Molecular Detection of Anaplasma Bovis in Holstein Cattle in the Republic of Korea

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Detection of Anaplasma Bovis in Holstein Cattle in the Republic of Korea Park et al. Acta Vet Scand (2018) 60:15 https://doi.org/10.1186/s13028-018-0370-z Acta Veterinaria Scandinavica BRIEF COMMUNICATION Open Access Molecular detection of Anaplasma bovis in Holstein cattle in the Republic of Korea Jinho Park1†, Du‑Gyeong Han2†, Ji‑Hyoung Ryu2, Jeong‑Byoung Chae3, Joon‑Seok Chae3, Do‑Hyeon Yu4, Bae‑Keun Park5, Hyeon‑Cheol Kim6 and Kyoung‑Seong Choi2* Abstract Anaplasmosis is a tick-borne infectious disease that afects both human and animal health. This study was performed to characterize and investigate the prevalence of infection with Anaplasma bovis in Holstein cattle originating from two regions in the Republic of Korea (ROK). Blood samples (n 151; 80 from Namwon and 71 from Jeju Island) were analyzed by polymerase chain reaction, and the prevalence of= A. bovis infection was compared before and after graz‑ ing. In Namwon, A. bovis infection was not detected, while in the Jeju Island, A. bovis infection was detected in three of 13 animals after grazing. Phylogenetic analysis revealed that the A. bovis isolates had homology (97.1–99.7%) with a Korean spotted deer (Cervus nippon) isolate and Haemaphysalis longicornis tick isolates identifed in the ROK. A. bovis infection has not previously been diagnosed in cattle in the ROK. This study shows that A. bovis infection in the Jeju Island is closely related to grazing. Keywords: Anaplasma bovis, Grazing, Holstein cattle, Ticks Findings showing diferences in host cell tropism. A. centrale, A. Te climate of the Korean Peninsula is rapidly becom- marginale, and A. ovis are erythrocytic, while A. bovis, A. ing subtropical, and warmer temperatures have already phagocytophilum, and A. platys infect monocytes, neu- resulted in accelerated parasitic development and an trophils, and platelets, respectively [7]. Bovine anaplas- extreme rise in vector populations [1]. Tese climatic mosis is caused by A. bovis, A. centrale, A. marginale, and changes have a widespread impact on the ecosystems. A. phagocytophilum. A. marginale is widely distributed Temporal and spatial changes in temperature, precipi- in tropical and subtropical regions throughout the world. tation, and humidity that occur under diferent climatic It causes a mild to severe hemolytic disease in cattle and conditions afect the biology and ecology of vectors and wild ruminants, and is particularly highly pathogenic in intermediate hosts, and may increase the risk of infection cattle up to 2 years old [8]. Te infection is characterized transmission [2]. Tick distribution is also closely linked by persistent fever, lethargy, icterus, weight loss, abor- with climate, and there is growing concern that the prev- tion, reduced milk production, and death in more than alence of tick-borne diseases, such as theileriosis and 50% of untreated animals [8]. A. centrale is a less patho- anaplasmosis, may be increasing in the Republic of Korea genic species compared to A. marginale and causes mild (ROK) [3–6]. symptoms in cattle and is considered a naturally attenu- Anaplasmosis is a tick-transmitted disease that afects ated subspecies [9]. A. phagocytophilum is known to dogs, cats, horses, cattle, sheep, goats, and wild rumi- infect humans and animals, and causes tick-borne fever nants. Te Anaplasma genus comprises six species being characterized by fever, respiratory signs, leukope- nia, abortion, and sudden decrease in milk production [10, 11]. A. bovis causes fever, anemia, drowsiness, con- *Correspondence: [email protected] †Jinho Park and Du-Gyeong Han contributed equally to this work vulsions, weight loss, and enlargement of lymph nodes 2 Department of Animal Science and Biotechnology, College in cattle [12]. Tis infection has been found in China and of Ecology and Environmental Science, Kyungpook National University, Japan [13–15], but recently, A. bovis was also detected in Sangju 37224, Republic of Korea Full list of author information is available at the end of the article Korean spotted deer (Cervus nippon) [16], Korean water © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Park et al. Acta Vet Scand (2018) 60:15 Page 2 of 5 deer (Hydropotes inermis argyropus) [17], and Haema- spp. (F, 5ʹ-TACCTCTGTGTTGTAGCTAACGC-3ʹ; R, physalis longicornis ticks in the ROK [18, 19]. However, 5ʹ-CTTGCGACATTGCAACCTATTGT-3ʹ). In a second information regarding A. bovis infection in cattle is not round of PCR to identify individual Anaplasma spp., the available in the ROK. Terefore, the aim of the present following primers were used: AB1f/AB1r for A. bovis (F, study was to investigate A. bovis infection in cattle before 5′-CTCGTAGCTTGC TATGAGAAC-3′; R, 5′-TCTCCC and after grazing and to characterize the evolutionary GGACTCCAGTCTG-3′), msp4 for A. centrale (F, 5′-CA relationships of obtained A. bovis isolates. TGGGGCATGAATCTGTG-3′; R, 5′-AATTGGTTGCA Jugular vein EDTA stabilized blood samples GTGAGCGC-3′), and msp4 for A. marginale (F, 5′-CAT (Vacutainer® tubes, Beckton Dickinson, Franklin Lakes, CTCCCATGAGTCACGAAGTGGC-3′; R, 5′-GCTGAA NJ, USA) were taken from 151 Holstein cattle in the CAG GAATCTTGCTCC-3′). PCR was performed under ROK, consisting of 80 samples from one herd in the the cycling conditions: 98 °C for 5 min, followed by 35 Namwon region and 71 samples from a herd on the Jeju cycles of 10 s at 98 °C, annealing at 58 °C for 30 s for 16S Island (Fig. 1). Te samples were taken twice from April rRNA gene [3], 55 °C for 1 min for A. bovis [20], 53 °C to August 2016. Cattle raised at both farms were grazed for 30 s for A. centrale, and 53 °C for 30 s for A. margin- on grass from the middle of May to the end of Novem- ale [21], 72 °C for 1 min, and fnal extension at 72 °C for ber. Te samples were analyzed for erythrocyte numbers, 5 min. Distilled water was used as negative control for hemoglobin, hematocrit, and white blood cell counts each PCR. Te expected sizes of the 16S rRNA gene, A. using the VetScan HM5 Hematology System (Abaxis, bovis, A. centrale, and A. marginale were 429, 551, 395, Union, CA, USA). and 252 bp, respectively. PCR products were visualized Genomic DNA was extracted from blood samples using under UV light after 1.5% agarose gel electrophoresis and the DNeasy Blood kit (Qiagen, Hilden, Germany) accord- ethidium bromide staining. ing to the manufacturer’s instructions. A frst round Te amplicons were purifed using the Accupower of polymerase chain reaction (PCR) was performed to Gel Extraction kit (Bioneer, Daejeon, ROK) and cloned amplify the 16S rRNA gene shared by all Anaplasma into the pGEM®-T Easy vector (Promega, Madison, Fig. 1 Map of the Republic of Korea. Dots indicate the location of the region of Namwon and the Jeju Island where blood samples were collected Park et al. Acta Vet Scand (2018) 60:15 Page 3 of 5 Table 1 Comparison of Anaplasma infections before and WI, USA), which was directly sequenced (Bioneer). after grazing in Namwon and Jeju Island Sequences were analyzed using the BioEdit version Region Namwon Jeju Island 7.2.5 sequence alignment software. A phylogenetic tree Date April 27, July 1, 2016 May 16, August 4, was constructed using the neighbor-joining method in of sample 2016 2016 2016 MEGA 6.0 software [22] and bootstrapping with 1000 collection replicates. Te two representative sequences obtained in Grazing Housing Grazing Housing Grazing this study were deposited in the GenBank database under type/no. (n 40) (n 40) (n 58) (n 13) accession numbers MF197897 and MF197898. = = = = of samples Anaplasma bovis was not detected in cattle from Nam- A. bovis 0 0 0 3 won region, while three of 71 animals (4.2%) from Jeju A. centrale 0 0 0 0 Island tested positive (Table 1). No samples were posi- A. marginale 0 0 0 0 tive for either A. centrale or A. marginale. None of the A. bovis-positive cattle showed hematological signs of FJ169957 Cattle China KP314250 Tick China AB211163 Deer Japan KU509992 Goat China KP314248 Tick China 66 KC311344 Tick Korea KU509996 Goat China A. bovis EU682764 Deer Korea 100 GU064902 Tick Korea MF197898 Cattle Korea EU181142 Tick Korea 67 AF470698 Tick Korea MF197897 Cattle Korea HQ872463 Goat China KP745629 Cattle Turkey A. phagocytophilum 100 JX173652 Dog Germany AY527214 Horse Sweden 75 KJ410245 Tick China 84 AJ633051 Sheep China A. ovis JQ917897 Tick China EF520690 Cattle Italy 58 A. centrale 84 KC189840 Cattle South Africa AF318944 Sheep South Africa 57 AB454075 Deer Japan 34 99 KJ700627 Goat China Anaplasma sp. AB509223 Goat Japan 47 AY048816 Tick USA FJ226454 Cattle Japan A. marginale 57 HM439433 Cattle China JQ839012 Tick Philippines 0.0020 Fig. 2 Phylogenetic analysis using the partial 16S rRNA gene (521 bp) sequences of isolates from Holstein cattle and representative Anaplasmata‑ ceae species. An unrooted phylogenetic tree was constructed with bootstrap values obtained by 1000 replicates using MEGA 6.0 software and the neighbor‑joining method. The sequences found in this study are shown in bold Park et al. Acta Vet Scand (2018) 60:15 Page 4 of 5 infection, such as anemia and leukocytosis. A. bovis Abbreviations A. bovis: Anaplasma bovis; A. centrale: Anaplasma centrale; A. marginale: Ana- infection in cattle from Jeju Island was observed only plasma marginale; H. longicornis: Haemaphysalis longicornis; PCR: polymerase after the animals had been on pasture consisted with hav- chain reaction; ROK: Republic of Korea.
Recommended publications
  • Anaplasma Species of Veterinary Importance in Japan
    Veterinary World, EISSN: 2231-0916 REVIEW ARTICLE Available at www.veterinaryworld.org/Vol.9/November-2016/4.pdf Open Access Anaplasma species of veterinary importance in Japan Adrian Patalinghug Ybañez1 and Hisashi Inokuma2 1. Biology and Environmental Studies Program, Sciences Cluster, University of the Philippines Cebu, Lahug, Cebu City 6000, Philippines; 2. Department of Veterinary Clinical Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Inada Cho, Hokkaido 080-8555, Japan. Corresponding author: Adrian Patalinghug Ybañez, e-mail: [email protected], HI: [email protected] Received: 14-06-2016, Accepted: 28-09-2016, Published online: 04-11-2016 doi: 10.14202/vetworld.2016.1190-1196 How to cite this article: Ybañez AP, Inokuma H (2016) Anaplasma species of veterinary importance in Japan, Veterinary World, 9(11): 1190-1196. Abstract Anaplasma species of the family Anaplasmataceae, order Rickettsiales are tick-borne organisms that can cause disease in animals and humans. In Japan, all recognized species of Anaplasma (except for Anaplasma ovis) and a potentially novel Anaplasma sp. closely related to Anaplasma phagocytophilum have been reported. Most of these detected tick- borne pathogens are believed to be lowly pathogenic in animals in Japan although the zoonotic A. phagocytophilum has recently been reported to cause clinical signs in a dog and in humans. This review documents the studies and reports about Anaplasma spp. in Japan. Keywords: Anaplasma spp., Japan, tick-borne pathogen. Introduction A. phagocytophilum sequences [10-15]. Phylogenetic Anaplasma species are Gram-negative, obligate inferences have suggested that 2 clades exist within intracellular bacteria of the order Rickettsiales, fam- the genus Anaplasma: (1) Erythrocytic (A.
    [Show full text]
  • Running Title: Bacterial Community Profiling Highlights Complex Diversity and Novel Organisms in Wildlife Ticks. Authors: Siobho
    bioRxiv preprint doi: https://doi.org/10.1101/807131; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running title: Bacterial community profiling highlights complex diversity and novel 2 organisms in wildlife ticks. 3 4 Authors: Siobhon L. Egan1, Siew-May Loh1, Peter B. Banks2, Amber Gillett3, Liisa A. 5 Ahlstrom4, Una M. Ryan1, Peter J. Irwin1 and Charlotte L. Oskam1,* 6 7 1 Vector and Waterborne Pathogens Research Group, College of Science, Health, 8 Engineering and Education, Murdoch University, Perth, Western Australia, Australia 9 2 School of Life and Environmental Sciences, The University of Sydney, Sydney, New South 10 Wales, Australia 11 3 Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia 12 4 Bayer Australia Ltd, Animal Health, Pymble, New South Wales, Australia 13 * Corresponding author 14 15 S.L.E [email protected]; https://orcid.org/0000-0003-4395-4069 16 S-M.L. [email protected] 17 P.B.B. [email protected]; https://orcid.org/0000-0002-4340-6495 18 A.G. [email protected] 19 L.A.A [email protected] 20 U.M.R. [email protected]; https://orcid.org/0000-0003-2710-9324 21 P.J.I. [email protected]; https://orcid.org/0000-0002-0006-8262 22 C.L.O. c.o [email protected] ; https://orcid.org/0000-0001-8886-2120 23 24 Abstract 25 Ticks (Acari: Ixodida) transmit a greater variety of pathogens than any other blood-feeding 1 bioRxiv preprint doi: https://doi.org/10.1101/807131; this version posted October 17, 2019.
    [Show full text]
  • Molecular Detection and Phylogenetic Analyses of Anaplasma Spp. in Haemaphysalis Longicornis from Goats in Four Provinces Of
    www.nature.com/scientificreports OPEN Molecular detection and phylogenetic analyses of Anaplasma spp. in Haemaphysalis longicornis from goats in four provinces of China Yaqun Yan1,3, Kunlun Wang1,3, Yanyan Cui2, Yongchun Zhou1, Shanshan Zhao1, Yajun Zhang1, Fuchun Jian1, Rongjun Wang1, Longxian Zhang1 & Changshen Ning1* Anaplasma species, which are distributed worldwide, are gram-negative obligate intracellular tick-borne bacteria that pose a threat to human and animal health. Haemaphysalis longicornis ticks play a vital role as vectors in the transmission of Anaplasma pathogens. However, the Anaplasma species carried by H. longicornis in China are yet to be characterized. In this study, 1074 H. longicornis specimens were collected from goats in four provinces of China from 2018 to 2019 and divided into 371 sample pools. All tick sample pools were examined for the presence of Anaplasma species via nested PCR amplifcation of 16S ribosomal RNA, major surface protein 4 (msp4), or citric acid synthase (gltA) genes, which were sequenced to determine the molecular and phylogenetic characteristics of the isolates. The overall Anaplasma spp-positive rate of H. longicornis was determined to be 26.68% (99/371). The percentage prevalence of A. phagocytophilum-like1, A. bovis, A. ovis, A. marginale, and A. capra were 1.08% (4/371), 13.21% (49/371), 13.21% (49/371), 1.35% (5/371), and 10.24% (38/371), respectively, and the co-infection rate of two or more types of Anaplasma was 6.47% (24/371). Phylogenetic analyses led to the classifcation of A. phagocytophilum into an A. phagocytophilum-like1 (Anaplasma sp. Japan) group. Anaplasma bovis sequences obtained in this study were 99.8–100% identical to those of an earlier strain isolated from a Chinese tick (GenBank accession no.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Epidemiology and Control of cattle ticks and tick-borne infections in Central Nigeria Vincenzo Lorusso Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy The University of Edinburgh 2014 Ph.D. – The University of Edinburgh – 2014 Cattle ticks and tick-borne infections, Central Nigeria 2014 Declaration I declare that the research described within this thesis is my own work and that this thesis is my own composition and I certify that it has never been submitted for any other degree or professional qualification. Vincenzo Lorusso Edinburgh 2014 Ph.D. – The University of Edinburgh – 2014 i Cattle ticks and tick -borne infections, Central Nigeria 2014 Abstract Cattle ticks and tick-borne infections (TBIs) undermine cattle health and productivity in the whole of sub-Saharan Africa (SSA) including Nigeria.
    [Show full text]
  • Ticks and Tick-Borne Pathogens at the Interplay of Game and Livestock
    University of Neuchâtel Faculty of Sciences Institute of Biology Laboratory of Eco-Epidemiology Ticks and tick-borne pathogens at the interplay of game and livestock animals in South Africa Thesis presented to the Faculty of Sciences of the University of Neuchâtel for the Degree of Doctor of Sciences by Mirko Berggoetz Members of the Jury: Prof. Lise Gern (Thesis Director); Prof. Patrick Guerin (University of Neuchâtel); Prof. Lorenza Beati (Southern University, Georgia); Prof. Kurt Pfister (University of Munich); Dr Heinz Sager (Novartis Saint-Aubin) Index 1 Abstract .............................................................................................................................. 9 2 Introduction ...................................................................................................................... 13 2.1 Tick biology ................................................................................................................ 13 2.1.1 Rhipicephalus species ......................................................................................... 16 2.1.2 Amblyomma species........................................................................................... 18 2.1.3 Hyalomma species ............................................................................................. 19 2.1.4 Haemaphysalis species ....................................................................................... 19 2.1.5 Ixodes species ....................................................................................................
    [Show full text]
  • Epidemiology and Molecular Characterization of Anaplasma and Ehrlichia Species Infecting Dairy Cattle in Smallholder Farms in Pe
    EPIDEMIOLOGY AND MOLECULAR CHARACTERIZATION OF ANAPLASMA AND EHRLICHIA SPECIES INFECTING DAIRY CATTLE IN SMALLHOLDER FARMS IN PERI-URBAN NAIROBI, KENYA Dr. Shepelo Getrude Peter (BVM, MvetMed) A thesis submitted in fulfillment of requirements for Doctor of Philosophy Degree in Veterinary Clinical Studies (Medicine) Department of Clinical Studies Faculty of Veterinary Medicine University of Nairobi November 2020 DECLARATION This thesis is my original work and has not been presented for a degree in any other University. Signature Date 19th November 2020 Shepelo Getrude Peter (BVM, MVetMed) SUPERVISORS This thesis has been submitted for examination with our approval as the University supervisors: Signature Date 19th November 2020 1. Prof. Daniel Waweru Gakuya (BVM, MSc, PhD) Signature Date 19th November 2020 2. Dr. Gabriel Oluga Aboge (BVM, MSc, PhD) Signature Date 19th November 2020 3. Prof. Ndichu Maingi (BVM, MSc, PhD) Signature Date 19th November 2020 4. Prof. Charles Matiku Mulei (BVM, PhD) i DEDICATION I dedicate this thesis to my late mother Peyasei Kuraru may her soul rest in peace, my father Peter Simintei, my husband Polycarp Matara and my daughters; Anatolia Nyaboke and Victoria Nanyori for the incredible love, patience and encouragement they showed me through my PhD journey. ii ACKNOWLEDGEMENT Every good and perfect gift comes from above; it comes down from the father of all light with Him there is no such thing as alteration or shadow caused by change (James 1:17). Trusting and claiming His Word, I give all glory and thanksgiving to the Almighty and powerful God for the special graces and favour He has given me through this PhD journey.
    [Show full text]
  • A Socio-Ecological Approach to Wildlife Disease Risk James A
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 5-10-2019 A Socio-Ecological Approach to Wildlife Disease Risk James A. Elliott University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Forest Sciences Commons Recommended Citation Elliott, James A., "A Socio-Ecological Approach to Wildlife Disease Risk" (2019). Electronic Theses and Dissertations. 3032. https://digitalcommons.library.umaine.edu/etd/3032 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. A SOCIO-ECOLOGICAL APPROACH TO WILDLIFE DISEASE RISK By James Elliott B.S. Salem State University, 2016 A THESIS Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science (in Forest Resources) The Graduate School The University of Maine May 2019 Advisory Committee: Sandra De Urioste-Stone, Assistant Professor of Nature-Based Tourism, Co-Advisor Pauline L. Kamath, Assistant Professor of Animal Health, Co-Advisor John Daigle, Professor of Forest Recreation Management Peter J Pekins, Professor of Wildlife Ecology, University of New Hampshire Kristin Peet, Forestland Conservation Specialist ii © 2019 James Elliott All Rights Reserved A Socio-Ecological Approach to Wildlife Disease Risk By James Elliott Advisors: Dr. Pauline Kamath and Sandra De Urioste-Stone An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Forest Resources) May 2019 Many Eastern moose (Alces alces, Linnaeus; 1758) populations along the southern edge of their North American range are declining, including those in Minnesota, Vermont, and New Hampshire.
    [Show full text]
  • Ru 2015 150 263 a (51) Мпк A61k 31/155 (2006.01)
    РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) (11) (13) RU 2015 150 263 A (51) МПК A61K 31/155 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2015150263, 01.05.2014 (71) Заявитель(и): НЕОКУЛИ ПТИ ЛТД (AU) Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): 01.05.2013 AU 2013901517 ПЕЙДЖ Стефен (AU), ГАРГ Санджай (AU) (43) Дата публикации заявки: 06.06.2017 Бюл. № 16 RU (85) Дата начала рассмотрения заявки PCT на национальной фазе: 01.12.2015 (86) Заявка PCT: AU 2014/000480 (01.05.2014) 2015150263 (87) Публикация заявки PCT: WO 2014/176634 (06.11.2014) Адрес для переписки: 190000, Санкт-Петербург, Box-1125, "ПАТЕНТИКА" A (54) СПОСОБЫ ЛЕЧЕНИЯ БАКТЕРИАЛЬНЫХ ИНФЕКЦИЙ (57) Формула изобретения 1. Способ лечения или профилактики бактериальной колонизации или инфекции у субъекта, включающий стадию: введения субъекту терапевтически эффективного количества робенидина или его терапевтически приемлемой соли, причем указанная A бактериальная колонизация или инфекция вызвана бактериальным агентом. 2. Способ по п. 1, отличающийся тем, что субъект выбран из группы, включающей: человека, животных, принадлежащих видам семейства псовых, кошачьих, крупного рогатого скота, овец, коз, свиней, птиц, рыб и лошадей. 3. Способ по п. 1, отличающийся тем, что робенидин вводят субъекту в дозе в диапазоне от 0,1 до 250 мг/кг массы тела. 4. Способ по любому из пп. 1-3, отличающийся тем, что бактериальный агент является 2015150263 грамположительным. 5. Способ по п. 4, отличающийся тем, что бактериальный агент выбран из
    [Show full text]
  • Anaplasma Phagocytophilum
    Yang et al. Parasites & Vectors (2016) 9:593 DOI 10.1186/s13071-016-1880-z RESEARCH Open Access Anaplasma phagocytophilum in sheep and goats in central and southeastern China Jifei Yang1, Zhijie Liu1, Qingli Niu1, Junlong Liu1, Rong Han1, Guiquan Guan1, Youquan Li1, Guangyuan Liu1, Jianxun Luo1* and Hong Yin1,2* Abstract Background: Anaplasma phagocytophilum is wide spread throughout the world and impacts both human and animal health. Several distinct ecological clusters and ecotypes of the agent have been established on the basis of various genetic loci. However, information on the genetic variability of A. phagocytophilum isolates in China represents a gap in knowledge. The objective of this study was to determine the prevalence and genetic characterization of A. phagocytophilum in small ruminants in central and southeastern China. Methods: The presence of A. phagocytophilum was determined in 421 blood samples collected from small ruminants by PCR. Positive samples were genetically characterized based on 16S rRNA and groEL genes. Statistical analyses were conducted to identify ecotypes of A. phagocytophilum strains, to assess their host range and zoonotic potential. Results: Out of 421 sampled small ruminants, 106 (25.2%) were positive for A. phagocytophilum. The positive rate was higher in sheep (35.1%, 40/114) than in goats (26.4%, 66/307) (P < 0.05). Sequence analyses revealed that the isolates identified in this study were placed on two separate clades, indicating that two 16S rRNA variants of A. phagocytophilum were circulating in small ruminants in China. However, analysis using obtained groEL sequences in this study formed one cluster, which was separate from other known ecotypes reported in Europe.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Co-Infection with Anaplasma Species and Novel Genetic Variants Detected in Cattle and Goats in the Republic of Korea
    pathogens Article Co-Infection with Anaplasma Species and Novel Genetic Variants Detected in Cattle and Goats in the Republic of Korea Evelyn Alejandra Miranda 1 , Sun-Woo Han 1, Yoon-Kyong Cho 1, Kyoung-Seong Choi 2 and Joon-Seok Chae 1,* 1 Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; [email protected] (E.A.M.); [email protected] (S.-W.H.); [email protected] (Y.-K.C.) 2 College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-880-1279 Abstract: Anaplasmosis, a tick-borne disease with multiple reservoirs, has been evolving in its pathogenesis, increasing domestic ruminants susceptibility to simultaneous infections with multiple pathogens. However, there is limited information regarding anaplasmosis in domestic ruminants in the Republic of Korea (ROK). We aimed to evaluate the role of Korean cattle and goats in Anaplasma infection maintenance. Polymerase chain reaction was performed to investigate the prevalence and genetic diversity of Anaplasma spp. from 686 whole blood samples collected from different ROK provinces. Anaplasma infection was mostly caused by A. phagocytophilum (21.1%) in cattle, and A. bovis (7.3%) in goats. Co-infection cases were found in cattle: A. bovis and A. phagocytophilum (16.7%), and in goats: A. bovis and A. capra (1.0%). Notably, a triple co-infection with A. bovis, A. phagocytophilum, and A.
    [Show full text]
  • Characterization of the Fecal Microbiota of Commercial Mink (Neovison Vison)
    Characterization of the Fecal Microbiota of Commercial Mink (Neovison vison) by Nicole Compo A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Veterinary Science in Pathobiology Guelph, Ontario, Canada © Nicole Compo, August, 2017 ABSTRACT Characterization of the Fecal microbiota of Commercial Mink (Neovison vison) Nicole Compo Advisor: University of Guelph, 2017 Dr. Patricia V. Turner Mink, obligate carnivores, are the fifth largest livestock commodity group in Canada, with more than 3 million pelts produced annually and an industry valuation at almost $100 million (2015). To date, research in the field of microbiota; the collective, interacting genomes and the symbiotic microorganisms in the gastrointestinal tract, has focused primarily on herbivores and omnivores, with comparatively few studies carried out in carnivores. The goal of the current study was to characterize the fecal microbiota of farmed mink, Neovison vison. Fecal samples (n=366) were collected from adult females and weaned kits during two consecutive summers in 2014 and 2015 and adult females just before winter breeding in 2016. The V4 regions of the 16S rRNA genes were amplified, sequenced, and classified from extracted fecal bacterial DNA. The most predominant phyla were Firmicutes and Proteobacteria, with all other phyla together comprising <5% of the sequences identified. The relative abundance of Proteobacteria was found to be much higher than previous reports in mammals. Additionally, ranges in the relative abundances of both the predominant and many non-predominant taxa were found to be very large, suggesting that mink are tolerant to a broader community of organisms than has been seen in other mammals.
    [Show full text]