharger compression systems. A specific turbocharger is used for a thermodynamic analysis to determine facility capabilities and limitations as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allowed performance measurements left of the compressor surge line, while the second system allowed for a variable plenum volume to change surge frequencies. Temporal behavior, consisting of compressor inlet, outlet, and plenum pressures as well as the turbocharger speed, is analyzed with a full plenum volume and three impeller tip speeds to identify stable operating limits and surge phenomenon. A frequency domain analysis is performed for this temporal behavior as well as for multiple plenum volumes with a constant impeller tip speed. This analysis allows mild and deep surge frequencies to be compared with calculated Helmholtz frequencies as a function of impeller tip speed and plenum volume.