UAI 2004 GOGATE & DECHTER 201 A Complete Anytime Algorithm for Treewidth Vibhav Gogate and Rina Dechter School of Information and Computer Science, University of California, Irvine, CA 92967 fvgogate,
[email protected] Abstract many algorithms that solve NP-hard problems in Arti¯cial Intelligence, Operations Research, In this paper, we present a Branch and Bound Circuit Design etc. are exponential only in the algorithm called QuickBB for computing the treewidth. Examples of such algorithm are Bucket treewidth of an undirected graph. This al- elimination [Dechter, 1999] and junction-tree elimina- gorithm performs a search in the space of tion [Lauritzen and Spiegelhalter, 1988] for Bayesian perfect elimination ordering of vertices of Networks and Constraint Networks. These algo- the graph. The algorithm uses novel prun- rithms operate in two steps: (1) constructing a ing and propagation techniques which are good tree-decomposition and (2) solving the prob- derived from the theory of graph minors lem on this tree-decomposition, with the second and graph isomorphism. We present a new step generally exponential in the treewidth of the algorithm called minor-min-width for com- tree-decomposition computed in step 1. In this puting a lower bound on treewidth that is paper, we present a complete anytime algorithm used within the branch and bound algo- called QuickBB for computing a tree-decomposition rithm and which improves over earlier avail- of a graph that can feed into any algorithm like able lower bounds. Empirical evaluation of Bucket elimination [Dechter, 1999] that requires a QuickBB on randomly generated graphs and tree-decomposition. benchmarks in Graph Coloring and Bayesian The majority of recent literature on Networks shows that it is consistently bet- the treewidth problem is devoted to ¯nd- ter than complete algorithms like Quick- ing constant factor approximation algo- Tree [Shoikhet and Geiger, 1997] in terms of rithms [Amir, 2001, Becker and Geiger, 2001].