View-Revised (ADI-R) Were Used to Develop a Motor Potential Genes for Further Investigation

Total Page:16

File Type:pdf, Size:1020Kb

View-Revised (ADI-R) Were Used to Develop a Motor Potential Genes for Further Investigation J Neurodevelop Disord (2010) 2:210–223 DOI 10.1007/s11689-010-9063-2 Combined linkage and linkage disequilibrium analysis of a motor speech phenotype within families ascertained for autism risk loci Judy F. Flax & Abby Hare & Marco A. Azaro & Veronica J. Vieland & Linda M. Brzustowicz Received: 19 May 2010 /Accepted: 10 September 2010 /Published online: 12 October 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Using behavioral and genetic information from gible verbal behaviors (NVMSD:ALL) and a related the Autism Genetics Resource Exchange (AGRE) data set phenotype restricted to individuals without significant we developed phenotypes and investigated linkage and comprehension difficulties (NVMSD:C). Using Affymetrix association for individuals with and without Autism 5.0 data, the PPL framework was employed to assess the Spectrum Disorders (ASD) who exhibit expressive lan- strength of evidence for or against trait-marker linkage and guage behaviors consistent with a motor speech disorder. linkage disequilibrium (LD) across the genome. Ingenuity Speech and language variables from Autism Diagnostic Pathway Analysis (IPA) was then utilized to identify Interview-Revised (ADI-R) were used to develop a motor potential genes for further investigation. We identified speech phenotype associated with non-verbal or unintelli- several linkage peaks based on two related language- speech phenotypes consistent with a potential motor speech Electronic supplementary material The online version of this article disorder: chromosomes 1q24.2, 3q25.31, 4q22.3, 5p12, (doi:10.1007/s11689-010-9063-2) contains supplementary material, 5q33.1, 17p12, 17q11.2, and 17q22 for NVMSD:ALL and which is available to authorized users. 4p15.2 and 21q22.2 for NVMSD:C. While no compelling J. F. Flax (*) evidence of association was obtained under those peaks, we Department of Genetics, Rutgers University, identified several potential genes of interest using IPA. 145 Bevier Road, Room 224, Conclusion: Several linkage peaks were identified based on Piscataway, NJ 08854, USA two motor speech phenotypes. In the absence of evidence e-mail: [email protected] of association under these peaks, we suggest genes for A. Hare further investigation based on their biological functions. Department of Genetics, Rutgers University, Given that autism spectrum disorders are complex with a 145 Bevier Road, Room 230A, wide range of behaviors and a large number of underlying Piscataway, NJ 08854, USA genes, these speech phenotypes may belong to a group of M. A. Azaro several that should be considered when developing narrow, Department of Genetics, Rutgers University, well-defined, phenotypes in the attempt to reduce genetic 145 Bevier Road, Room 226, heterogeneity. Piscataway, NJ 08854, USA V. J. Vieland Keywords Autism . Linkage analysis . Association Battelle Center for Mathematical Medicine, analysis . Motor Speech Disorder . Autism genes . Ingenuity ’ The Research Institute at Nationwide Children s Hospital Pathway Analysis (IPA) . PPL/PPLD and The Ohio State University, JW3921, 700 Children’s Drive, Columbus, OH 43205, USA Introduction L. M. Brzustowicz Department of Genetics, Rutgers University, 145 Bevier Road, Room 231, Over the past 10 years there has been compelling evidence Piscataway, NJ 08854, USA supporting a genetic basis for autism using a combination J Neurodevelop Disord (2010) 2:210–223 211 of behavioral family studies and genetic linkage and Speech and language in ASD association studies. However, these studies have produced results that are often inconsistent and sometimes contra- Speech and language impairments constitute a broadly dictory (Newbury et al. 2002). Some linkage studies have defined area. In their mildest forms they may be character- identified peaks based on the presence or absence of ized by a minor phonological or speech impairment that can autism or autism spectrum disorders (ASD), while other affect speech production and possibly reading ability. On studies have concentrated on more specific phenotypic and the more severe end of the language and speech continuum, clinical characterizations such as onset age of first words, a person might be unable to comprehend or process spoken family language history, sex of proband, obsessive language and/or be non-verbal or unintelligible. This vast compulsive and ritualistic behaviors, and social skills scope of speech and language disabilities seen in the ASD [(Alarcón et al. 2002; Auranen et al. 2003;Bradfordet population has been documented in detail (Rapin and Dunn al. 2001; Buxbaum et al. 2004;Liuetal.2008;Shaoetal. 2003; Tager-Flusberg et al. 2005). While some research 2003); See (Abrahams and Geschwind 2010) for a current supports the notion that there may be multiple relations linkage review]. among the language problems seen in SLI and autism, Of particular interest for several research groups has others feel that there is not enough evidence to support a been the attempt to define and then replicate significant genetic link (Lindgrin et al. 2009) and that ASD and SLI linkage signals using language-based phenotypes in ASD are distinctly different disorders that do not share the same probands with the objective of finding genes that are genes. associated with a specific language-related phenotype. Previous reports indicate that approximately 50% of all An area on chromosome 7 (q34–36) has been linked to children with autism never acquire functional language by both autism and expressive language impairments. A middle childhood (Bailey et al. 1996) while more current gene for a contactin associated protein, CNTNAP2,thatis estimates place this value as closer to 20% (Lord et al. downregulatedbyFOXP2andisknowntoinfluenceearly 2004). Yet little is known about why some individuals, brain development in humans, has been associated with despite years of intervention, never develop language while both ASD and language (Alarcón et al. 2008;Arkingetal. many others develop enough spoken language to commu- 2008;Vernesetal.2008). While chromosome 7q nicate at least minimally. Often the underlying cause is not continues to be an area of intense interest for both autism clear and may be presumed to be a social/interaction issue. and language, other linkage signals have been reported But what if language processing problems make incoming that are also based on language phenotypes in the ASD verbal information difficult or impossible to understand and population. Alarcón et al. (2005) reported linkage on severely limit verbal output? Conversely, what if problems chromosomes 3q and 17q using onset of first words and with speech output make speech very effortful, resulting in phrases as the behavioral phenotype while linkage on vocalizations that include only vowels sounds or verbal- chromosome 13q21 was reported by Bradford et al. (2001) izations that are unintelligible to those around them, as in for ASD probands and family members with a history of the case of childhood apraxia of speech (CAS)? language-related problems. Bartlett et al. (2004) identified CAS is a motor speech disorder that involves poor motor linkage in the same region for a sample of families with a planning and results in speech output with compromised history of Specific Language Impairment (SLI) without intelligibility ranging from its most severe form of ASD. SLI is a failure to develop language normally expressive language production, which is characterized by without explanatory factors such as low IQ, gross very limited consonant production, to full phrase produc- neurological impairment, or inadequate environment. tion with multiple omissions, substitutions, distortions, and They suggest that although SLI and ASD are distinctly reversals of speech sounds. While good epidemiologic data different disorders, both are genetically complex and may on the prevalence of CAS is lacking, population estimates share specific susceptibility genes or variants of genes. derived from referral data suggest that approximately one to Spence et al. (2006) stratified expressive language two children per 1,000 are affected with CAS (Shriberg et characteristics into word and phrase speech delay in al. 1997). There has been limited study of CAS in terms of ASD probands and family members in an attempt to its genetic origins, however, in their family and genetic better define the language endophenotype and reduce studies of speech sound disorders, Lewis et al. (2004) phenotypic heterogeneity. They found evidence for link- looked at a small sample of children with a diagnosis of age in several already identified locations supporting the CAS and reported that 59% had at least one parent with idea that more discretely defined characteristics of ASD, some type of speech sound disorder. Moreover, in 86% of specifically language endophenotypes, may improve lo- the families, at least one nuclear family member reported calization of linkage signals and strengthen existing either a speech sound disorder or a language disorder. In a findings. recent related study of speech sound disorders Lewis et al. 212 J Neurodevelop Disord (2010) 2:210–223 (2007) report that 36 of 147 (24%) of parents of children phenotype common to autism but also potentially common with speech sound disorders also report similar problems as to other speech and language disorders. children. Very little has been reported about individuals with Motor speech phenotypes autism whose vocalizations are effortful, unintelligible, or non-existent.
Recommended publications
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Intrinsic Disorder in PTEN and Its Interactome Confers Structural Plasticity and 63
    OPEN Intrinsic Disorder in PTEN and its SUBJECT AREAS: Interactome Confers Structural Plasticity CELLULAR SIGNALLING NETWORKS and Functional Versatility CANCER GENOMICS Prerna Malaney1*, Ravi Ramesh Pathak1*, Bin Xue3, Vladimir N. Uversky3,4,5 & Vrushank Dave´1,2 SYSTEMS ANALYSIS GENE REGULATORY NETWORKS 1Morsani College of Medicine, Department of Pathology and Cell Biology, 2Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 3Department of Molecular Medicine, 4USF Health Byrd Alzheimer’s Research Institute, Received University of South Florida, Tampa, FL, 33612, USA, 5Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 11 March 2013 Pushchino, Moscow Region, Russia. Accepted 3 June 2013 IDPs, while structurally poor, are functionally rich by virtue of their flexibility and modularity. However, how mutations in IDPs elicit diseases, remain elusive. Herein, we have identified tumor suppressor PTEN as Published an intrinsically disordered protein (IDP) and elucidated the molecular principles by which its intrinsically 20 June 2013 disordered region (IDR) at the carboxyl-terminus (C-tail) executes its functions. Post-translational modifications, conserved eukaryotic linear motifs and molecular recognition features present in the C-tail IDR enhance PTEN’s protein-protein interactions that are required for its myriad cellular functions. PTEN primary and secondary interactomes are also enriched in IDPs, most being cancer related, revealing that Correspondence and PTEN functions emanate from and are nucleated by the C-tail IDR, which form pliable network-hubs. requests for materials Together, PTEN higher order functional networks operate via multiple IDP-IDP interactions facilitated by should be addressed to its C-tail IDR. Targeting PTEN IDR and its interaction hubs emerges as a new paradigm for treatment of V.D.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Copy-Neutral Loss of Heterozygosity and Chromosome Gains and Losses
    Lourenço et al. Molecular Cancer 2014, 13:246 http://www.molecular-cancer.com/content/13/1/246 RESEARCH Open Access Copy-neutral loss of heterozygosity and chromosome gains and losses are frequent in gastrointestinal stromal tumors Nelson Lourenço1,10†, Zofia Hélias-Rodzewicz1,2†, Jean-Baptiste Bachet1,3, Sabrina Brahimi-Adouane1, Fabrice Jardin4, Jeanne Tran van Nhieu5, Frédérique Peschaud1,6, Emmanuel Martin7, Alain Beauchet1,8, Frédéric Chibon9 and Jean-François Emile1,2* Abstract Background: A KIT gain of function mutation is present in 70% of gastrointestinal stromal tumors (GISTs) and the wild-type (WT) allele is deleted in 5 to 15% of these cases. The WT KIT is probably deleted during GIST progression. We aimed to identify the mechanism of WT KIT loss and to determine whether other genes are involved or affected. Methods: Whole-genome SNP array analyses were performed in 22 GISTs with KIT exon 11 mutations, including 11 with WT loss, to investigate the mechanisms of WT allele deletion. CGH arrays and FISH were performed in some cases. Common genetic events were identified by SNP data analysis. The 9p21.3 locus was studied by multiplex quantification of genomic DNA. Results: Chromosome instability involving the whole chromosome/chromosome arm (whole C/CA) was detected in 21/22 cases. The GISTs segregated in two groups based on their chromosome number: polyGISTs had numerous whole C/CA gains (mean 23, range [9 to 43]/3.11 [1 to 5]), whereas biGISTs had fewer aberrations. Whole C/CA losses were also frequent and found in both groups. There were numerous copy-neutral losses of heterozygosity (cnLOH) of whole C/CA in both polyGIST (7/9) and biGIST (9/13) groups.
    [Show full text]
  • Disruption of the Anaphase-Promoting Complex Confers Resistance to TTK Inhibitors in Triple-Negative Breast Cancer
    Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer K. L. Thua,b, J. Silvestera,b, M. J. Elliotta,b, W. Ba-alawib,c, M. H. Duncana,b, A. C. Eliaa,b, A. S. Merb, P. Smirnovb,c, Z. Safikhanib, B. Haibe-Kainsb,c,d,e, T. W. Maka,b,c,1, and D. W. Cescona,b,f,1 aCampbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 1L7; bPrincess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 1L7; cDepartment of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7; dDepartment of Computer Science, University of Toronto, Toronto, ON, Canada M5G 1L7; eOntario Institute for Cancer Research, Toronto, ON, Canada M5G 0A3; and fDepartment of Medicine, University of Toronto, Toronto, ON, Canada M5G 1L7 Contributed by T. W. Mak, December 27, 2017 (sent for review November 9, 2017; reviewed by Mark E. Burkard and Sabine Elowe) TTK protein kinase (TTK), also known as Monopolar spindle 1 (MPS1), ator of the spindle assembly checkpoint (SAC), which delays is a key regulator of the spindle assembly checkpoint (SAC), which anaphase until all chromosomes are properly attached to the functions to maintain genomic integrity. TTK has emerged as a mitotic spindle, TTK has an integral role in maintaining genomic promising therapeutic target in human cancers, including triple- integrity (6). Because most cancer cells are aneuploid, they are negative breast cancer (TNBC). Several TTK inhibitors (TTKis) are heavily reliant on the SAC to adequately segregate their abnormal being evaluated in clinical trials, and an understanding of karyotypes during mitosis.
    [Show full text]
  • NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]
  • Co-Expression Network of Neural-Differentiation Genes Shows
    Maschietto et al. BMC Medical Genomics (2015) 8:23 DOI 10.1186/s12920-015-0098-9 RESEARCH ARTICLE Open Access Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia Mariana Maschietto1,2†, Ana C Tahira1,2†, Renato Puga3, Leandro Lima4, Daniel Mariani4, Bruna da Silveira Paulsen5, Paulo Belmonte-de-Abreu6, Henrique Vieira4, Ana CV Krepischi7, Dirce M Carraro8, Joana A Palha9,10, Stevens Rehen5,11 and Helena Brentani1,2,12,13* Abstract Background: Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. Methods: We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. Results: We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation.
    [Show full text]
  • Reproductionresearch
    REPRODUCTIONRESEARCH K K Gene expression profiles of Spo11 / mouse testes with spermatocytes arrested in meiotic prophase I Natalya A Smirnova, Peter J Romanienko, Pavel P Khil and R Daniel Camerini-Otero Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, USA Correspondence should be addressed to R D Camerini-Otero; Email: [email protected] P J Romanienko is now at Developmental Biology Program, Mouse Genetics Core, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York 10021, USA Abstract Spo11, a meiosis-specific protein, introduces double-strand breaks on chromosomal DNA and initiates meiotic recombination in a wide variety of organisms. Mouse null Spo11 spermatocytes fail to synapse chromosomes and progress beyond the zygotene stage of K K meiosis. We analyzed gene expression profiles in Spo11 / adult and juvenile wild-type testis to describe genes expressed before and after the meiotic arrest resulting from the knocking out of Spo11. These genes were characterized using the Gene Ontology data K K base. To focus on genes involved in meiosis, we performed comparative gene expression analysis of Spo11 / and wild-type testes from 15-day mice, when spermatocytes have just entered pachytene. We found that the knockout of Spo11 causes dramatic changes in the level of expression of genes that participate in meiotic recombination (Hop2, Brca2, Mnd1, FancG) and in the meiotic checkpoint (cyclin B2, Cks2), but does not affect genes encoding protein components of the synaptonemal complex. Finally, we discovered unknown genes that are affected by the disruption of the Spo11 gene and therefore may be specifically involved in meiosis and spermatogenesis.
    [Show full text]
  • Cell Culture-Based Profiling Across Mammals Reveals DNA Repair And
    1 Cell culture-based profiling across mammals reveals 2 DNA repair and metabolism as determinants of 3 species longevity 4 5 Siming Ma1, Akhil Upneja1, Andrzej Galecki2,3, Yi-Miau Tsai2, Charles F. Burant4, Sasha 6 Raskind4, Quanwei Zhang5, Zhengdong D. Zhang5, Andrei Seluanov6, Vera Gorbunova6, 7 Clary B. Clish7, Richard A. Miller2, Vadim N. Gladyshev1* 8 9 1 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard 10 Medical School, Boston, MA, 02115, USA 11 2 Department of Pathology and Geriatrics Center, University of Michigan Medical School, 12 Ann Arbor, MI 48109, USA 13 3 Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, 14 MI 48109, USA 15 4 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 16 48109, USA 17 5 Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10128, USA 18 6 Department of Biology, University of Rochester, Rochester, NY 14627, USA 19 7 Broad Institute, Cambridge, MA 02142, US 20 21 * corresponding author: Vadim N. Gladyshev ([email protected]) 22 ABSTRACT 23 Mammalian lifespan differs by >100-fold, but the mechanisms associated with such 24 longevity differences are not understood. Here, we conducted a study on primary skin 25 fibroblasts isolated from 16 species of mammals and maintained under identical cell culture 26 conditions. We developed a pipeline for obtaining species-specific ortholog sequences, 27 profiled gene expression by RNA-seq and small molecules by metabolite profiling, and 28 identified genes and metabolites correlating with species longevity. Cells from longer-lived 29 species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated 30 proteolysis and protein transport, and showed high levels of amino acids but low levels of 31 lysophosphatidylcholine and lysophosphatidylethanolamine.
    [Show full text]
  • Supplementary Table S5
    Supplementary Table S5 Predicted impact on structural MutatorAssessor MutatorAssessor Polyphen-2 Polyphen-2 Gene Mutation In structure? Surface/buried Implication/comment integrity Func. Impact FI score Prediction score ANAPC1 E139Q No low 1.5 benign 0.308 ANAPC1 F211V Yes Buried Destabilising Mild/Strong medium 2.83 probably damaging 0.992 ANAPC1 G602D Yes Surface Allows bend at loop; G>D destabilising Strong medium 2.02 probably damaging 0.973 ANAPC1 H1661Y Yes Surface Destabilising; H situates in hydrophilic environment Mild/Strong medium 2.155 possibly damaging 0.826 ANAPC1 H27R Yes Buried Destabilising Strong low 0.895 probably damaging 0.981 ANAPC1 M525V No low 1.32 benign 0.001 ANAPC1 N280K Yes Buried Destabilising Strong medium 2.015 benign 0.18 ANAPC1 P314S No medium 2.32 probably damaging 0.993 ANAPC1 P558L No low 1.575 benign 0.001 ANAPC1 Q846P Yes Buried Destabilising Strong medium 1.95 benign 0.261 ANAPC1 R1726T No low 1.69 benign 0.442 ANAPC1 R453L Yes Partially buried Destabilising Strong medium 2.36 probably damaging 0.993 ANAPC1 R871K Yes Surface Solvent exposed None neutral -0.88 benign 0 ANAPC1 Y1552C Yes Buried Destabilising Strong medium 3.41 probably damaging 0.999 ANAPC1 L1770F Yes Buried Part of interface with Apc5; end of helical repeat Mild. Similar side chain property. neutral -0.08 benign 0.003 ANAPC1 L230I No Surface On a loop of Apc1 WD40 domain N/A neutral 0.69 benign 0 ANAPC1 D568N No Surface Surface extended loop; not in sturcture N/A neutral 0.585 possibly damaging 0.455 Surface on beta jelly roll domain.
    [Show full text]
  • Gwas Meta-Analysis of Intelligence 1
    bioRxiv preprint doi: https://doi.org/10.1101/184853; this version posted September 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GWAS META-ANALYSIS OF INTELLIGENCE 1 GWAS meta-analysis (N=279,930) identifies new genes and functional links to intelligence Jeanne E Savage1#, Philip R Jansen1,2#, Sven Stringer1, Kyoko Watanabe1, Julien Bryois3, Christiaan A de Leeuw1, Mats Nagel1, Swapnil Awasthi4, Peter B Barr5, Jonathan R I Coleman6,7, Katrina L Grasby8, Anke R Hammerschlag1, Jakob Kaminski4,9, Robert Karlsson3, Eva Krapohl6, Max Lam10, Marianne Nygaard11,12, Chandra A Reynolds13, Joey W Trampush14, Hannah Young15, Delilah Zabaneh6, Sara Hägg3, Narelle K Hansell16, Ida K Karlsson3, Sten Linnarsson17, Grant W Montgomery8,18, Ana B Muñoz-Manchado17, Erin B Quinlan6, Gunter Schumann6, Nathan Skene17, Bradley T Webb19,20,21, Tonya White2, Dan E Arking22, Deborah K Attix23,24, Dimitrios Avramopoulos22,25, Robert M Bilder26, Panos Bitsios27, Katherine E Burdick28,29,30, Tyrone D Cannon31, Ornit Chiba-Falek32, Andrea Christoforou23, Elizabeth T Cirulli33, Eliza Congdon26, Aiden Corvin34, Gail Davies35, 36, Ian J Deary35,36, Pamela DeRosse37, Dwight Dickinson38, Srdjan Djurovic39,40, Gary Donohoe41, Emily Drabant Conley42, Johan G Eriksson43,44, Thomas Espeseth45,46, Nelson A Freimer26, Stella Giakoumaki47, Ina Giegling48, Michael Gill34, David
    [Show full text]