Delimiting Cryptic Species Within the Brown-Banded Bamboo Shark

Total Page:16

File Type:pdf, Size:1020Kb

Delimiting Cryptic Species Within the Brown-Banded Bamboo Shark Fahmi et al. BMC Ecol Evo (2021) 21:121 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01852-3 RESEARCH ARTICLE Open Access Delimiting cryptic species within the brown-banded bamboo shark, Chiloscyllium punctatum in the Indo-Australian region with mitochondrial DNA and genome-wide SNP approaches Fahmi1,3* , Ian R. Tibbetts1, Michael B. Bennett2 and Christine L. Dudgeon2 Abstract Background: Delimiting cryptic species in elasmobranchs is a major challenge in modern taxonomy due the lack of available phenotypic features. Employing stand-alone genetics in splitting a cryptic species may prove problematic for further studies and for implementing conservation management. In this study, we examined mitochondrial DNA and genome-wide nuclear single nucleotide polymorphisms (SNPs) in the brown-banded bambooshark, Chiloscyllium punctatum to evaluate potential cryptic species and the species-population boundary in the group. Results: Both mtDNA and SNP analyses showed potential delimitation within C. punctatum from the Indo-Australian region and consisted of four operational taxonomic units (OTUs), i.e. those from Indo-Malay region, the west coast of Sumatra, Lesser Sunda region, and the Australian region. Each OTU can be interpreted diferently depending on avail- able supporting information, either based on biological, ecological or geographical data. We found that SNP data pro- vided more robust results than mtDNA data in determining the boundary between population and cryptic species. Conclusion: To split a cryptic species complex and erect new species based purely on the results of genetic analyses is not recommended. The designation of new species needs supportive diagnostic morphological characters that allow for species recognition, as an inability to recognise individuals in the feld creates difculties for future research, management for conservation and fsheries purposes. Moreover, we recommend that future studies use a compre- hensive sampling regime that encompasses the full range of a species complex. This approach would increase the likelihood of identifcation of operational taxonomic units rather than resulting in an incorrect designation of new species. Keywords: Speciation, Species complex, Elasmobranch, Genetics Background Te development of genetic and genomic studies has substantially infuenced how species are defned taxo- nomically, with a shift from traditional taxonomy based *Correspondence: [email protected]; [email protected] on morphological and biological characters to one that 1 School of Biological Sciences, The University of Queensland, Brisbane, includes or entirely relies on DNA-evidence (e.g. [1]). QLD 4072, Australia Full list of author information is available at the end of the article While the necessity for phylogenetic support in defning © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Fahmi et al. BMC Ecol Evo (2021) 21:121 Page 2 of 16 a species is the subject of debate, many journals require visual discrimination are absent [12–14]. A lack of feld- phylogenetic analyses in the description of new taxa [2]. based identifcation may confound determination of a Advanced DNA sequencing has revealed species com- species’ conservation status, and management strategies plexes and cryptic species previously assumed to be that might be relevant for that species [6, 15, 16]. subspecies or populations of a single species through tra- Cryptic species are common in many groups of taxa ditional taxonomic analysis [3–5]. In evolutionary theory, and various habitats, including in marine environments species complexes are considered recently diverged from [4, 6, 17]. In elasmobranchs, the number of recognised evolving metapopulations [3, 6]. As an ongoing process cryptic species has increased substantially within the last of speciation, morphological diferentiation may develop decade, primarily due to a large, multi-taxa, phylogenetic later due to local adaptation to new environments [3, study of mitochondrial NADH2 sequences [18]. Several 4]. Cryptic species may be present within a complex putative cryptic species have been identifed with most when morphologically indistinguishable individuals are originating from areas of high geographic complexity, revealed to be genetically distinct [6–8]. While there are and in taxa with low dispersal ability [18, 19]. Te use of disparities in the defnition of cryptic species in terms of genome-wide approaches alongside mitochondrial mark- their biology, they provide challenges for taxonomic and ers has improved the ability to identify cryptic diversity evolutionary studies [9]. For instance, the discovery of of elasmobranchs (e.g. in mobulids [20]). cryptic species in what was previously considered a sin- In this study, we examined the brown-banded bam- gle wide-ranging species raises questions whether geo- booshark, Chiloscyllium punctatum, a species distrib- graphically-structured populations can be diferentiated uted in near-shore environments within the Indian and from diferent species within the same region, leading to the Western Pacifc Oceans [21–25] (Fig. 1), and the most taxonomic confusion [10, 11]. A reliance on genetic evi- commonly caught shark in coastal fsheries in Southeast dence alone to split a species complex into two or more Asia [26]. Previous genetic and morphological studies new species presents wildlife managers and ecologists have suggested that C. punctatum contains two cryptic with challenges as morphological features that facilitate species [18, 27]. However, the genetic study only included Fig. 1 Map showing the Chiloscyllium punctatum sample-collection locations. Abbreviations of location names refer to Table 2 Fahmi et al. BMC Ecol Evo (2021) 21:121 Page 3 of 16 (See fgure on next page.) Fig. 2 A Maximum likelihood (ML) tree based on the Tamura-Nei model analysis (TN93 G) of the NADH2 data with bootstrap support for + 1000 replicates. The outgroup is the congener species, Chiloscyllium plagiosum from West Kalimantan; B Median-joining haplotype network of Chiloscyllium punctatum from Indo Australian region. Circle diameter represents haplotype frequency, connecting lines represent single mutational steps, and hash marks represent the number of haplotypes a few sampling locations with uneven sample sizes and of haplotypes. Samples from the west coast of Suma- large geographic breaks, likely under-representing the spe- tra (WSA and WSS) formed a distinct haplotype, while cies’ genetic diversity within the region [17]. Here we use Papua New Guinea (PNG) and Australia (SEQ and genome-wide nuclear single nucleotide polymorphisms WAU) formed an Australian region cluster (Fig. 2B). (SNPs) along with mitochondrial DNA lineages to assess Te largest haplotype divergence (1.7–2.8%) occurred potential cryptic speciation within an extensive, previously between the Indo-Malay samples and those from the un-sampled area within the Indonesian archipelago, and to Australian region. Samples from the Indian Ocean evaluate the use of genetic and genomic data to delineate region (WSA, WSS, LMB and MUN) formed distinc- species. tive haplotypes separated from the Australian region by 0.5–1.4%. In contrast, samples from South Sulawesi Results (SUL) formed a diferent sub-cluster of the Indo-Malay Mitochondrial gene phylogeny haplotypes by 0.6–0.8%. In total, 34 individuals were sequenced for the mitochon- drial NADH2 marker across 12 locations. Two phyloge- netic analyses of the trimmed alignment sequence data SNP genotyping (1044 bp) (maximum likelihood phylogenetic tree and A total of 82,994 SNPs were detected from 148 indi- median-joining haplotype network) showed similar clus- viduals across 16 sampling locations. Filtering crite- terings of haplotypes (Fig. 2). Te phylogenetic tree indi- ria resulted in the subsequent reduction of SNP loci cated two major clades: (i) samples from Papua New to 6,099 SNP loci (see Additional fle 2) that was used Guinea (PNG), Australia (SEQ and WAU), Lombok (LMB), for the population structure and phylogenetic analyses. west coast of Sumatra (WSA and WSS), Muncar (MUN); All individuals clearly grouped into their geographical and (ii) samples from South East Asia including Tailand regions. A PCoA based on axis 1 (38.5% of the variation (PHU), Malaysia (PAH) and Indonesia (BIN, WKL, WJV, among individuals) and axis 2 (19.5%) showed three SUL). Within the frst clade, samples from Papua New main clusters for the C. punctatum-complex (Fig. 3A): Guinea and Australia formed a distinct cluster
Recommended publications
  • Fig. 125 Sharks of the World, Vol. 2 161 Fig. 125 Orectolobus Sp. A
    click for previous page Sharks of the World, Vol. 2 161 Orectolobus sp. A Last and Stevens, 1994 Fig. 125 Orectolobus sp. A Last and Stevens, 1994, Sharks Rays Australia: 128, pl. 26. Synonyms: None. Other Combinations: None. FAO Names: En - Western wobbegong; Fr - Requin-tapis sombre; Sp - Tapicero occidental. LATERAL VIEW DORSAL VIEW Fig. 125 Orectolobus sp. A UNDERSIDE OF HEAD Field Marks: Flattened benthic sharks with dermal lobes on sides of head, symphysial groove on chin; a strongly contrasting, variegated colour pattern of conspicuous broad dark, dorsal saddles with light spots and deeply corrugated edges but without conspicuous black margins, interspaced with lighter areas and conspicuous light, dark-centred spots but without numerous light O-shaped rings; also, mouth in front of eyes, long, basally branched nasal barbels, nasoral grooves and circumnarial grooves, two rows of enlarged fang-like teeth in upper jaw and three in lower jaw; first dorsal-fin origin over rear half of pelvic-fin bases. Diagnostic Features: Nasal barbels with one small branch. Four dermal lobes below and in front of eye on each side of head; dermal lobes behind spiracles unbranched or weakly branched and slender. Low dermal tubercles or ridges present on back in young, lost in adults. Interdorsal space somewhat shorter than inner margin of first dorsal fin, about one-fourth of first dorsal-fin base. Origin of first dorsal fin over about last third of pelvic-fin base. First dorsal-fin height about three-fourths of base length. Colour: colour pattern very conspicuous and highly variegated, dorsal surface of body with conspicuous broad, dark rectangular saddles with deeply corrugated margins, not black-edged, dotted with light spots but without numerous O-shaped light rings; saddles not ocellate in appearance; interspaces between saddles light, with numerous broad dark blotches.
    [Show full text]
  • Hemiscyllium Ocellatum), with Emphasis on Branchial Circulation Kåre-Olav Stensløkken*,1, Lena Sundin2, Gillian M
    The Journal of Experimental Biology 207, 4451-4461 4451 Published by The Company of Biologists 2004 doi:10.1242/jeb.01291 Adenosinergic and cholinergic control mechanisms during hypoxia in the epaulette shark (Hemiscyllium ocellatum), with emphasis on branchial circulation Kåre-Olav Stensløkken*,1, Lena Sundin2, Gillian M. C. Renshaw3 and Göran E. Nilsson1 1Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, NO-0316 Oslo Norway and 2Department of Zoophysiology, Göteborg University, SE-405 30 Göteborg, Sweden and 3Hypoxia and Ischemia Research Unit, School of Physiotherapy and Exercise Science, Griffith University, PMB 50 Gold coast Mail Centre, Queensland, 9726 Australia *Author for correspondence (e-mail: [email protected]) Accepted 17 September 2004 Summary Coral reef platforms may become hypoxic at night flow in the longitudinal vessels during hypoxia. In the during low tide. One animal in that habitat, the epaulette second part of the study, we examined the cholinergic shark (Hemiscyllium ocellatum), survives hours of severe influence on the cardiovascular circulation during severe hypoxia and at least one hour of anoxia. Here, we examine hypoxia (<0.3·mg·l–1) using antagonists against muscarinic the branchial effects of severe hypoxia (<0.3·mg·oxygen·l–1 (atropine 2·mg·kg–1) and nicotinic (tubocurarine for 20·min in anaesthetized epaulette shark), by measuring 5·mg·kg–1) receptors. Injection of acetylcholine (ACh; –1 ventral and dorsal aortic blood pressure (PVA and PDA), 1·µmol·kg ) into the ventral aorta caused a marked fall in heart rate (fH), and observing gill microcirculation using fH, a large increase in PVA, but small changes in PDA epi-illumination microscopy.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Etyfish Orectolobifo
    ORECTOLOBIFORMES (Carpet Sharks) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 7.0 - 15 Oct. 2019 Order ORECTOLOBIFORMES Carpet Sharks 7 families · 13 genera · 45 species Family PARASCYLLIIDAE Collared Carpet Sharks 2 genera · 8 species Cirrhoscyllium Smith & Radcliffe 1913 cirrus, curl or tendril, referring to barbels on throat; skylion, Greek for dogfish or small shark, probably from skyllo, to tear or mangle Cirrhoscyllium expolitum Smith & Radcliffe 1913 varnished, referring to how the shark’s body, when dry, “glistens as though varnished, owing to the peculiar character of the dermal denticles” Cirrhoscyllium formosanum Teng 1959 -anum, adjectival suffix: referring to distribution off the coast of Formosa (Taiwan) Cirrhoscyllium japonicum Kamohara 1943 Japanese, known only from Mimase, Shikoku, Japan Parascyllium Gill 1862 para-, near, i.e., related to Scylliorhinus (now in Scyliorhinidae); skylion, Greek for dogfish or small shark, probably from skyllo, to tear or mangle Parascyllium collare Ramsay & Ogilby 1888 collar, referring to prominent dark and unspotted collar around gills Parascyllium elongatum Last & Stevens 2008 prolonged, referring to distinctive, elongate body shape Parascyllium ferrugineum McCulloch 1911 rust-colored, referring to dark brown spots on sides and fins Parascyllium sparsimaculatum Goto & Last 2002 sparsi, sparse; maculatum, spotted, referring to relatively larger (and hence fewer) spots than congeners Parascyllium variolatum (Duméril 1853) spotted, referring to white
    [Show full text]
  • WAVE on Wheels Outreach Shark Cart Presentation Grades K-2
    WAVE on Wheels Outreach Shark Cart Presentation Grades K-2 Time requirement 1 Hour Group size and grade Up to 50 students maximum Materials 2 Epaulette Sharks – in large transport cooler 1 or 2 – water coolers (depending on the length of trip and need for a water change) Mobile Shark Cart Blue basket (including Pump, Shark Net, Electrical Cord, Paper towels) Thermometer Shark Artifacts Bin Shark Emergency Water WAVE Tablecloth Goal Through a live shark encounter, students will be excited, engaged, and educated about the wonders of aquatic life and the importance of conservation. Objectives 1. Students will be able to identify what type of animal a shark is. 2. Students will be able to list 2 adaptations a shark has for aquatic life. WAVE Foundation • One Aquarium Way • Newport, KY 41071 • www.wavefoundation.org • (859) 815-1442 Rev 3/16 3. Students will be able to identify what sharks eat. 4. Students will be able to list at least 5 species of shark and identify a unique characteristic to that species. 5. Students will be able to discuss how they can help save sharks and other aquatic animals. Theme Sharks are often misunderstood animals that play an important role in their environment. Kentucky Core Academic Standards – Science Kindergarten - Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment K-LS1-1. Use observations to describe patterns of what plants and animals (including humans) need to survive. LS1.C: Organization for Matter and Energy Flow in Organisms. K-ESS3-3. Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living lings in the local environment.
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    Extinction risk and conservation of the world's sharks and rays Nicholas K. Dulvy1*, Sarah L. Fowler2, John A. Musick3, Rachel D. Cavanagh4, Peter M. Kyne5, Lucy R. Harrison1, John K. Carlson6, Lindsay N. K. Davidson1, Sonja V. Fordham7, Malcolm P. Francis8, Caroline M. Pollock9, Colin A. Simpfendorfer10, George H. Burgess11, Kent E. Carpenter12, Leonard J. V. Compagno13, David A. Ebert14, Claudine Gibson2, Michelle R. Heupel15, Suzanne R. Livingstone16, Jonnell C. Sanciangco12, John D. Stevens17, Sarah Valenti2, & William T. White17 1IUCN Species Survival Commission Shark Specialist Group and Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Colombia V5A 1S6, Canada; 2IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, 36 Kingfisher Court, Hambridge Road, Newbury RG14 5SJ, UK; 3Virginia Institute of Marine Science, Greate Road, Gloucester Point, VA 23062, USA; 4British Antarctic Survey, Natural Environment Research Council, Madingley Road, Cambridge CB3 0ET, UK; 5Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory 0909, Australia; 6NOAA/National Marine Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Road, Panama City, FL 32408, USA; 7Shark Advocates International, The Ocean Foundation, 1990 M Street, NW, Suite 250, Washington, DC 20036, USA; 8National Institute of Water and Atmospheric Research, Private Bag 14901, Wellington, New Zealand; 9Species Programme, IUCN,
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • (Hemiscyllium Halmahera) in Kao Bay, North Maluku, Indonesia
    International Journal of Fisheries and Aquatic Studies 2018; 6(4): 36-41 E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 Study on the population of Halmahera walking shark (GIF) Impact Factor: 0.549 IJFAS 2018; 6(4): 36-41 (Hemiscyllium halmahera) in kao bay, north maluku, © 2018 IJFAS www.fisheriesjournal.com Indonesia Received: 24-05-2018 Accepted: 26-06-2018 Yoppy Jutan, ASW Retraubun, AS Khouw, VPH Nikijuluw and JA Pattikawa Yoppy Jutan Marine Science Post Graduate Program, Pattimura University, Abstract Ambon Halmahera walking shark (Hemiscyllium Halmahera) is an endemic species that only found in Halmahera Islands, Indonesia at shallow waters on coral reef. The research to study population of ASW Retraubun Halmahera walking shark was conducted in Kao bay, North Maluku on March 2017 to February 2018. Department of Aquatic Resource Samples collected during night dive were measured and analysed by using FiSAT program. Totally, 604 Management, Faculty of Fishery individuals of Halmahera walking shark were collected during the study with the total length ranging -0.51(t+0.24) and Marine Science Pattimura from 16.9-79.0 cm. The von Bertalanffy growth function for this species is Lt = 81.25 [1–e ]. University, Ambon Recruitment occurred all year round with the major peak between July and September. Mortality rates of Halmahera walking shark were 1.89, 0.90 and 0.99 for total, natural and fishing mortalities, respectively AS Khouw with exploitation rate was 0.52. The values of E max, E 0.50 and E 0.10 estimated by yield per recruit Department of Aquatic Resource method were 0.375, 0.245 and 0.307, respectively.
    [Show full text]
  • Fecal Corticosterone Assessment in the Epaulette Shark, Hemiscyllium Ocellatum AMANDA H
    JOURNAL OF EXPERIMENTAL ZOOLOGY 299A:188–196 (2003) Fecal Corticosterone Assessment in the Epaulette Shark, Hemiscyllium ocellatum AMANDA H. KARSTEN* and JOHN W. TURNER, JR.n Medical College of Ohio, Department of Physiology and Molecular Medicine, Toledo, Ohio 43614–5804 ABSTRACT The present study examined the feasibility of measuring the steroid hormone corticosterone in fecal extracts of epaulette sharks, Hemiscyllium ocellatum. Six immature, captive- raised epaulette sharks (four females and two males) were obtained from two different zoos and were maintained in a closed-system, 530–liter aquarium. After a one-month adaptation, fecal samples were collected daily from each animal for 33 days. Five-day sets of samples were pooled within animals to insure sufficient material for analysis. Fecal hormone extraction was achieved using repeated cycles of dichloromethane and aqueous washes. The levels of corticosterone were measured by reverse-phase high-performance liquid chromatography (HPLC). Corticosterone presence in HPLC eluent peaks from fecal extracts was determined by comparison of the elution pattern of corticosterone standard with the elution patterns of fecal extracts with and without the addition of tritiated corticosterone or exogenous, unlabeled corticosterone. Exclusive presence of corticosterone in HPLC eluent peaks presumed to be corticosterone was determined by nuclear magnetic resonance mass spectrometry. Corticosterone levels, calculated from a 10–point standard curve, ranged from 1.2 to 20.9 ng/g feces across all sharks, with 92.3% of values being r13.5 ng/g. Within individuals, the lowest average for corticosterone levels across 33 days was 2.670.4 ng/g feces, and the highest average was 8.472.2 ng/g feces.
    [Show full text]
  • Chiloscyllium Hasselti Bleeker, 1852 Fig
    click for previous page Sharks of the World, Vol. 2 171 Chiloscyllium hasselti Bleeker, 1852 Fig. 139 Chiloscyllium hasselti Bleeker, 1852, Verh. Batav. Genoots. Kunst. Wet. 24: 14. Syntypes: Five specimens, 480 to 590 mm, off Java, Sumatra, and Moluccas, in British Museum (Natural History) and Rikjsmuseum van Natuurlijke Histoire, Leiden. Lectotype: British Museum (Natural History), BMNH-1867.11.28.196, 594 mm TL male, Moluccas, designated by Dingerkus and DeFino, 1983, Bull. American Mus. Nat. Hist. 176(1): 17. Synonyms: Scylia griseum van Hasselt, 1823: 315 (nomen nudum); also Scyllium griseum van Hasselt, 1824: 89, cf. Dingerkus and DeFino (1983: 17). Chiloscyllium obscurum Gray, 1851: 35 (nomen nudum). Holotype: British Museum (Natural History), BMNH-1845.6.22.122, 487 mm TL, Indonesia. Chiloscyllium indicum var. obscura Günther, 1870: 413 (new combination); also Ogilby, 1888: 8 (new combination), cf. Dingerkus and DeFino (1983: 17). Chiloscyllium dolganovi Kharin, 1987: 367?, fig. 5 (original in Russian), also Kharin, 1987: 67, fig. 5 (English translation). Holotype: Zoological Institute, Leningrad, ZIL-46984, 9° 12’ N, 104° 34’ E, Viet Nam, 12 m. Other Combinations: None. FAO Names: En - Indonesian bamboo shark; Fr - Requin-chabot indonésien; Sp - Bamboa indonesa. JUVENILE Fig. 139 Chiloscyllium hasselti Field Marks: Mouth well in front of eyes; spineless dorsal fins far posterior on tail, greatly elongated thick precaudal tail, long and low anal fin just anterior to caudal fin, no lateral ridges on trunk, dorsal fins with straight or convex posterior margins, first dorsal-fin origin about opposite rear halves of pelvic-fin bases; often no colour pattern in adults, but young with transverse dark bands that have prominent black edging.
    [Show full text]
  • And Their Functional, Ecological, and Evolutionary Implications
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Spring 6-14-2019 Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications Phillip C. Sternes DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Sternes, Phillip C., "Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications" (2019). College of Science and Health Theses and Dissertations. 327. https://via.library.depaul.edu/csh_etd/327 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science June 2019 By Phillip C. Sternes Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois Table of Contents Table of Contents.............................................................................................................................ii List of Tables..................................................................................................................................iv
    [Show full text]
  • 3. List of Species by Major Fishing Areas
    click for previous page 210 FAO Species Catalogue for Fishery Purposes No. 1 3. LIST OF SPECIES BY MAJOR FISHING AREAS p GEOGRAPHICAL DISTRIBUTION a Major Areas for Statistical Purposes Species g Fresh 18 21 27 31 34 37 41 47 48 51 57 58 61 67 71 77 81 87 88 e water ARC WNA ENA WCA ECA MED WSA ESA ANC WIO EIO ANE WNP ENP WCP ECP WSP ESP ANW Alopias pelagicus 81 · ·· · ···· Alopias superciliosus 83 ······· ·· · · · ·· Alopias vulpinus 86 ·········· ··· · ·· Brachaelurus waddi 145 ··· Carcharias taurus 58 ······· ·· · · · Carcharodon carcharias 100 ········ ·· ··· · ·· Cetorhinus maximus 91 ········ · ··· · ·· Chiloscyllium arabicum 167 · Chiloscyllium burmensis 168 · Chiloscyllium griseum 169 ·· · · Chiloscyllium hasselti 171 ··· Chiloscyllium indicum 172 ·· · · Chiloscyllium plagiosum 173 ·· · · Chiloscyllium punctatum 175 ·· · · Cirrhoscyllium expolitum 133 ·· Cirrhoscyllium formosanum 134 · Cirrhoscyllium japonicum 135 · Eucrossorhinus dasypogon 151 ·· Ginglymostoma cirratum 192 ······ · · Hemiscyllium freycineti 179 · Hemiscyllium hallstromi 180 · Hemiscyllium ocellatum 181 ··· Hemiscyllium strahani 182 · Hemiscyllium trispeculare 183 ·· Heterodontus francisci 36 ·· Heterodontus galeatus 38 ··· Heterodontus japonicus 39 · Heterodontus mexicanus 41 · Heterodontus portusjacksoni 42 ··· Heterodontus quoyi 45 · Heterodontus ramalheira 46 · Heterodontus sp. A 49 · Heterodontus zebra 48 ··· Heteroscyllium colcloughi 147 · Isurus oxyrinchus 109 ······· ·· ··· · ·· Isurus paucus 115 ······· ·· · · · · Lamna ditropis 119 ···· Lamna nasus 121
    [Show full text]