Eua Zebrina Species Report May 2020

Total Page:16

File Type:pdf, Size:1020Kb

Eua Zebrina Species Report May 2020 Eua zebrina Species Report May 2020 U.S. Fish and Wildlife Service Pacific Islands Fish and Wildlife Office Honolulu, HI Cover Photo Credits Eua zebrina photographs courtesy of D. Clarke and R.J. Rundell. Suggested Citation USFWS. 2020. Species Report for Eua zebrina. Version 1.1. May 2020 (Version 1.1). U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, Honolulu, HI. 33 pp. Primary Authors Version 1.1 of this document was prepared by Adam E. Vorsino, Fred Amidon and James Kwon of the Pacific Islands Fish and Wildlife Office, Honolulu, Hawaii. Preparation and review was conducted by Gregory Koob, Megan Laut, and Stephen E. Miller of the Pacific Islands Fish and Wildlife Office. ii Executive Summary This Species Report summarizes the status of Eua zebrina, a tropical tree snail in the family Partulidae, based on the most recent information. For E. zebrina, this is information from Cowie and Cook, 1999. To assess the viability of E. zebrina, we used three conservation biology principles: resiliency, redundancy, and representation, or the “3Rs”. The viability of E. zebrina is evaluated with reference to the resiliency of its populations, its redundant occurrence across its native range, and its representation in its known habitat types. Eua zebrina is known only from the islands of Tutuila and Ofu in American Samoa. Many of the 120+ partulid species are restricted to single islands or isolated groups of islands. The Samoan partulid tree snails in the genera Eua and Samoana are representative of this endemism and isolation. Historically, Eua zebrina was abundant on the island of Tutuila, and later reduced to its current rare level by the introduction of non-native snail predators. Systematic surveys conducted in and prior to 1998 suggest an overall decline in distribution and abundance of Eua zebrina, with central areas of the National Park of American Samoa representing a large proportion of the known extant populations of the species. Though we are unaware of any systematic surveys conducted for E. zebrina since 1998, E. zebrina is still periodically observed by field biologists. Threats to Eua zebrina include predation by non-native rats, non-native predatory snails and flatworms, as well as habitat destruction due to agriculture, urban expansion, or incursion by non-native invasive plants. Stochastic events such as cyclones (hurricanes), are an important contributing factor in the expansion of non-native invasive plants. The combined effects of these threats is expected to influence the viability of E. zebrina more than any one of the threats alone. Conservation efforts that may benefit E. zebrina are focused solely on the control and removal of invasive plants from native ecosystems. Efforts to control rats on outlying islets do not affect known populations of E. zebrina. Due to these threats and limited conservation actions, current viability of the species is expected to be low, due to low resilience of its populations, low representation in known habitat types, and low redundancy across its geographic range. iii Table of Contents Cover Photo Credits ........................................................................................................................ ii Suggested Citation .......................................................................................................................... ii Primary Authors .............................................................................................................................. ii Executive Summary ....................................................................................................................... iii List of Tables .................................................................................................................................. v List of Figures ................................................................................................................................. v Introduction ..................................................................................................................................... 1 Regulatory History .......................................................................................................................... 1 Methodology ................................................................................................................................... 1 Part 1. Life History and Historical Species Status .......................................................................... 4 Geography ................................................................................................................................... 4 Physical Environment .............................................................................................................. 5 Land-Use ................................................................................................................................. 5 Biological Environment ......................................................................................................... 10 Species Description ................................................................................................................... 11 Breeding Biology and Lifespan ............................................................................................. 13 Habitat ................................................................................................................................... 13 Historical Range ........................................................................................................................ 14 Part 2. Current Conditions and Species Status.............................................................................. 14 Current Range and Distribution ................................................................................................ 14 Factors Affecting Viability........................................................................................................ 16 Habitat Loss and Degradation ............................................................................................... 16 Other Factors Affecting Viability .................................................................................... 21 Conservation Efforts that Affect Viability ............................................................................ 23 Resiliency, Redundancy and Representation of Current Populations and the Species. ............ 24 Tutuila .................................................................................................................................... 24 Ofu ......................................................................................................................................... 24 References ..................................................................................................................................... 26 iv List of Tables TABLE 1. CENSUS ESTIMATES OF THE AMERICAN SAMOA POPULATION ON THE ISLANDS OF TUTUILA, TA’Ū, OFU, OLOSEGA, AND SWAINS. ....................................................................................................................................... 6 TABLE 2. CENSUS ESTIMATES OF THE SAMOA POPULATION BY ISLAND AND FOR THE ENTIRE COUNTRY. .................. 6 TABLE 3. ESTIMATED ACREAGES OF MAJOR LAND COVER TYPES FOR THE SAMOAN ARCHIPELAGO. ACREAGES ARE IN ACRES WITH HECTARES IN PARENTHESIS. ........................................................................................................ 9 TABLE 4. ESTIMATED ACREAGES OF VEGETATION TYPES FOR THE MAIN ISLANDS OF AMERICAN SAMOA. ACREAGES ARE IN ACRES WITH HECTARES IN PARENTHESIS. .............................................................................................. 12 TABLE 5. CURRENT SPECIES STATUS OF EUA ZEBRINA IN RELATION TO THE 3 R’S. .................................................. 25 List of Figures FIGURE 1. THE THREE CONSERVATION BIOLOGY PRINCIPLES OF RESILIENCY, REDUNDANCY, AND REPRESENTATION, OR THE “3RS”. ............................................................................................................................................................ 2 FIGURE 2. THE ISLANDS OF THE SAMOA ARCHIPELAGO. ................................................................................................. 5 FIGURE 3. MONTHLY MEAN PRECIPITATION FOR SELECTED AREAS OF THE SAMOAN ARCHIPELAGO. PACIFIC CLIMATE CHANGE SCIENCE PROGRAM (PCCSP; 2019). ....................................................................................................... 7 FIGURE 4. MONTHLY MEAN TEMPERATURES FOR SELECTED AREAS OF THE SAMOAN ARCHIPELAGO. PACIFIC CLIMATE CHANGE SCIENCE PROGRAM (PCCSP; 2019). ....................................................................................................... 8 FIGURE 5. CYCLONE (HURRICANE) TRACKS FOR THE CENTRAL SOUTH PACIFIC FROM 1898 TO 2019. KNAPP ET AL. (2010) AND NOAA IBTRACS (2019). .................................................................................................................. 9 FIGURE 6. LOCATIONS OF ROADS IN THE SAMOAN ARCHIPELAGO. ................................................................................. 9 FIGURE 7. MAP OF VEGETATION ON AMERICAN SAMOA. DATA FROM MEYER ET AL. (2017). ...................................... 11 FIGURE 8. EUA ZEBRINA COLOR AND SHELL MORPHOLOGY. PHOTOS COURTESY OF D. CLARKE AND R. J. RUNDELL. .. 13 FIGURE 9. MAP OF EUA ZEBRINA OBSERVATIONS AND VEGETATION ON AMERICAN SAMOA. DATA BY MEYER ET AL. (2017). ................................................................................................................................................................
Recommended publications
  • EAZA Best Practice Guidelines for Polynesian Tree Snails (Partula Spp)
    EAZA Best Practice Guidelines for Polynesian tree snails (Partula spp) Edition 1.0 Publication date June 2019 Partula Snail EEP Species Committee Editor Dave Clarke, ZSL 2019_Partula sp_EAZA Best Practice Guidelines EAZA Best Practice Guidelines for Polynesian tree snails (Partula spp) Terrestrial Invertebrate Taxon Advisory Group TITAG Chair: Mark Bushell, Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA [email protected] TITAG Vice-Chairs: Tamás Papp, Chester Zoo, Moston Rd, Upton, Chester CH2 1EU. [email protected] & Vítek Lukáš, Zoo Praha, U Trojského zámku 3/120, 171 00 Praha 7, Czechia. [email protected] EEP Co-ordinator: Paul Pearce-Kelly, ZSL [email protected] EEP Studbook keeper: Sam Aberdeen, ZSL [email protected] Edition 1.0 Publication date June 2019 (based on global Management Guidelines document Nov 2007 eds Pearce-Kelly, Blake, Goellner & Snider) Editor Dave Clarke, ZSL [email protected] Citation - Clarke, D., EAZA Best Practice Guidelines for Partula snails. EAZA 2019 We acknowledge the invaluable input of all Partula snail EEP Species Committee members, SSP colleagues and global participating Partula collections. EAZA Best Practice Guidelines disclaimer Copyright (June 2019) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable.
    [Show full text]
  • PUBLICATIONS 11 May 2021
    ROBERT H. COWIE – PUBLICATIONS 11 May 2021 Google Scholar metrics Citations – 8939 (3794 since 2016), h-index – 47 (32 since 2016), i10-index – 109 (65 since 2016) Books (5) Joshi, R.C., Cowie, R.H. & Sebastian, L.S. (eds.) 2017. Biology and Management of Invasive Apple Snails. Philippine Rice Research Institute, Muñoz, Nueva Ecija. xvii + 405 p. Cowie, R.H., Rundell, R.J. & Yeung, N.W. 2017. Samoan Land Snails and Slugs – An Identification Guide. Department of Marine and Wildlife Resources, American Samoa Government. viii + 71 p. Cowie, R.[H.] 2014. Journey to a Waterfall. A Biologist in Africa. Lulu, Raleigh. x + 279 p. Staples, G.W. & Cowie, R.H. (eds.) 2001. Hawai‘i’s Invasive species. A guide to invasive plants and animals in the Hawaiian Islands. Mutual Publishing & Bishop Museum Press, Honolulu. xii + 116 p. Cowie, R.H., Evenhuis, N.L. & Christensen, C.C. 1995. Catalog of the native land and freshwater molluscs of the Hawaiian Islands. Backhuys Publishers, Leiden. vi + 248 p. Journal articles (136) 2021 Gerlach, J., Barker, G.M., Bick, C.S., Bouchet, P., Brodie, G., Christensen, C.C., Collins, T., Coote, T., Cowie, R.H., Fiedler, G.C., Griffiths, O.L., Florens, F.B.V, Hayes, K.A., Kim, J., Meyer, J.-Y., Meyer, W.M., III, Richling, I., Slapcinsky, J.D., Winsor, L. & Yeung, N.W. 2021. Negative impacts of the invasive predators Euglandina ‘rosea’ (Mollusca: Spiraxidae) and Platydemus manokwari (Platyhelminthes: Geoplanidae) when used as biological control agents against the pest snail Lisschatina fulica (Mollusca: Achatinidae). Biological Invasions 23(4): 997-1031. Rollins, R.L., Cowie, R.H., Echaluse, M.V.
    [Show full text]
  • Gastropoda Pulmonata: Buliminidae)
    BASTERIA, 60: 9-11, 1996 The westernmost Turanena species: T. katerinae spec. nov. (Gastropoda Pulmonata: Buliminidae) E. Gittenberger Nationaal Natuurhistorisch Museum, P.O. Box 9517, NL 2300 RA Leiden, The Netherlands is it Turanena katerinae from western Crete described as new to science. Actually is the westernmost Turanena species known. Key words: Gastropoda, Pulmonata, Buliminidae, Turanena, taxonomy, Greece. In and the recent years our systematic biogeographical knowledge concerning genus Turanena increased considerably (see: Bank & Menkhorst, 1992; Gittenberger & it is Turanena from Menkhorst, 1993). Therefore, relatively easy to recognize a species to the island of Crete as both new science and biogeographically interesting because of its occurrence far to the west in the South Aegean island arc. The collection of the Nationaal Natuurhistorisch Museum (Leiden) is referred to as NNM. Turanena katerinae spec. nov. (fig- 4) Material.— Greece,Crete, Khania: 0.1-0.2 km NE. ofthe mountain cabin "Katifigio Kalergi" (= 4 km E. of 1600 altitude 56806/ Omalos) [UTM GE6715], below limestone cliffs, among a bushy vegetation, at m (NNM holotype [leg. 5.v. 1993], 56808/1 paratype [leg. 29.iii. 1989], and 56807/7 paratypes peg. 5.v.1993]); 6 km S. of Omalos, Gingolos Mtn. [UTM GE6509] (Colin. W.J.M. Maassen/1 paratype). Shell to about mm and 4 mm broad; its Diagnosis.-- corneous, up 7 high aperture without a reflected and/or prominently thickened lip. Description.— Shell conical, with 4 1/2 to 4 3/4 globular whorls. Umbilicus narrow. Teleoconch whorls with narrowly spaced, irregular riblets. Body whorl not ascending in front. Aperture measuring slightly over 40% of the total shell height.
    [Show full text]
  • Evolutionary History of a Vanishing Radiation
    Lee et al. BMC Evolutionary Biology 2014, 14:202 http://www.biomedcentral.com/1471-2148/14/202 RESEARCH ARTICLE Open Access Evolutionary history of a vanishing radiation: isolation-dependent persistence and diversification in Pacific Island partulid tree snails Taehwan Lee1, Jingchun Li1, Celia KC Churchill2 and Diarmaid Ó Foighil1* Abstract Background: Partulid tree snails are endemic to Pacific high islands and have experienced extraordinary rates of extinction in recent decades. Although they collectively range across a 10,000 km swath of Oceania, half of the family’s total species diversity is endemic to a single Eastern Pacific hot spot archipelago (the Society Islands) and all three partulid genera display highly distinctive distributions. Our goal was to investigate broad scale (range wide) and fine scale (within‐Society Islands) molecular phylogenetic relationships of the two widespread genera, Partula and Samoana. What can such data tell us regarding the genesis of such divergent generic distribution patterns, and nominal species diversity levels across Oceania? Results: Museum, captive (zoo) and contemporary field specimens enabled us to genotype 54 of the ~120 recognized species, including many extinct or extirpated taxa, from 14 archipelagoes. The genera Partula and Samoana are products of very distinct diversification processes. Originating at the western edge of the familial range, the derived genus Samoana is a relatively recent arrival in the far eastern archipelagoes (Society, Austral, Marquesas) where it exhibits a stepping‐stone phylogenetic pattern and has proven adept at both intra‐and inter‐ archipelago colonization. The pronounced east–west geographic disjunction exhibited by the genus Partula stems from a much older long-distance dispersal event and its high taxonomic diversity in the Society Islands is a product of a long history of within‐archipelago diversification.
    [Show full text]
  • Invasive Alien Species in Southern Africa
    GISP Global Invasive Species Programme Ministry of Tourism, Environment United States Government and Natural Resources Republic of Zambia Invasive Alien Species in Southern Africa National Reports & Directory of Resources Edited by Ian A.W. Macdonald, Jamie K. Reaser, Chris Bright, Laurie E. Neville, Geoffrey W. Howard, Sean J. Murphy, and Guy Preston 1 This report is a product of a workshop entitled Prevention and Management of Invasive Alien Species: Forging Cooperation throughout Southern Africa, held by the Global Invasive Species Programme (GISP) in Lusaka, Zambia on 10-12 June 2002. It was sponsored by the U.S. Department of State, Bureau of Oceans and International Environmental Affairs (OESI) grant S-LMAQM-00-H-0167. In-kind assistance was provided by the U.S. Environmental Protection Agency. Administrative and logistical assistance was provided by the Zambian Ministry of Tourism, Environment and Natural Resources, the U.S. Embassy in Lusaka, Zambia, the Scientific Committee on Problems of the Environment (SCOPE), and the National Fish and Wildlife Foundation (NFWF), as well as all Steering Committee members. The Smithsonian Institution National Museum of Natural History and National Botanical Institute, South Africa kindly provided support during report production. The editors thank Dr Phoebe Barnard of the GISP Secretariat for her very extensive work to finalize the report. The workshop was co-chaired by the Governments of the Republic of Zambia and the United States of America, and by the Global Invasive Species Programme. Members of the Steering Committee included: Mr Lubinda Aongola (Ministry of Tourism, Environment and Natural Resources, Zambia), Mr Troy Fitrell (U.S.
    [Show full text]
  • Status of Tree Snails (Gastropoda: Partulidae) on Guam, with a Resurvey of Sites Studied by H
    Pacific Science (1992), vol. 46, no. 1: 77-85 © 1992 by University of Hawaii Press. All rights reserved Status of Tree Snails (Gastropoda: Partulidae) on Guam, with a Resurvey of Sites Studied by H. E. Crampton in 19201 DAVID R. HOPPER 2 AND BARRY D. SMITH 2 ABSTRACT: Tree snails of the family Partulidae have declined on Guam since World War II. One species, indigenous to the western Pacific, Partu/a radio/ata, is still locally common along stream courses in southern areas of the island. The Mariana Island endemic Samoanajragilis is present but not found in abundance anywhere on Guam. Partu/a gibba, another Mariana endemic, is currently known only from one isolated coastal valley along the northwestern coast, and appears to be in a state ofdecline. The Guam endemic Partu/a sa/ifana was not found in areas where it had been previously collected by earlier researchers, and is thus believed to be extinct. The decline and extinction ofthese snails are related to human activities. The single most important factor is likely predation by snails that were introduced as biological control agents for the giant African snail, Achatina ju/ica. The current, most serious threat is probably the introduced flatworm P/atydemus manokwari. This flatworm is also the likely cause of extinctions ofother native and introduced gastropods on Guam and may be the most important threat to the Mariana Partulidae. TREE SNAILS OF TROPICAL PACIFIC islands have 1970). With the exception of the partulids of been of interest since early exploration of the Society Islands, all are lacking study.
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]
  • The Efficiency of Landscape Management on Selected Thermophilous Land Snails – a Small-Scale Case Report from the Vineyard Area in Northern Vienna
    Research eco.mont – Volume 8, Number 2, July 2016 22 ISSN 2073-106X print version – ISSN 2073-1558 online version: http://epub.oeaw.ac.at/eco.mont https://dx.doi.org/10.1553/eco.mont-8-2s22 The efficiency of landscape management on selected thermophilous land snails – a small-scale case report from the vineyard area in northern Vienna Michael Duda Keywords: gastropods, landscape management, grassland, Zebrina detrita, Caucasotachea vindobonensis Abstract Profile Direct implications of landscape management measures, such as clearing and grub- Protected area bing, on snails are only sparsely published. Thus the impact of management on two xerothermophilous terrestrial gastropod species, Zebrina detrita and Caucasotachea UNESCO Wienerwald vindobonensis, and on land snails in general, was evaluated in the vineyard area of northern Vienna. This area belongs to the buffer zone of UNESCO Wienerwald Biosphere Reserve in Austria. A total of 18 sites were investigated, including vineyard Biosphere Reserve embankments and dry meadows with different intensity levels of clearing and grub- bing in recent years. Occurrence of both target species and their ability to recolonize Mountain range newly created habitats were assessed. Snails are able to colonize new areas in direct vicinity of existing populations that are above detection level. Only annually repeated Alps clearing of meadows and embankments with originally strong shrub coverage result- ed in a visible effect. Continuous clearing efforts over 10 years were associated with Country a dense population of Z. detrita on a formerly unsuited bush-covered meadow. In contrast, vineyard embankments that were cut free just once within two years before Austria the study harboured only a few specimens of Z.
    [Show full text]
  • Federal Register / Vol. 61, No. 40 / Wednesday, February 28, 1996 / Proposed Rules
    7596 Federal Register / Vol. 61, No. 40 / Wednesday, February 28, 1996 / Proposed Rules DEPARTMENT OF THE INTERIOR appointment in the Regional Offices SUPPLEMENTARY INFORMATION: listed below. Fish and Wildlife Service Information relating to particular taxa Background in this notice may be obtained from the The Endangered Species Act (Act) of 50 CFR Part 17 Service's Endangered Species 1973, as amended, (16 U.S.C. 1531 et Coordinator in the lead Regional Office seq.) requires the Service to identify Endangered and Threatened Wildlife identified for each taxon and listed species of wildlife and plants that are and Plants; Review of Plant and below: endangered or threatened, based on the Animal Taxa That Are Candidates for Region 1. California, Commonwealth best available scientific and commercial Listing as Endangered or Threatened of the Northern Mariana Islands, information. As part of the program to Species Hawaii, Idaho, Nevada, Oregon, Pacific accomplish this, the Service has AGENCY: Fish and Wildlife Service, Territories of the United States, and maintained a list of species regarded as Interior. Washington. candidates for listing. The Service maintains this list for a variety of ACTION: Notice of review. Regional Director (TE), U.S. Fish and Wildlife Service, Eastside Federal reasons, includingÐto provide advance SUMMARY: In this notice the Fish and Complex, 911 N.E. 11th Avenue, knowledge of potential listings that Wildlife Service (Service) presents an Portland, Oregon 97232±4181 (503± could affect decisions of environmental updated list of plant and animal taxa 231±6131). planners and developers; to solicit input native to the United States that are Region 2.
    [Show full text]
  • AMERICAN SAMOA Summary of Species on the 2008 IUCN Red List
    AMERICAN SAMOA Summary of species on the 2008 IUCN Red List The Pacific islands of Oceania cover almost 15% of the linked to conservation priority setting schemes. IUCN has world’s surface and are characterised by a high degree of therefore produced a set of regional guidelines for the ecosystem and species diversity. The region is characterised assessment of endemic and non-endemic species at country or by thousands of isolated small coral atolls and higher regional levels. volcanic islands, which has led to the high diversity of species found today. In fact, the number of plants and In order to begin the process of creating a Regional Red List for animals found nowhere else on earth (endemic species) is the Pacific islands, the current number and status of species extremely high - often up to 90% for particular groups. Often, listed on the Red List and found in the Pacific islands must be these rare and endemic species are adapted to specialised known. habitats and limited to small areas of a few islands. With economic and cultural dependence on the natural This summary sheet provides a snapshot of the number of environment very high in the Pacific islands, along with a species in American Samoa documented in the 2008 IUCN Red rapidly expanding human population, there are ever List. increasing demands on the region’s natural resources. Plant and animal species are therefore vulnerable to extinction The summary sheet is part of the larger document, “The Pacific from climate change, competition from introduced (invasive) islands: An analysis of the status of species as listed on the species and human impacts such as habitat destruction, 2008 IUCN Red List of Threatened Species™, which can be over-harvesting of species and pollution.
    [Show full text]
  • Guide to the Systematic Distribution of Mollusca in the British Museum
    PRESENTED ^l)c trustee*. THE BRITISH MUSEUM. California Swcademu 01 \scienceb RECEIVED BY GIFT FROM -fitoZa£du^4S*&22& fo<?as7u> #yjy GUIDE TO THK SYSTEMATIC DISTRIBUTION OK MOLLUSCA IN III K BRITISH MUSEUM PART I HY JOHN EDWARD GRAY, PHD., F.R.S., P.L.S., P.Z.S. Ac. LONDON: PRINTED BY ORDER OF THE TRUSTEES 1857. PRINTED BY TAYLOR AND FRANCIS, RED LION COURT, FLEET STREET. PREFACE The object of the present Work is to explain the manner in which the Collection of Mollusca and their shells is arranged in the British Museum, and especially to give a short account of the chief characters, derived from the animals, by which they are dis- tributed, and which it is impossible to exhibit in the Collection. The figures referred to after the names of the species, under the genera, are those given in " The Figures of Molluscous Animals, for the Use of Students, by Maria Emma Gray, 3 vols. 8vo, 1850 to 1854 ;" or when the species has been figured since the appear- ance of that work, in the original authority quoted. The concluding Part is in hand, and it is hoped will shortly appear. JOHN EDWARD GRAY. Dec. 10, 1856. ERRATA AND CORRIGENDA. Page 43. Verenad.e.—This family is to be erased, as the animal is like Tricho- tropis. I was misled by the incorrectness of the description and figure. Page 63. Tylodinad^e.— This family is to be removed to PleurobrancMata at page 203 ; a specimen of the animal and shell having since come into my possession.
    [Show full text]
  • Enidae, Griechischen Arten Der Napaeopsis Und (Gastropoda Pulmonata: Pupilloidea) Europäi- Leben, Liegt Die Vorliegende Bearb
    BASTERIA, 56: 105-158, 1992 Notizen zur Familie Enidae, 4. Revision der griechischen Arten der Gattungen Ena, Zebrina, Napaeopsis und Turanena (Gastropoda Pulmonata: Pupilloidea) Ruud+A. Bank Crijnssenstraat 61hs, NL 1058 XV Amsterdam, Niederlande & Henk+P.M.G. Menkhorst Naturmuseum Rotterdam, Postfach 23452, NL 3001 KL Rotterdam, Niederlande Notes 4. Revision ofthe Greek of the on Enidae, species generaEna, Zebrina, Napaeopsis and Turanena (Gastropoda Pulmonata: Pupilloidea) As of revision of Greek land snails in and the Enidae a part a general family in particular, review of the Greek taxa of the and Turanena is a genera Ena, Zebrina, Napaeopsis presented. illustrated Twenty (sub)species are treated and (one ofTurkish origin only); four taxa are described science. Rhabdoena is considered of Zebrina. as new to a subgenus A type species is selected for the of Aschera; type species Napaeopsis is Buliminus merditanus and not Bulimus cefalonicus. The Caucasian Bulimus hohenackeri is not a representative ofNapaeopsis; it is provi- sionally placed underZebrina. An example of Hennig’s progression rule is found for three species of Zebrina (Rhabdoena). Lectotypes are selected for conemenosi [Ena], caesius [Zebrina], armenicus [Zebrina], ossicus discolor and Notes [Napaeopsis], [ Napaeopsis] carpathius [Turanena]. are given on some of the Eninae in erroneously reported taxa subfamily Greece. Bulimus corneus Deshayes and be of the Buliminus graecus appeared to representatives Bulimulidae and not of the Enidae. words: Key Gastropoda, Pulmonata, Enidae, Ena, Zebrina, Napaeopsis, Turanena, taxonomy, distribution,progression rule, Greece. Die Eniden-Fauna Griechenlands ist die reichsten differenzierte am des europäi- schen Festlands. Während in den meisten Ländern nicht mehr als 5-6 Arten leben, liegt die Zahl der Arten in Griechenland wahrscheinlich über 40.
    [Show full text]