Hemiscylliidae 1249

Total Page:16

File Type:pdf, Size:1020Kb

Hemiscylliidae 1249 click for previous page Hemiscylliidae 1249 HEMISCYLLIIDAE Longtail carpetsharks by L.J.V. Compagno and V.H. Niem iagnostic characters: Small sharks. Trunk cylindrical or moderately depressed, precaudal tail Dcylindrical and somewhat longer than head and trunk, lateral ridges on sides of trunk and tail present or absent. Head not expanded laterally, cylindrical or moderately depressed; 5 small gill slits present, the last 3 over the pectoral-fin base, their upper ends not expanded onto upper surface of head; no gill sieves or rakers on internal gill slits; spiracles very large and located behind and below eyes; nostrils with barbels, nasoral grooves, and circumnarial grooves, close in front of mouth; eyes above and medial to sides of head, without nictitating eyelids; snout short to moderately long, slightly depressed, parabolic to broadly rounded, not greatly flattened and blade-like and without lateral teeth or barbels; mouth small, nearly transverse, and well in front of eyes, without a symphyseal groove on chin; labial furrows present on both jaws and relatively large, with upper furrows extending in front of mouth; teeth small, not blade-like, with a single cusp on upper and lower teeth and with cusplets small or absent; teeth similar in both jaws, not differentiated into medials, anteriors, intermediates, laterals, or posteriors. Two dorsal fins without spines, the first moderate sized, subangular, much shorter than the caudal fin, and with its origin over or behind the pelvic-fin bases; second dorsal fin about as large as the first and of similar shape; anal fin moderately large, very low, broad and rounded, with its origin well behind the second dorsal-fin base and its base separated by a notch from the caudal fin; caudal fin strongly asymmetrical, much less than 1/2 of total length, without a rippled dorsal margin or lower lobe but with a strong subterminal notch; vertebral axis of caudal fin hardly raised above body axis. Caudal peduncle cylindrical, without precaudal pits or keels. Intestinal valve of ring type. Colour: back yellowish, brownish or grey-brown, lighter below, with dark or light spots or dark saddles, sometimes absent in adults. spiracles large caudal fin strongly asymmetrical length of head and body precaudal tail Habitat, biology,and fisheries: Longtail carpetsharks are a small group of inshore tropical sharks of the Indian Ocean and western Pacific, being confined to continental waters and continental islands. They are slow-swimming bottom-dwellers, often intestinal valve of ring type clambering with their muscular paired fins on coral and rocky reefs. At least some of the species are oviparous. They feed on invertebrates and small fishes and are harmless to people. Hemiscyllium species are little utilized for fisheries, but Chiloscyllium species are commonly caught in small-scale artisanal fisheries and by bottom trawlers in the western and eastern Pacific and eastern central Indian Ocean. Similar families occurring in the area Brachaeluridae: nasal barbels longer; symphyseal groove present on chin; precaudal tail not greatly elongated, shorter than head and trunk. nasal barbels longer Brachaeluridae 1250 Sharks Ginglymostomatidae: precaudal tail not greatly elongated, shorter than head and trunk; no circumnarial grooves around nostrils; head more depressed and flattened; spiracles minute; labial furrows not connected across chin by a dermal flap (present in Hemiscylliidae); anal fin higher, more angular, and separated from the lower caudal-fin origin by a space; origin of anal fin under second dorsal-fin base. Ginglymostomatidae Stegostomatidae: precaudal tail not greatly no circumnarial barbels groove elongated, shorter than head and trunk; no circumnarial nasoral circumnarial grooves around nostrils, labial groove groove furrows not connected across chin by a dermal flap; first dorsal-fin origin far anterior to pelvic-fin bases, its insertion over or slightly anterior to pelvic-fin insertions (far posterior to pelvic-fin insertions in Hemiscylliidae), second dorsal fin much smaller than first dorsal fin; pelvic fins labial furrows much smaller than pectoral fins; anal-fin origin not connected labial furrows under second dorsal-fin base; caudal fin about as connected by long as rest of shark. dermal flap Ginglymostomatidae Hemiscylliidae (ventral view of head) Stegostomatidae Key to the species of Hemiscylliidae occurring in the area 1a. Nostrils subterminal on snout (Fig. 1a); eyes and supraorbital ridges hardly elevated; preoral snout long, mouth closer to eyes than snout tip; no black hood on head or large dark spot or spots on sides of body above pectoral fins (Fig. 1b) ........(Chiloscyllium) → 2 1b. Nostrils terminal on snout (Fig. 2a); eyes and supraorbital ridges prominently elevated; preoral snout short, mouth closer to snout tip than eyes; a large spot or spots on sides of body above pectoral fins, or a black hood on head (Fig. 2b) .........(Hemiscyllium) → 6 nostrils subterminal on snout b) lateral view a) ventral view of head Fig. 1 Chiloscyllium nostrils terminal on snout b) lateral view a) ventral view of head Fig. 2 Hemiscyllium Hemiscylliidae 1251 2a. Body and tail very slender; length of anal fin from origin to free tip subequal to length of hypural caudal-fin lobe from lower caudal-fin origin to subterminal notch (Fig. 3) .. .........................................Chiloscylliumindicum 2b. Body and tail moderately slender to relatively stout; length of anal fin considerably shorter than hypural caudal-fin lobe (Figs 4 and 5) ........................→ 3 3a. Body with lateral dermal ridges; young and adults with transverse dark bands and numerous white spots (Fig. 4) ........................Chiloscyllium plagiosum 3b. Body without lateral dermal ridges; adults usually without colour pattern, dark transverse bands in young only ........................................→ 4 Fig. 3 Chiloscyllium indicum Fig. 4 Chiloscyllium plagiosum 4a. Dorsal fins larger than pelvic fins, with projecting free rear tips (Fig. 5) .......Chiloscyllium punctatum 4b. Dorsal fins smaller than pelvic fins, without projecting free rear tips ....................→ 5 Fig. 5 Chiloscyllium punctatum 5a. First to second dorsal-fin distance usually more than 9.3% of total length; first dorsal-fin height more than 6.6% of total length; second dorsal-fin height usually more than 5.8% of total length; dark bands of juveniles not outlined in black (Fig. 6) .....Chiloscylliumgriseum 5b. First to second dorsal-fin distance less than 9.3% of total length; first dorsal-fin height less than 6.6% of total length; second dorsal-fin height usually less than 5.8% of total length; dark bands of juveniles outlined in black (Fig. 7) ............Chiloscylliumhasselti juvenile juvenile Fig. 6 Chiloscyllium griseum Fig. 7 Chiloscyllium hasselti 6a. Head and snout with an abrupt black hood; body with conspicu- ous large white spots (Fig. 8) .. .............Hemiscylliumstrahani 6b. Head and snout light, without a black hood but with conspicuous black spots above pectoral fins; body with light spots inconspicu- ous or absent ...............→ 7 Fig. 8 Hemiscyllium strahani 1252 Sharks 7a. Black spot behind gills small, not in the form of a conspicuous ocellus (Fig. 9) .... .........................................Hemiscylliumfreycineti 7b. Black spot behind gills large, in the form of a conspicuous ocellus, ringed with white (Figs 10 to 12) ...........................................→ 8 8a. Body covered with numerous, densely clustered dark small and large spots that form a reticular network of light ground colour between them; dark crossbands strong on ventral surface of tail (Fig. 10) ...........................Hemiscylliumtrispeculare 8b. Body with sparse, large spots that do not form a reticular network of light ground colour between them; dark crossbands not reaching ventral surface of tail ...............→ 9 Fig. 9 Hemiscyllium freycineti Fig. 10 Hemiscyllium trispeculare 9a. Lateral ocellus not surrounded by large spots; spots present on head in front and below eyes (Fig. 11) ................................Hemiscylliumocellatum 9b. Lateral ocellus surrounded by large black spots; spots absent from head in front and below eyes (Fig. 12) .............................Hemiscylliumhallstromi Fig. 11 Hemiscyllium ocellatum Fig. 12 Hemiscyllium hallstromi List of species occurring in the area The symbol . is given when species accounts are included. Chiloscyllium griseum Müller and Henle, 1839 . Chiloscyllium hasselti Bleeker, 1852 . Chiloscyllium indicum (Gmelin, 1789) . Chiloscyllium plagiosum (Bennett, 1830) . Chiloscyllium punctatum Müller and Henle, 1838 . Hemiscyllium freycineti (Quoy and Gaimard, 1824) . Hemiscyllium hallstromi Whitley, 1967 . Hemiscyllium ocellatum (Bonnaterre, 1788) . Hemiscyllium strahani Whitley, 1967 . Hemiscyllium trispeculare Richardson, 1845 Reference Compagno, L.J.V. 1984. FAO species catalogue. Vol. 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Part 1. Hexanchiformes to Lamniformes. FAO Fish. Synop., (125)Vol.4.Pt.1:249 p. Dingerkus, G. and T.C. DeFino. 1983. A revision of the orectolobiform shark family Hemiscylliidae (Chondrichthyes, Selachii). Bull. Am. Mus. Nat. Hist., 176(1):1-93. Regan, C.T. 1908. A revision of the sharks of the family Orectolobidae. Proc. Zool. Soc. Lond., (1908):347-364. Hemiscylliidae 1253 Chiloscyllium griseum Müller and Henle, 1839 Frequent synonyms / misidentifications: None / Chiloscyllium hasselti Bleeker, 1852; C.
Recommended publications
  • Fig. 125 Sharks of the World, Vol. 2 161 Fig. 125 Orectolobus Sp. A
    click for previous page Sharks of the World, Vol. 2 161 Orectolobus sp. A Last and Stevens, 1994 Fig. 125 Orectolobus sp. A Last and Stevens, 1994, Sharks Rays Australia: 128, pl. 26. Synonyms: None. Other Combinations: None. FAO Names: En - Western wobbegong; Fr - Requin-tapis sombre; Sp - Tapicero occidental. LATERAL VIEW DORSAL VIEW Fig. 125 Orectolobus sp. A UNDERSIDE OF HEAD Field Marks: Flattened benthic sharks with dermal lobes on sides of head, symphysial groove on chin; a strongly contrasting, variegated colour pattern of conspicuous broad dark, dorsal saddles with light spots and deeply corrugated edges but without conspicuous black margins, interspaced with lighter areas and conspicuous light, dark-centred spots but without numerous light O-shaped rings; also, mouth in front of eyes, long, basally branched nasal barbels, nasoral grooves and circumnarial grooves, two rows of enlarged fang-like teeth in upper jaw and three in lower jaw; first dorsal-fin origin over rear half of pelvic-fin bases. Diagnostic Features: Nasal barbels with one small branch. Four dermal lobes below and in front of eye on each side of head; dermal lobes behind spiracles unbranched or weakly branched and slender. Low dermal tubercles or ridges present on back in young, lost in adults. Interdorsal space somewhat shorter than inner margin of first dorsal fin, about one-fourth of first dorsal-fin base. Origin of first dorsal fin over about last third of pelvic-fin base. First dorsal-fin height about three-fourths of base length. Colour: colour pattern very conspicuous and highly variegated, dorsal surface of body with conspicuous broad, dark rectangular saddles with deeply corrugated margins, not black-edged, dotted with light spots but without numerous O-shaped light rings; saddles not ocellate in appearance; interspaces between saddles light, with numerous broad dark blotches.
    [Show full text]
  • Sharks for the Aquarium and Considerations for Their Selection1 Alexis L
    FA179 Sharks for the Aquarium and Considerations for Their Selection1 Alexis L. Morris, Elisa J. Livengood, and Frank A. Chapman2 Introduction The Lore of the Shark Sharks are magnificent animals and an exciting group Though it has been some 35 years since the shark in Steven of fishes. As a group, sharks, rays, and skates belong to Spielberg’s Jaws bit into its first unsuspecting ocean swim- the biological taxonomic class called Chondrichthyes, or mer and despite the fact that the risk of shark-bite is very cartilaginous fishes (elasmobranchs). The entire supporting small, fear of sharks still makes some people afraid to swim structure of these fish is composed primarily of cartilage in the ocean. (The chance of being struck by lightning is rather than bone. There are some 400 described species of greater than the chance of shark attack.) The most en- sharks, which come in all different sizes from the 40-foot- grained shark image that comes to a person’s mind is a giant long whale shark (Rhincodon typus) to the 2-foot-long conical snout lined with multiple rows of teeth efficient at marble catshark (Atelomycterus macleayi). tearing, chomping, or crushing prey, and those lifeless and staring eyes. The very adaptations that make sharks such Although sharks have been kept in public aquariums successful predators also make some people unnecessarily since the 1860s, advances in marine aquarium systems frightened of them. This is unfortunate, since sharks are technology and increased understanding of shark biology interesting creatures and much more than ill-perceived and husbandry now allow hobbyists to maintain and enjoy mindless eating machines.
    [Show full text]
  • Hemiscyllium Ocellatum), with Emphasis on Branchial Circulation Kåre-Olav Stensløkken*,1, Lena Sundin2, Gillian M
    The Journal of Experimental Biology 207, 4451-4461 4451 Published by The Company of Biologists 2004 doi:10.1242/jeb.01291 Adenosinergic and cholinergic control mechanisms during hypoxia in the epaulette shark (Hemiscyllium ocellatum), with emphasis on branchial circulation Kåre-Olav Stensløkken*,1, Lena Sundin2, Gillian M. C. Renshaw3 and Göran E. Nilsson1 1Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, NO-0316 Oslo Norway and 2Department of Zoophysiology, Göteborg University, SE-405 30 Göteborg, Sweden and 3Hypoxia and Ischemia Research Unit, School of Physiotherapy and Exercise Science, Griffith University, PMB 50 Gold coast Mail Centre, Queensland, 9726 Australia *Author for correspondence (e-mail: [email protected]) Accepted 17 September 2004 Summary Coral reef platforms may become hypoxic at night flow in the longitudinal vessels during hypoxia. In the during low tide. One animal in that habitat, the epaulette second part of the study, we examined the cholinergic shark (Hemiscyllium ocellatum), survives hours of severe influence on the cardiovascular circulation during severe hypoxia and at least one hour of anoxia. Here, we examine hypoxia (<0.3·mg·l–1) using antagonists against muscarinic the branchial effects of severe hypoxia (<0.3·mg·oxygen·l–1 (atropine 2·mg·kg–1) and nicotinic (tubocurarine for 20·min in anaesthetized epaulette shark), by measuring 5·mg·kg–1) receptors. Injection of acetylcholine (ACh; –1 ventral and dorsal aortic blood pressure (PVA and PDA), 1·µmol·kg ) into the ventral aorta caused a marked fall in heart rate (fH), and observing gill microcirculation using fH, a large increase in PVA, but small changes in PDA epi-illumination microscopy.
    [Show full text]
  • First Baby Zebra Sharks Born from Artificial Insemination Debut at the Aquarium of the Pacific on Tuesday, January 27
    Contacts: Marilyn Padilla / Claire Atkinson / Adrian Samora Aquarium of the Pacific (562) 951-1684 / (562) 951-1678 / (562) 951-3197 [email protected] / [email protected] / [email protected] First Baby Zebra Sharks Born From Artificial Insemination Debut at the Aquarium of the Pacific on Tuesday, January 27 The Aquarium breeds a large shark species through artificial insemination January 26, 2015, Long Beach, CA—The Aquarium of the Pacific is announcing that it is the first to be able to successfully reproduce zebra sharks through artificial insemination. More than 100 million sharks in the wild are killed annually due to human impact. Being able to artificially inseminate large shark species like the zebra shark can further research in helping dwindling shark populations in the wild. The 10-month-old sharks are slated to go on exhibit in the Aquarium’s Shark Lagoon on Tuesday, January 27. Fern, approximately 20 years old, is the mother of the two female sharks. Fern arrived to the Aquarium in 1997. She was inseminated in September 2013, and both babies hatched from their eggs in late March of 2014. The Aquarium’s experts have been caring for the youngsters in their behind-the-scenes shark nursery. The zebra shark pups are now about 2-and-a-half to 3 feet long and are now ready to be introduced in the shallow pools in Shark Lagoon. The public will be able to see these special sharks when the aquarium opens at 9:00 a.m. on Tuesday. The 140-pound and 7-and-a-half-foot long mother zebra shark can be seen swimming in the Aquarium’s Shark Lagoon exhibit with other large sharks.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Sustainability of Threatened Species Displayed in Public Aquaria, with a Case Study of Australian 1 Sharks and Rays 2 3 Kathryn
    https://link.springer.com/article/10.1007/s11160-017-9501-2 1 PREPRINT 1 Sustainability of threatened species displayed in public aquaria, with a case study of Australian 2 sharks and rays 3 4 Kathryn A. Buckley • David A. Crook • Richard D. Pillans • Liam Smith • Peter M. Kyne 5 6 7 K.A. Buckley • D.A. Crook • P.M. Kyne 8 Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, 9 Australia 10 R.D. Pillans 11 CSIRO Oceans and Atmosphere, 41 Boggo Road, Dutton Park, QLD 4102, Australia 12 L. Smith 13 BehaviourWorks Australia, Monash Sustainable Development Institute, Building 74, Monash University, 14 Wellington Road, Clayton, VIC 3168, Australia 15 Corresponding author: K.A. Buckley, Research Institute for the Environment and Livelihoods, Charles Darwin 16 University, Darwin, NT 0909, Australia; Telephone: +61 4 2917 4554; Fax: +61 8 8946 7720; e-mail: 17 [email protected] 18 https://www.nespmarine.edu.au/document/sustainability-threatened-species-displayed-public-aquaria-case-study-australian-sharks-and https://link.springer.com/article/10.1007/s11160-017-9501-2 2 PREPRINT 19 Abstract Zoos and public aquaria exhibit numerous threatened species globally, and in the modern context of 20 these institutions as conservation hubs, it is crucial that displays are ecologically sustainable. Elasmobranchs 21 (sharks and rays) are of particular conservation concern and a higher proportion of threatened species are 22 exhibited than any other assessed vertebrate group. Many of these lack sustainable captive populations, so 23 comprehensive assessments of sustainability may be needed to support the management of future harvests and 24 safeguard wild populations.
    [Show full text]
  • Report on Sicklefin Weasel Shark Hemigaleus Microstoma
    Rec. zool. Surv. India: Vol. 120(2)/153–159, 2020 ISSN (Online) : 2581-8686 DOI: 10.26515/rzsi/v120/i2/2020/144516 ISSN (Print) : 0375-1511 Report on Sicklefin weasel shark Hemigaleus microstoma (Bleeker, 1852) (Carcharhiniformes: Hemigaleidae) from the Andaman Islands, Indian EEZ with DNA barcodes K. K. Bineesh1*, R. Kiruba Sankar2, M. Nashad3, O. R. Arun Retheesh2, Ravi Ranjan Kumar4 and V. S. Basheer5 1Zoological Survey of India, Andaman and Nicobar Regional Centre, Haddo, P.B. No. 744 102, Andaman and Nicobar Islands, India; Email: [email protected] 2ICAR-Central Island Agricultural Research Institute, Garacharama, P.B. No.744101, Andaman & Nicobar Islands, India 3Fishery Survey of India, Port Blair Zonal Base, P.B No.744101, Andaman & Nicobar Islands, India 4Department of Ocean Studies and Marine Biology, Pondicherry University, P.B.No. 744112, Andaman Islands, India 5National Bureau of Fish Genetic Resources (NBFGR), CMFRI Campus, P.B.No.1603, Ernakulam North, P.O., Kochi - 682018, Kerala, India Abstract Hemigaleus microstoma The occurrence of sickle fin weasel shark Bleeker,H. 1852 microstoma is reported here from Indian EEZ, off the Andaman Islands in the Bay of Bengal. Two specimens of total length (TL) 610 mm and 628 mm were caught by longline at depths 40-100 m. A detailed diagnostic description and morphometrics of and its comparison with previous literature is provided. COI DNA barcodes were generated for the collected specimens. Keywords: Bycatch, DNA Analysis, Elasmobranchs, Morphometrics, Port Blair Introduction microstoma (Compagno, 1988). Later, White et al. (2005) described a close species Hemigaleus australiensis from Chondrichthyan fishes are mainly exploited as bycatch in Australian waters.
    [Show full text]
  • Etyfish Orectolobifo
    ORECTOLOBIFORMES (Carpet Sharks) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 7.0 - 15 Oct. 2019 Order ORECTOLOBIFORMES Carpet Sharks 7 families · 13 genera · 45 species Family PARASCYLLIIDAE Collared Carpet Sharks 2 genera · 8 species Cirrhoscyllium Smith & Radcliffe 1913 cirrus, curl or tendril, referring to barbels on throat; skylion, Greek for dogfish or small shark, probably from skyllo, to tear or mangle Cirrhoscyllium expolitum Smith & Radcliffe 1913 varnished, referring to how the shark’s body, when dry, “glistens as though varnished, owing to the peculiar character of the dermal denticles” Cirrhoscyllium formosanum Teng 1959 -anum, adjectival suffix: referring to distribution off the coast of Formosa (Taiwan) Cirrhoscyllium japonicum Kamohara 1943 Japanese, known only from Mimase, Shikoku, Japan Parascyllium Gill 1862 para-, near, i.e., related to Scylliorhinus (now in Scyliorhinidae); skylion, Greek for dogfish or small shark, probably from skyllo, to tear or mangle Parascyllium collare Ramsay & Ogilby 1888 collar, referring to prominent dark and unspotted collar around gills Parascyllium elongatum Last & Stevens 2008 prolonged, referring to distinctive, elongate body shape Parascyllium ferrugineum McCulloch 1911 rust-colored, referring to dark brown spots on sides and fins Parascyllium sparsimaculatum Goto & Last 2002 sparsi, sparse; maculatum, spotted, referring to relatively larger (and hence fewer) spots than congeners Parascyllium variolatum (Duméril 1853) spotted, referring to white
    [Show full text]
  • Identification Guide to the Deep-Sea Cartilaginous Fishes Of
    Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.
    [Show full text]
  • (W. Indian Ocean) HEMISCYLLIIDAE Longtail Carpetsharks Small Sharks
    click for previous page HEMIS 1983 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) HEMISCYLLIIDAE Longtail carpetsharks Small sharks. Trunk cylindrical or moderately depressed, precaudal tail cylindrical and somewhat longer than trunk, lateral ridges on sides of trunk and tail present of absent. Head not expanded laterally, cylindrical or moderately depressed; 5 small gill slits present, the last 3 over the pectoral fin base, their upper ends not expanded onto upper surface of head; no gill sieves or rakers on internal gill slits; spiracles very large and located behind and below eyes; nostrils with barbels, nasoral grooves, and circumnarial grooves, close in front of mouth; eyes above and medial to sides of head, without nictitating eyelids; snout short to moderately long, slightly depressed, parabolic to broadly rounded, not greatly flattened and bladelike and without lateral teeth or barbels; mouth small, nearly transverse, and well in front of eyes; labial furrows present on both jaws and relatively large, with upper furrows extending in front of mouth; teeth small, not bladelike, with a single cusp on upper and lower teeth and with cusplets small or absent; teeth similar in upper and lower jaws, not differentiated into medials, anteriors, intermediates, laterals or posteriors. Two dorsal fins without spines, the first moderate-sized, sub- angular, much shorter than the caudal fin, and with its origin over or behind the pelvic fin bases; second dorsal fin about as large as the first and of similar shape; anal fin moderately large, very low, broad and rounded, with its origin well behind the second dorsal base and its base separated by a notch from the caudal fin; caudal fin strongly asymmetrical, much less than half of total length, without a rippled dorsal margin or lower lobe but with a strong subterminal notch; vertebral axis of caudal fin hardly raised above body axis.
    [Show full text]
  • Atlantic Sharks at Risk
    RESEARCH SERIES JUNE 2008 Risk Assessment Prompts No-Take Recommendations for Shark Species ATLANTIC SHARKS AT RISK SummARY OF AN EXPERT WORKING GROup REPORT: Simpfendorfer, C., Heupel M., Babcock, E., Baum, J.K., Dudley, S.F.J., Stevens, J.D., Fordham, S., and A. Soldo. 2008. Management Recommendations Based on Integrated Risk Assessment of Data-Poor Pelagic Atlantic Sharks. POpuLATIONS OF MANY of the world’s pelagic, or open ocean, shark and ray species are declining. Like most sharks, these species are known to be susceptible to overfishing due to low reproductive rates. Pelagic longline fisheries for tuna and swordfish catch significant numbers of pelagic sharks and rays and shark fisheries are also growing due to declines in traditional target species and the rising value of shark fins and meat. Yet, a lack of data has prevented scientists from conducting reliable population assessments for most pelagic shark and ray species, hindering effective management actions. Dr. Colin Simpfendorfer and the Lenfest Ocean Program convened an international expert working group to estimate the risk of overfishing for twelve species caught in Atlantic pelagic longline fisheries under the jurisdiction of the International Commission for the Conserva- tion of Atlantic Tunas (ICCAT). The scientists conducted an integrated risk assessment designed for data-poor situations for these sharks and rays. Their analysis indicated that bigeye thresher, shortfin mako and longfin mako sharks had the highest risk of overfishing while many of the other species had at least moderately high levels of risk. Based on these results, the scientists developed recommendations for limiting or prohibiting catch for the main pelagic shark and ray species taken in ICCAT fisheries.
    [Show full text]