Grammar Factorization by Tree Decomposition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bayesian Methods for Unsupervised Learning
Bayesian Methods for Unsupervised Learning Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK [email protected] http://www.gatsby.ucl.ac.uk Mathematical Psychology Conference July 2003 What is Unsupervised Learning? Unsupervised learning: given some data, learn a probabilistic model of the data: clustering models (e.g. k-means, mixture models) • dimensionality reduction models (e.g. factor analysis, PCA) • generative models which relate the hidden causes or sources to the observed data • (e.g. ICA, hidden markov models) models of conditional independence between variables (e.g. graphical models) • other models of the data density • Supervised learning: given some input and target data, learn a mapping from inputs to targets: classification/discrimination (e.g. perceptron, logistic regression) • function approximation (e.g. linear regression) • Reinforcement learning: systems learns to produce actions while interacting in an environment so as to maximize its expected sum of long-term rewards. Formally equivalent to sequential decision theory and optimal adaptive control theory. Bayesian Learning Consider a data set , and a model m with parameters θ. D Prior over model parameters: p(θ m) Likelihood of model parameters for dataj set : p( θ; m) Prior over model class: p(m) D Dj The likelihood and parameter priors are combined into the posterior for a particular model; batch and online versions: p( θ; m)p(θ m) p(x θ; ; m)p(θ ; m) p(θ ; m) = Dj j p(θ ; x; m) = j D jD jD p( m) jD p(x ; m) Dj jD Predictions are made by integrating over the posterior: p(x ; m) = Z dθ p(x θ; ; m) p(θ ; m): jD j D jD Bayesian Model Comparison A data set , and a model m with parameters θ. -
Neural Trees for Learning on Graphs Rajat Talak, Siyi Hu, Lisa Peng, and Luca Carlone
1 Neural Trees for Learning on Graphs Rajat Talak, Siyi Hu, Lisa Peng, and Luca Carlone Abstract—Graph Neural Networks (GNNs) have emerged as a Various GNN architectures have been proposed, that go flexible and powerful approach for learning over graphs. Despite beyond local message passing, in order to improve expressivity. this success, existing GNNs are constrained by their local message- Graph isomorphism testing, G-invariant function approximation, passing architecture and are provably limited in their expressive power. In this work, we propose a new GNN architecture – and the generalized k-order WL (k-WL) tests have served as the Neural Tree. The neural tree architecture does not perform end objectives and guided recent progress of this inquiry. For message passing on the input graph, but on a tree-structured example, k-order linear GNN [Maron et al., 2019b] and k-order graph, called the H-tree, that is constructed from the input graph. folklore GNN [Maron et al., 2019a] have expressive powers Nodes in the H-tree correspond to subgraphs in the input graph, equivalent to k-WL and (k + 1)-WL test, respectively [Azizian and they are reorganized in a hierarchical manner such that a parent-node of a node in the H-tree always corresponds to a and Lelarge, 2021]. While these architectures can theoretically larger subgraph in the input graph. We show that the neural tree approximate any G-invariant function (as k ! 1), they use architecture can approximate any smooth probability distribution k-order tensors for representations, rendering them impractical function over an undirected graph, as well as emulate the junction for any k ≥ 3. -
Duality of Graphical Models and Tensor Networks Arxiv:1710.01437V1
Duality of Graphical Models and Tensor Networks Elina Robeva and Anna Seigal Abstract In this article we show the duality between tensor networks and undirected graphical models with discrete variables. We study tensor networks on hypergraphs, which we call tensor hypernetworks. We show that the tensor hypernetwork on a hypergraph exactly corresponds to the graphical model given by the dual hypergraph. We translate various notions under duality. For example, marginalization in a graphical model is dual to contraction in the tensor network. Algorithms also translate under duality. We show that belief propagation corresponds to a known algorithm for tensor network contraction. This article is a reminder that the research areas of graphical models and tensor networks can benefit from interaction. 1 Introduction Graphical models and tensor networks are very popular but mostly separate fields of study. Graphical models are used in artificial intelligence, machine learning, and statistical mechan- ics [16]. Tensor networks show up in areas such as quantum information theory and partial differential equations [7, 10]. Tensor network states are tensors which factor according to the adjacency structure of the vertices of a graph. On the other hand, graphical models are probability distributions which factor according to the clique structure of a graph. The joint probability distribution of several discrete random variables is naturally organized into a tensor. Hence both graphical arXiv:1710.01437v1 [math.ST] 4 Oct 2017 models and tensor networks are ways to represent families of tensors that factorize according to a graph structure. The relationship between particular graphical models and particular tensor networks has been studied in the past. -
Machine Learning
Machine Learning Bert Kappen SNN Radboud University, Nijmegen Gatsby Unit, UCL London October 9, 2020 Bert Kappen Course setup • 3 ec course. 7 weeks. • Lectures are prerecorded. Available through brightspace. • examination based on weekly exercises only – You make a group of maximal 3 persons – Each week, you make the exercises with your group. – You can ask questions in tutorial class – Your group hands them in before the next tutorial class. Hard rule, because answers may be discussed in tutorial class. • All course materials (slides, exercises) and schedule via http://www.snn.ru.nl/~bertk/machinelearning/ Bert Kappen ML 1 Content 1. Probabilities, Bayes rule, information theory 2. Model selection 3. Classification, perceptron, gradient descent learning rules 4. Multi layered perceptrons 5. Deep learning 6. Graphical models, latent variable models, EM 7. Variational autoencoders Bert Kappen ML 2 Lecture 1a Based on Mackay ch. 2: Probability, Entropy and Inference • Probabilities • Bayesian inference, inverse probabilities, Bayes rule Bert Kappen ML 3 Forward probabilities Forward probabilities is the usual way to compute the probabilities of possible out- comes given a probability model p(xj f ) ! p(outcomej f ) Exercise 2.4 Urn with B black balls and W white balls and K = W + B. Draw N times a ball from the urn with replacement. What is the probability to draw NB black balls? Bert Kappen ML 4 Forward probabilities Define f = B=K the fraction of black balls in the urn. Then N p(NB = 0) = (1 − f ) N−1 p(NB = 1) = f (1 − f ) N ! N NB N−NB p(NB) = f (1 − f ) NB Expected value and variance: N N X X 2 ENB = p(NB)NB = ::: = N f VNB = p(NB)(NB − N f ) = ::: = N f (1 − f ) NB=0 NB=0 Suppose K = 10; B = 2; f = 0:2. -
Treewidth-Erickson.Pdf
Computational Topology (Jeff Erickson) Treewidth Or il y avait des graines terribles sur la planète du petit prince . c’étaient les graines de baobabs. Le sol de la planète en était infesté. Or un baobab, si l’on s’y prend trop tard, on ne peut jamais plus s’en débarrasser. Il encombre toute la planète. Il la perfore de ses racines. Et si la planète est trop petite, et si les baobabs sont trop nombreux, ils la font éclater. [Now there were some terrible seeds on the planet that was the home of the little prince; and these were the seeds of the baobab. The soil of that planet was infested with them. A baobab is something you will never, never be able to get rid of if you attend to it too late. It spreads over the entire planet. It bores clear through it with its roots. And if the planet is too small, and the baobabs are too many, they split it in pieces.] — Antoine de Saint-Exupéry (translated by Katherine Woods) Le Petit Prince [The Little Prince] (1943) 11 Treewidth In this lecture, I will introduce a graph parameter called treewidth, that generalizes the property of having small separators. Intuitively, a graph has small treewidth if it can be recursively decomposed into small subgraphs that have small overlap, or even more intuitively, if the graph resembles a ‘fat tree’. Many problems that are NP-hard for general graphs can be solved in polynomial time for graphs with small treewidth. Graphs embedded on surfaces of small genus do not necessarily have small treewidth, but they can be covered by a small number of subgraphs, each with small treewidth. -
A Complete Anytime Algorithm for Treewidth
UAI 2004 GOGATE & DECHTER 201 A Complete Anytime Algorithm for Treewidth Vibhav Gogate and Rina Dechter School of Information and Computer Science, University of California, Irvine, CA 92967 fvgogate,[email protected] Abstract many algorithms that solve NP-hard problems in Arti¯cial Intelligence, Operations Research, In this paper, we present a Branch and Bound Circuit Design etc. are exponential only in the algorithm called QuickBB for computing the treewidth. Examples of such algorithm are Bucket treewidth of an undirected graph. This al- elimination [Dechter, 1999] and junction-tree elimina- gorithm performs a search in the space of tion [Lauritzen and Spiegelhalter, 1988] for Bayesian perfect elimination ordering of vertices of Networks and Constraint Networks. These algo- the graph. The algorithm uses novel prun- rithms operate in two steps: (1) constructing a ing and propagation techniques which are good tree-decomposition and (2) solving the prob- derived from the theory of graph minors lem on this tree-decomposition, with the second and graph isomorphism. We present a new step generally exponential in the treewidth of the algorithm called minor-min-width for com- tree-decomposition computed in step 1. In this puting a lower bound on treewidth that is paper, we present a complete anytime algorithm used within the branch and bound algo- called QuickBB for computing a tree-decomposition rithm and which improves over earlier avail- of a graph that can feed into any algorithm like able lower bounds. Empirical evaluation of Bucket elimination [Dechter, 1999] that requires a QuickBB on randomly generated graphs and tree-decomposition. benchmarks in Graph Coloring and Bayesian The majority of recent literature on Networks shows that it is consistently bet- the treewidth problem is devoted to ¯nd- ter than complete algorithms like Quick- ing constant factor approximation algo- Tree [Shoikhet and Geiger, 1997] in terms of rithms [Amir, 2001, Becker and Geiger, 2001]. -
Tree-Decomposition Graph Minor Theory and Algorithmic Implications
DIPLOMARBEIT Tree-Decomposition Graph Minor Theory and Algorithmic Implications Ausgeführt am Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien unter Anleitung von Univ.Prof. Dipl.-Ing. Dr.techn. Michael Drmota durch Miriam Heinz, B.Sc. Matrikelnummer: 0625661 Baumgartenstraße 53 1140 Wien Datum Unterschrift Preface The focus of this thesis is the concept of tree-decomposition. A tree-decomposition of a graph G is a representation of G in a tree-like structure. From this structure it is possible to deduce certain connectivity properties of G. Such information can be used to construct efficient algorithms to solve problems on G. Sometimes problems which are NP-hard in general are solvable in polynomial or even linear time when restricted to trees. Employing the tree-like structure of tree-decompositions these algorithms for trees can be adapted to graphs of bounded tree-width. This results in many important algorithmic applications of tree-decomposition. The concept of tree-decomposition also proves to be useful in the study of fundamental questions in graph theory. It was used extensively by Robertson and Seymour in their seminal work on Wagner’s conjecture. Their Graph Minors series of papers spans more than 500 pages and results in a proof of the graph minor theorem, settling Wagner’s conjecture in 2004. However, it is not only the proof of this deep and powerful theorem which merits mention. Also the concepts and tools developed for the proof have had a major impact on the field of graph theory. Tree-decomposition is one of these spin-offs. Therefore, we will study both its use in the context of graph minor theory and its several algorithmic implications. -
A Polynomial Excluded-Minor Approximation of Treedepth
A Polynomial Excluded-Minor Approximation of Treedepth Ken-ichi Kawarabayashi∗ Benjamin Rossmany National Institute of Informatics University of Toronto k [email protected] [email protected] November 1, 2017 Abstract Treedepth is a well-studied graph invariant in the family of \width measures" that includes treewidth and pathwidth. Understanding these invariants in terms of excluded minors has been an active area of research. The recent Grid Minor Theorem of Chekuri and Chuzhoy [12] establishes that treewidth is polynomially approximated by the largest k × k grid minor. In this paper, we give a similar polynomial excluded-minor approximation for treedepth in terms of three basic obstructions: grids, tree, and paths. Specifically, we show that there is a constant c such that every graph of treedepth ≥ kc contains one of the following minors (each of treedepth ≥ k): • the k × k grid, • the complete binary tree of height k, • the path of order 2k. Let us point out that we cannot drop any of the above graphs for our purpose. Moreover, given a graph G we can, in randomized polynomial time, find either an embedding of one of these minors or conclude that treedepth of G is at most kc. This result has potential applications in a variety of settings where bounded treedepth plays a role. In addition to some graph structural applications, we describe a surprising application in circuit complexity and finite model theory from recent work of the second author [28]. 1 Introduction Treedepth is a well-studied graph invariant with several equivalent definitions. It appears in the literature under various names including vertex ranking number [30], ordered chromatic number [17], and minimum elimination tree height [23], before being systematically studied under the name treedepth by Ossona de Mendes and Neˇsetˇril[20]. -
Layered Separators in Minor-Closed Graph Classes with Applications
Layered Separators in Minor-Closed Graph Classes with Appli- cations Vida Dujmovi´c y Pat Morinz David R. Wood x Abstract. Graph separators are a ubiquitous tool in graph theory and computer science. However, in some applications, their usefulness is limited by the fact that the separator can be as large as Ω(pn) in graphs with n vertices. This is the case for planar graphs, and more generally, for proper minor-closed classes. We study a special type of graph separator, called a layered separator, which may have linear size in n, but has bounded size with respect to a different measure, called the width. We prove, for example, that planar graphs and graphs of bounded Euler genus admit layered separators of bounded width. More generally, we characterise the minor-closed classes that admit layered separators of bounded width as those that exclude a fixed apex graph as a minor. We use layered separators to prove (log n) bounds for a number of problems where (pn) O O was a long-standing previous best bound. This includes the nonrepetitive chromatic number and queue-number of graphs with bounded Euler genus. We extend these results with a (log n) bound on the nonrepetitive chromatic number of graphs excluding a fixed topological O minor, and a logO(1) n bound on the queue-number of graphs excluding a fixed minor. Only for planar graphs were logO(1) n bounds previously known. Our results imply that every n-vertex graph excluding a fixed minor has a 3-dimensional grid drawing with n logO(1) n volume, whereas the previous best bound was (n3=2). -
Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs∗
Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs∗ Christian Konrady Viktor Zamaraevz Abstract We give deterministic distributed (1 + )-approximation algorithms for Minimum Vertex Color- ing and Maximum Independent Set on chordal graphs in the LOCAL model. Our coloring algorithm 1 1 1 ∗ runs in O( log n) rounds, and our independent set algorithm has a runtime of O( log( ) log n) 1 rounds. For coloring, existing lower bounds imply that the dependencies on and log n are best 1 possible. For independent set, we prove that Ω( ) rounds are necessary. Both our algorithms make use of a tree decomposition of the input chordal graph. They iteratively peel off interval subgraphs, which are identified via the tree decomposition of the input graph, thereby partitioning the vertex set into O(log n) layers. For coloring, each interval graph is colored independently, which results in various coloring conflicts between the layers. These conflicts are then resolved in a separate phase, using the particular structure of our partitioning. 1 For independent set, only the first O(log ) layers are required as they already contain a large enough independent set. We develop a (1 + )-approximation maximum independent set algorithm for interval graphs, which we then apply to those layers. This work raises the question as to how useful tree decompositions are for distributed comput- ing. 1 Introduction The LOCAL Model. In the LOCAL model of distributed computation, the input graph G = (V; E) represents a communication network, where every network node hosts a computational entity. Nodes have unique IDs. A distributed algorithm is executed on all network nodes simultaneously and proceeds in discrete rounds. -
Approximate Tree Decompositions of Planar Graphs in Linear Time
Approximate Tree Decompositions of Planar Graphs in Linear Time Frank Kammer∗ and Torsten Tholey∗ Institut f¨ur Informatik, Universit¨at Augsburg, Germany Abstract Many algorithms have been developed for NP-hard problems on graphs with small treewidth k. For example, all problems that are expressible in linear extended monadic second order can be solved in linear time on graphs of bounded treewidth. It turns out that the bottleneck of many algorithms for NP-hard problems is the computation of a tree decomposi- tion of width O(k). In particular, by the bidimensional theory, there are many linear extended monadic second order problems that can be solved on n-vertex planar graphs with treewidth k in a time linear in n and subexponential in k if a tree decomposition of width O(k) can be found in such a time. We present the first algorithm that, on n-vertex planar graphs with treewidth k, finds a tree decomposition of width O(k) in such a time. In more detail, our algorithm has a running time of O(nk2 log k). We show the result as a special case of a result concerning so-called weighted treewidth of weighted graphs. Keywords: (weighted) treewidth, branchwidth, rank-width, planar graph, linear time, bidimensionality. ACM classification: F.2.2; G.2.2 1 Introduction The treewidth, extensively studied by Robertson and Seymour [22], is one of the basic parameters in graph theory. Intuitively, the treewidth measures the similarity of a graph to a tree by means of a so-called tree decomposition. A tree decomposition of width r—defined precisely in the beginning of Section 2— arXiv:1104.2275v5 [cs.DS] 14 May 2016 is a decomposition of a graph G into small subgraphs part of a so-called bag such that each bag contains at most r + 1 vertices and such that the bags are connected by a tree-like structure. -
Constructing Brambles
Constructing brambles Mathieu Chapelle LIFO, Université d'Orléans Frédéric Mazoit LaBRI, Université de Bordeaux Ioan Todinca LIFO, Université d'Orléans Rapport no RR-2009-04 Constructing brambles Mathieu Chapelle1, Frédéric Mazoit2, and Ioan Todinca1 1 Université d'Orléans, LIFO, BP-6759, F-45067 Orléans Cedex 2, France {mathieu.chapelle,ioan.todinca}@univ-orleans.fr 2 Université de Bordeaux, LaBRI, F-33405 Talence Cedex, France [email protected] Abstract. Given an arbitrary graph G and a number k, it is well-known by a result of Seymour and Thomas [20] that G has treewidth strictly larger than k if and only if it has a bramble of order k + 2. Brambles are used in combinatorics as certicates proving that the treewidth of a graph is large. From an algorithmic point of view there are several algorithms computing tree-decompositions of G of width at most k, if such decompositions exist and the running time is polynomial for constant k. Nevertheless, when the treewidth of the input graph is larger than k, to our knowledge there is no algorithm constructing a bramble of order k + 2. We give here such an algorithm, running in O(nk+4) time. Moreover, for classes of graphs with polynomial number of minimal separators, we dene a notion of compact brambles and show how to compute compact brambles of order k + 2 in polynomial time, not depending on k. 1 Introduction Motivation. Treewidth is one of the most extensively studied graph parameters, mainly be- cause many classical NP-hard optimisation problems become polynomial and even linear when restricted to graphs of bounded treewidth.