Renal-Tubule Epithelial Cell Nomenclature for Single-Cell RNA-Sequencing Studies

Total Page:16

File Type:pdf, Size:1020Kb

Renal-Tubule Epithelial Cell Nomenclature for Single-Cell RNA-Sequencing Studies REVIEW www.jasn.org Renal-Tubule Epithelial Cell Nomenclature for Single-Cell RNA-Sequencing Studies Lihe Chen,1 Jevin Z. Clark,1 Jonathan W. Nelson,2 Brigitte Kaissling,3 David H. Ellison ,2 and Mark A. Knepper1 1Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; 2Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon; and 3Institute of Anatomy, University of Zurich, Zurich, Switzerland The assignment of cell type names to also include information on the per- the International Union of Physiologic individual cell clusters in single-cell centage of each epithelial cell type in Sciences and published in in Kidney RNA-sequencing (RNA-seq; including mouse kidney and on widely accepted International in 1988.3 The 1988 nomen- single-nucleus RNA-seq) studies is a mRNA/protein markers that are consid- clature was focused on what to call each critical bioinformatic step because re- ered prerequisites for identification of renal tubule segment, and not neces- searchers will need to be able to reliably individual cell types. sarily what to call individual cell types. map the pertinent transcriptomes to The mammalian renal tubule is made Accordingly, we refocused the recom- other types of information in the litera- up of at least 14 segments, containing at mended terminology to the individual ture. Ambiguous or redundant cell-type least 16 distinct epithelial cell types.4–6 cell types present in the various tubule names would impede such mapping Each cell type has its own characteristic segments. tasks. The solution to this problem is to set of cellular functions (mostly related Before presenting the list of recom- create “controlled vocabularies”1,2 that to transport and metabolism), which mended cell-type terminology, we sum- can be preferentially used in reports of have been elucidated largely over the marize, in a greatly simplified manner, single-cell RNA-seq data and other types past 50 years since the development of the current procedures for mapping of -omic data at a single-cell level. In single-tubule microdissection approaches gene expression lists from single-cell this review, we provide such a controlled by Burg et al.7 and the expansion of the RNA-seq to the various known cell types. vocabulary for the epithelial cells that micropuncture technique to mamma- A single-cell RNA-seq dataset contains make up the mammalian renal tubule. lian physiology.8,9 Furthermore, each (for each cell) a list of expressed genes The nomenclature list was not produced cell type has its own unique transcrip- together with some measure of their de novo in this review, but instead repre- tome as elucidated by recent RNA-seq mRNA expression levels. The initial sents an adaptation of a prior, widely ac- studies carried out at the level of single task, carried out independently of cell cepted nomenclature list for renal tubule microdissected tubules6 and single type assignment, is to cluster the cells segments published in 1988 in Kidney cells.10–26 The new transcriptomic data into groups that are similar on the basis International.3 This was done because promises to expand and sharpen our un- of the lists of their expressed mRNAs historical consistency is important to as- derstanding of renal tubule function, as along with their expression levels. These “ ” sure that names assigned to clusters in the data are mapped to cellular processes clusters are then mapped to cell-type single-cell RNA-seq studies mesh well responsible for the macroscopic function names that are assigned on the basis of with the “pregenomic” 20th century lit- of each renal tubule segment. erature, which provides robust and well To allow this mapping to be done ac- validated information on kidney cell curately, it is imperative that the cell-type Published online ahead of print. Publication date structure and function. The 1988 article terminology used for single-tubule and available at www.jasn.org. offered several alternative names for single-cell gene expression studies be Correspondence: Dr. Mark A. Knepper, Epithelial some of the segments and cell types. consistent with terminology used in the Systems Biology Laboratory, Systems Biology Our strategy here is to propose nomen- functional and biochemical studies done Center, National Heart, Lung, and Blood Institute, fl National Institutes of Health, MSC-1603, 10 Center claturethatre ects the most common in the past. Here, we summarize recom- Drive, Bethesda, MD 20892-1603. Email: knep@ usage from 1988 to the present in each mended terminology for renal tubule helix.nih.gov case. In this report, we not only describe epithelial cells derived from prior recom- Copyright © 2019 by the American Society of preferred names for each cell type, but mendations by the Renal Commission of Nephrology JASN 30: ccc–ccc,2019 ISSN : 1046-6673/3008-ccc 1 REVIEW www.jasn.org representation of cell-type selective Ontology (RECON) webpage (https:// the latter two junctions are easily recog- marker genes. The problem we are ad- hpcwebapps.cit.nih.gov/ESBL/Database/ nizable macroscopically, but the corti- dressing in this review is that there is RECOn/). Figure 1 shows both a short-loop comedullary junction is obscure, at least presently no generally accepted “con- and a long-loop nephron superimposed on in rodents, without benefitofastereo- trolled vocabulary” for renal tubule epi- regional boundaries of the kidney. The struc- microscope. Here, we present the rationale thelial cell types, i.e., there is no standard tures that define the regional boundaries are for the terms presented, some alternative list of acceptable terms. Consequently, the arcuate arteries (corticomedullary junc- terminology, and some alternative terms to terminology has been inconsistent among tion), the transition from proximal straight be avoided. individual single-cell RNA-seq articles,10–26 tubules (PSTs) to descending thin limbs and the correct mappings to functional and (DTLs) of the loops of Henle (inner/outer biochemical studies done in the pregenomic stripe of outer medulla junction) and the PROXIMAL TUBULE era are uncertain. transition from the ascending thin limbs NOMENCLATURE Recommended terms for renal tubule of Henle of the long-loop nephrons to epithelial cell types in kidneys of mature the medullary thick ascending limbs There are two sets of terms commonly mice, rats, or humans are given in Figure 1 (MTALs) of the loops of Henle (inner- used to describe proximal tubule cells. and are listed on the Renal Epithelial Cell outer medullary junction).4 Generally, One divides the proximal tubule into three Figure 1. Renal tubule cell nomenclature. The scheme shows the connection of both a short-looped nephron and a long-looped nephron to the collecting duct system. The numbers point to different renal tubule segments and the cell types that they contain are listed on the rightof thescheme.Dashedlines indicateregional boundaries.The corticomedullary junction isdefinedbythearcuate arteries(not showninthisdiagram).Thedivisionbetweentheouter stripe and inner stripe of the outer medulla is defined by the transitions from PSTs to DTLs of the loops of Henle. The junction between the outer medulla and inner medulla is defined by the transitions from the ascending thin limbs (ATL) of Henle of the long-loop nephrons to the MTALs of the loops of Henle. The division between the cortical labyrinth and cortical medullary rays is indicated but not labeled. Drawing is on the basis of the original Renal Commission of the In- ternational Union of Physiologic Sciences publication.3 2 JASN JASN 30: ccc–ccc,2019 www.jasn.org REVIEW segments called S1, S2, and S3 on the basis topologically distinct from the other three considered to include the aquaporin-2 of differences in morphology, topology, thin limb segments.29 All of the thin limb (AQP2) expressing cells of the collecting and location in the kidney.27,28 Function- segments are difficult to microdissect from duct. Hence, the term distal tubule is am- ally, the S2 is recognized as the segment the kidney and difficult to study by mi- biguous and should be avoided in RNA-seq responsible for para-aminohippurate se- cropuncture, limiting the amount of studies. Another similar term is “distal cretion and, by implication, responsible functional information we have about nephron,” commonly used to designate for general organic anion and cation se- them. the portion of the renal tubule from the cretion.28 A limitation of this classifica- In contrast, the thick ascending limb macula densa through the end of the inner tion is the lack of a discrete transition (TAL) is relatively easy to study in iso- medullary collecting duct (IMCD), thereby from one to the other morphologically. lation and has well defined functional comprised of multiple cell types. This lack of clear transitions suggests roles.30–32 The TAL is normally divided Rabbits exhibit a distinct transition that there are probably intermediate cell into the MTAL and the CTAL on the point at the end of the DCT that allow types, which would preclude clear-cut basis of a difference in morphology, lo- unambiguous dissection of a uniform clustering into three distinct groups of cation, and function.30 The transition DCT epithelium (Figure 2).39,40 Rodents, cells. The S3 segment is found chieflyin between these cell types occurs in the however, exhibit a transition region41 that the outer stripe of the outer medulla, al- outer stripe of the outer medulla. Near includes cells expressing markers nor- lowing it to be separated from S1 and the end of the TAL, the CTAL comes into mally attributed to downstream seg- S2 simply by selecting the outer stripe contact with its own glomerulus. At this ments, such as the three subunits of as starting material for single-cell isola- point, special epithelial cells called mac- the epithelial sodium channel (ENaC) tion.
Recommended publications
  • Nitric Oxide Synthase in Macula Densa Regulates Glomerular Capillary
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 11993-11997, December 1992 Pharmacology Nitric oxide synthase in macula densa regulates glomerular capillary pressure (kidney/tubuloglomerular feedback response/glomerular ifitration rate/afferent arteriole) CHRISTOPHER S. WILCOX*t, WILLIAM J. WELCH*, FERID MURADf, STEVEN S. GROSS§, GRAHAM TAYLOR¶, ROBERTO LEVI§, AND HARALD H. H. W. SCHMIDTII** *Division of Nephrology, Hypertension and Transplantation Departments of Medicine, Pharmacology and Therapeutics, University of Florida College of Medicine and Department of Veterans Affairs Medical Center, Gainesville, FL 32608; I'Department of Pharmacology, Northwestern University School of Medicine, Chicago, IL; tAbbott Laboratories, Abbott Park, IL 60064-3500; iDepartment of Pharmacology, Cornell University Medical College, New York, NY 10021; and IDepartment of Clinical Pharmacology, The Royal Postgraduate Medical School, Hammersmith Hospital, London, England W12 OHS Communicated by Robert F. Furchgott, September 3, 1992 ABSTRACT Tubular-fluid reabsorption by specialized Previous studies have established that L-arginine-derived cells of the nephron at the junction of the ascending limb of the nitric oxide (NO) is produced by several cells within the loop of Henle and the distal convoluted tubule, termed the kidney, including isolated glomerular mesangial (6) and en- macula densa, releases compounds causing vasoconstriction of dothelial cells (7), and a renal epithelial cell line (8), but its the adjacent afferent arteriole. Activation of this tubuloglo- integrative role in the control ofrenal function is not yet clear merular feedback response reduces glomerular capillary pres- (9). In the vessel wall, the endothelium can mediate vasodi- sure of the nephron and, hence, the glomerular filtration rate. lator responses to agents such as acetylcholine (10) and can The tubuloglomerular feedback response functions in a nega- blunt the actions of certain vasoconstrictors (11).
    [Show full text]
  • Basic Histology (23 Questions): Oral Histology (16 Questions
    Board Question Breakdown (Anatomic Sciences section) The Anatomic Sciences portion of part I of the Dental Board exams consists of 100 test items. They are broken up into the following distribution: Gross Anatomy (50 questions): Head - 28 questions broken down in this fashion: - Oral cavity - 6 questions - Extraoral structures - 12 questions - Osteology - 6 questions - TMJ and muscles of mastication - 4 questions Neck - 5 questions Upper Limb - 3 questions Thoracic cavity - 5 questions Abdominopelvic cavity - 2 questions Neuroanatomy (CNS, ANS +) - 7 questions Basic Histology (23 questions): Ultrastructure (cell organelles) - 4 questions Basic tissues - 4 questions Bone, cartilage & joints - 3 questions Lymphatic & circulatory systems - 3 questions Endocrine system - 2 questions Respiratory system - 1 question Gastrointestinal system - 3 questions Genitouirinary systems - (reproductive & urinary) 2 questions Integument - 1 question Oral Histology (16 questions): Tooth & supporting structures - 9 questions Soft oral tissues (including dentin) - 5 questions Temporomandibular joint - 2 questions Developmental Biology (11 questions): Osteogenesis (bone formation) - 2 questions Tooth development, eruption & movement - 4 questions General embryology - 2 questions 2 National Board Part 1: Review questions for histology/oral histology (Answers follow at the end) 1. Normally most of the circulating white blood cells are a. basophilic leukocytes b. monocytes c. lymphocytes d. eosinophilic leukocytes e. neutrophilic leukocytes 2. Blood platelets are products of a. osteoclasts b. basophils c. red blood cells d. plasma cells e. megakaryocytes 3. Bacteria are frequently ingested by a. neutrophilic leukocytes b. basophilic leukocytes c. mast cells d. small lymphocytes e. fibrocytes 4. It is believed that worn out red cells are normally destroyed in the spleen by a. neutrophils b.
    [Show full text]
  • Renal Corpuscle Renal System > Histology > Histology
    Renal Corpuscle Renal System > Histology > Histology Key Points: • The renal corpuscles lie within the renal cortex; • They comprise the glomerular, aka, Bowman's capsule and capillaries The capsule is a double-layer sac of epithelium: — The outer parietal layer folds upon itself to form the visceral layer. — The inner visceral layer envelops the glomerular capillaries. • As blood passes through the glomerular capillaries, aka, glomerulus, specific components, including water and wastes, are filtered to create ultrafiltrate. • The filtration barrier, which determines ultrafiltrate composition, comprises glomerular capillary endothelia, a basement membrane, and the visceral layer of the glomerular capsule. • Nephron tubules modify the ultrafiltrate to form urine. Overview Diagram: • Tuft of glomerular capillaries; blood enters the capillaries via the afferent arteriole, and exits via efferent arteriole. • The visceral layer of the glomerular capsule envelops the capillaries, then folds outwards to become the parietal layer. • The capsular space lies between the parietal and visceral layers; this space fills with ultrafiltrate. • Vascular pole = where the arterioles pass through the capsule • Urinary pole = where the nephron tubule begins • Distal tubule passes by the afferent arteriole. Details of Capillary and Visceral Layer: • Fenestrated glomerular capillary; fenestrations are small openings, aka, pores, in the endothelium that confer permeability. • Thick basement membrane overlies capillaries • Visceral layer comprises podocytes: — Cell bodies — Cytoplasmic extensions, called primary processes, give rise to secondary foot processes, aka, pedicles. • The pedicles interdigitate to form filtration slits; molecules pass through these slits to form the ultrafiltrate in the 1 / 3 capsular space. • Subpodocyte space; healthy podocytes do not adhere to the basement membrane. Clinical Correlation: • Podocyte injury causes dramatic changes in shape, and, therefore, their ability to filter substances from the blood.
    [Show full text]
  • Juxtaglomerular Apparatus Debajyoti Bhattacharya the Juxtaglomerular
    Juxtaglomerular Apparatus Debajyoti Bhattacharya FNTA SEM II The juxtaglomerular apparatus (also known as the juxtaglomerular complex) is a structure in the kidney that regulates the function of each nephron, the functional units of the kidney. The juxtaglomerular apparatus is named because it is next to (juxta-[1]) the glomerulus. The juxtaglomerular apparatus is a specialized structure formed by the distal convoluted tubule and the glomerular afferent arteriole. It is located near the vascular pole of the glomerulus and its main function is to regulate blood pressure and the filtration rate of the glomerulus. The Macula densa is a collection of specialized epithelial cells in the distal convoluted tubule that detect sodium concentration of the fluid in the tubule. In response to elevated sodium, the macula densa cells trigger contraction of the afferent arteriole, reducing flow of blood to the glomerulus and the glomerular filtration rate. The juxtaglomerular cells, derived from smooth muscle cells, of the afferent arteriole secrete Renin when blood pressure in the arteriole falls. Renin increases blood pressure via the Renin-angiotensin-aldosterone system. Lacis cells, also called extraglomerular mesangial cells, are flat and elongated cells located near the macula densa. Their function remains unclear. The juxtaglomerular apparatus consists of three types of cells: 1. The macula densa, a part of the distal convoluted tubule of the same nephron 2. Juxtaglomerular cells, (also known as granular cells) which secrete Renin 3. Extraglomerular mesangial cells Structure: The juxtaglomerular apparatus comprises afferent and efferent arterioles, complemented by granular, Renin-secreting cells, the macula densa, a specialized group of distal tubular cells and Lacis cells (Goormaghtigh cells or Polkissen cells, polar cushion, extraglomerular mesangial cells).
    [Show full text]
  • An in Vitro Approach to the Study of Macula Densa-Mediated Glomerular Hemodynamics
    Kidney International, Vol. 38 (1990), pp. 1206—1210 TECHNICAL NOTE An in vitro approach to the study of macula densa-mediated glomerular hemodynamics SADAYOSHI ITO and OSCAR A. CARRETERO Hypertension Research Division, Heart and Vascular Institute, Hen,y Ford Hospital, Detroit, Michigan, USA Tubuloglomerular feedback (TGF), which operates between arm (500 U). The aorta was catheterized below the renal the tubule and the parent glomerulus, is important to renalarteries and clamped with a hemostat above the kidneys. The autoregulation and homeostasis of body fluid and electrolyteskidneys were perfused with cold medium 199 (Gibco Laborato- [1, 2]. Since the juxtaglomerular apparatus (JGA) displays anries, Grand Island, New York, USA) containing 5% bovine intimate anatomical relationship between the specialized tubu-serum albumin (BSA), then removed and sliced along the lar epithelial cells (macula densa) and the vasculature (afferentcorticomedullary axis. Slices were placed in ice-cold medium and efferent arterioles), it has long been suggested as the199 containing 5% BSA (medium 199-5% BSA) and microdis- anatomical site of TGF [3]. However, attempts to obtain directsected under a stereomicroscope (SZH; Olympus, Overland evidence to support this have been hindered by the anatomicalPark, Kansas, USA) at magnifications up to bOx, using thin complexity of the JGA. Since the JGA is located beneath thesteel needles and sharpened forceps (No. 5, Dumont; Fine tubular layer at some distance from the surface of the kidney,Science Tools, Inc., Belmont, California, USA). the macula densa is not accessible to direct micropuncture in An interlobular artery was removed from the remainder of vivo, nor is direct observation of the vascular pole possible.
    [Show full text]
  • Possible Role of Adenosine in the Macula Densa Mechanism of Renin Release in Rabbits
    Possible role of adenosine in the macula densa mechanism of renin release in rabbits. S Itoh, … , O A Carretero, R D Murray J Clin Invest. 1985;76(4):1412-1417. https://doi.org/10.1172/JCI112118. Research Article This study was designed to examine: (a) the effects of adenosine and its analogues on renin release in the absence of tubules, glomeruli, and macula densa, and (b) whether adenosine may be involved in a macula densa-mediated renin release mechanism. Rabbit afferent arterioles (Af) alone and afferent arterioles with macula densa attached (Af + MD) were microdissected and incubated for two consecutive 30-min periods. Hourly renin release rate from a single arteriole (or an arteriole with macula densa) was calculated and expressed as ng AI X h-1 X Af-1 (or Af + MD-1)/h (where AI is angiotensin I). Basal renin release rate from Af was 0.69 +/- 0.09 ng AI X h-1 X Af-1/h (means +/- SEM, n = 16) and remained stable for 60 min. Basal renin release rate from Af + MD was 0.20 +/- 0.04 ng AI X h-1 X Af + MD-1/h (n = 6), which was significantly lower (P less than 0.0025) than that from Af. When adenosine (0.1 microM) was added to Af, renin release decreased from 0.72 +/- 0.16 to 0.24 +/- 0.04 ng AI X h-1 X Af-1/h (P less than 0.025; n = 9). However, when adenosine was added to Af + MD, no significant change in renin release was observed.
    [Show full text]
  • Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration During Hyperglycemia
    BASIC RESEARCH www.jasn.org Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia Jie Zhang,1 Jin Wei,1 Shan Jiang,1 Lan Xu,2 Lei Wang,1 Feng Cheng,3 Jacentha Buggs,4 Hermann Koepsell,5 Volker Vallon,6 and Ruisheng Liu1 1Department of Molecular Pharmacology and Physiology, College of Medicine, 2Department of Biostatistics, College of Public Health, and 3Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida; 4Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, Florida; 5Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany; and 6Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California ABSTRACT Background Glomerular hyperfiltration is common in early diabetes and is considered a risk factor for later diabetic nephropathy. We propose that sodium-glucose cotransporter 1 (SGLT1) senses increases in luminal glucose at the macula densa, enhancing generation of neuronal nitric oxide synthase 1 (NOS1)– dependent nitric oxide (NO) in the macula densa and blunting the tubuloglomerular feedback (TGF) response, thereby promoting the rise in GFR. Methods We used microperfusion, micropuncture, and renal clearance of FITC–inulin to examine the effects of tubular glucose on NO generation at the macula densa, TGF, and GFR in wild-type and macula densa–specificNOS1knockoutmice. Results Acute intravenous injection of glucose induced hyperglycemia and glucosuria with increased GFR in mice. We found that tubular glucose blunts the TGF response in vivo and in vitro and stimulates NO generation at the macula densa. We also showed that SGLT1 is expressed at the macula densa; in the presence of tubular glucose, SGLT1 inhibits TGF and NO generation, but this action is blocked when the SGLT1 inhibitor KGA-2727 is present.
    [Show full text]
  • Nitric Oxide Synthesis in the Adult and Developing Kidney
    Electrolyte & Blood Pressure 4:1-7, 2006 1 g1) Nitric Oxide Synthesis in the Adult and Developing Kidney Ki-Hwan Han1, Ju-Young Jung2, Ku-Yong Chung3, Hyang Kim4, and Jin Kim5 1Departments of Anatomy and 3Surgery, College of Medicine, Ewha Womans University, Seoul, Korea 2Department of Anatomy, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea 4Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea 5Department of Anatomy and MRC for Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea Nitric oxide (NO) is synthesized within the adult and developing kidney and plays a critical role in the regulation of renal hemodynamics and tubule function. In the adult kidney, the regulation of NO synthesis is very cell type specific and subject to distinct control mechanisms of NO synthase (NOS) isoforms. Endothelial NOS (eNOS) is expressed in the endothelial cells of glomeruli, peritubular capillaries, and vascular bundles. Neuronal NOS (nNOS) is expressed in the tubular epithelial cells of the macula densa and inner medullary collecting duct. Furthermore, in the immature kidney, the expression of eNOS and nNOS shows unique patterns distinct from that is observed in the adult. This review will summarize the localization and presumable function of NOS isoforms in the adult and developing kidney. Key Words:Kidney, Development, Renal hemodynamics, Nitric oxide endothelial cells of almost all blood vessels except the Expression of NOS isoforms in the adult kidney venous system6, 7). The eNOS immunoreactivity is observed in the endothelial cells of glomeruli and peri- Nitric oxide (NO) is a lipophilic gas with unique tubular capillaries in the cortex, and in the endothelial physiological properties and plays an important role in cells of vascular bundles in the medulla.
    [Show full text]
  • Prostaglandins in Macula Densa Function
    Kidney International, Vol. 54, Suppl. 67 (1998), pp. S-49–S-52 Prostaglandins in macula densa function RAYMOND C. HARRIS,JUN-LING WANG,HUA-FANG CHENG,MING-ZHI ZHANG, and JAMES A. MCKANNA George M. O’Brien Kidney and Urologic Diseases Center and Departments of Medicine and Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA 2 Prostaglandins in macula densa function. Cyclooxygenase that decreased ambient [Cl ] attenuates the responsiveness (COX)-2 mRNA and immunoreactive protein localize to the of mesangial cells to vasoactive agonists such as angiotensin macula densa and adjacent cortical thick ascending limb in renal cortex, and chronic NaCl restriction increases expression of this II and vasopressin [9] and increases PG [10] and nitric oxide production [11]. It is thus possible that the extraglo- enzyme. These findings suggest an integral role for eicosanoids 2 generated by macula densa-associated COX-2 in mediating renin merular mesangium may respond to decreased Cl reab- release. As selective inhibitors of COX-2 become available, it will sorption by increasing PG production to stimulate renin be important to assess their effects on the renin-angiotensin release. Alternatively, recent studies have suggested that system and glomerular hemodynamics. the thick ascending limb (TALH) and MD may be a source of PGs [12]. Prostaglandin H2 (PGH2) is a common precursor for all Prostaglandins (PGs) are important physiological modu- prostanoids, and its production from arachidonic acid is lators of vascular tone and salt and water homeostasis in regulated by the enzyme PG G2/H2 synthase (COX) [13]. the mammalian kidney. In addition to their well-docu- There are two separate gene products with COX activity: mented modulation of glomerular hemodynamics and dis- COX-1 and COX-2.
    [Show full text]
  • Response of the Distal Tubule and Cortical Collecting Duct to Vasopressin in the Rat
    Response of the Distal Tubule and Cortical Collecting Duct to Vasopressin in the Rat Philip B. Woodhall, C. Craig Tisher J Clin Invest. 1973;52(12):3095-3108. https://doi.org/10.1172/JCI107509. Research Article Renal micropuncture observations in the rat suggest that the entire “distal tubule” (defined by the micropuncturist as that portion of the renal tubule extending between the macula densa and its first junction with another (renal tubule) may be responsive to vasopressin. However, this portion of the renal tubule contains two segments that are morphologically dissimilar. The “early” distal tubule is lined by epithelium characteristic of the distal convoluted tubule, while the “late” distal tubule is lined by epithelium characteristic of the cortical collecting duct. Thus, the present study was initiated to identify the most proximal site of action of vasopressin in the distal renal tubule. A water diuresis was established in rats with hereditary hypothalamic diabetes insipidus. In one-half of the animals the diuresis was interupted by an i.v. infusion of exogenous vasopressin. Morphological preservation of the kidneys was initiated after induction of vasopressin-induced antidiuresis or during maximum water diuresis. Cell swelling and dilatation of intercellular spaces, morphological findings indicative of vasopressin responsiveness, were observed in the cortical collecting duct including the late segment of the distal tubule, a segment that has also been described by morphologists as the initial collecting tubule. Morphological evidence of vasopressin-responsiveness was not observed in the early distal tubule (distal convoluted tubule). Additional morphological studies in Wistar, Long-Evans, and Sprague-Dawley rats demonstrated a marked difference […] Find the latest version: https://jci.me/107509/pdf Response of the Distal Tubule and Cortical Collecting Duct to Vasopressin in the Rat PHILIP B.
    [Show full text]
  • A High-Powered View of the Filtration Barrier
    SPECIAL ARTICLE www.jasn.org A High-Powered View of the Filtration Barrier Ja´nos Peti-Peterdi and Arnold Sipos Departments of Physiology and Biophysics and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California ABSTRACT Multiphoton excitation fluorescence microscopy is a powerful noninvasive imaging (PAN) model of focal segmental glo- technique for the deep optical sectioning of living tissues. Its application in several merulosclerosis (FSGS). intact tissues is a significant advance in our understanding of organ function, including renal pathophysiological mechanisms. The glomerulus, the filtering unit in the kidney, is one good example of a relatively inaccessible and complex structure, MULTIPHOTON IMAGING SHOWS with cell types that are otherwise difficult to study at high resolution in their native NEW DETAILS OF environment. In this article, we address the application, advantages, and limita- JUXTAGLOMERULAR FUNCTION tions of this imaging technology for the study of the glomerular filtration barrier and the controversy it recently generated regarding the glomerular filtration of One of the main research interests of our macromolecules. More advanced and accurate multiphoton determinations of the laboratory has been the function of the glomerular sieving coefficient that are presented here dismiss previous claims on juxtaglomerular apparatus (JGA), the the filtration of nephrotic levels of albumin. The sieving coefficient of 70-kD mechanisms of basic physiologic pro- dextran was found to be around 0.001. Using a model of focal segmental glomer- cesses by which cells of the macula densa ulosclerosis, increased filtration barrier permeability is restricted only to areas of in the distal nephron control GFR, renal podocyte damage, consistent with the generally accepted role of podocytes and blood flow, and the renin–angiotensin the glomerular origin of albuminuria.
    [Show full text]
  • Histology of Urinary System
    HISTOLOGY OF URINARY SYSTEM Dr. Rajesh Ranjan Assistant Professor Deptt. of Veterinary Anatomy C.V.Sc. & A.H., Rewa The main organs of this system are: Kidneys Ureters Urinary bladder Urethra KIDNEY Comprises of Capsule Parenchyma Cortex Medulla Cortical labyrinth Medullary rays Outer Medulla Inner Medulla Outer stripes Inner stripes Capsule is made up of collagen fibers, some smooth muscle fibers and blood capillaries. The Parenchyma consists of millions of nephrons, branches of renal arteries, veins, lymphatics and nerves. The Nephrons are the structural and functional unit of kidney. Nephrons can be classified On the basis of location of their glomeruli: Superficial (near the capsule) Mid cortical (near the medulla/Juxtamedullary) On the basis of the length of the loop of henle: Short looped- generally have superficial or mid cortical glomeruli and the tubules extend only into the outer medulla before it reflects back into the cortex. Long looped- have juxtamedullary glomeruli and tubules extend into the inner medulla before reflecting back into the cortex. Nephrons comprises of: 1. Renal corpuscles Glomerulus Glomerular capillaries Mesangiam Bowman’s capsule Parietal layer Visceral layer 2. Proximal tubules Proximal convoluted tubule (PCT) Proximal straight tubule (PST) 3. Henle’s loop Thin descending portion Thin ascending portion Thick ascending portion 4. Distal convoluted tubule 5. Connecting segment 6. Collecting duct Arcade- initial collecting tubule Straight portion- Cortical collecting duct Outer medullary
    [Show full text]