Diphyllobothrium, Anisakis and Other Fish-Borne Parasitic Zoonoses

Total Page:16

File Type:pdf, Size:1020Kb

Diphyllobothrium, Anisakis and Other Fish-Borne Parasitic Zoonoses DIPHYLLOBOTHRIUM, ANISAKIS AND OTHER FISH-BORNE PARASITIC ZOONOSES Terry A Dickl, Brent R Dixorr' and Anindo Choudhury' 1 Department of Zoology, University of Manitoba, Winnipeg Manitoba, Canada, R3T 2N2; 2 Bureau of Microbial Hazards, Food Directorate, Health Protection Branch, Health and Welfare Canada, Ottawa, Ontario, Canada KIA OL2. Abstract. Fish-borne parasitic zoonoses such as anisakiasis and diphyllobothriasis occur infrequently in Canada and more work needs to be done on the interactions and transmission dynamics of marine and freshwater anisakids in North America. The diphyllobothriid tapeworms are primarily restricted to the northern Canada. Problems with the specific identification of these parasites from their fish hosts prompted the development of a series of nucleic acid probes. Use of the polymerase chain reaction proved to be quick, accurate and requires little skill, once developed. INTRODUCTION problems caused by these parasites. There is little difficulty in distinguishing between larval There is an increasing awareness of the worms of the genera Pseudoterranova, Anisakis, importance of fish-borne parasites as human and ContracaecumlPhocascaris, from fish, pro- pathogens by consumers in North America. Such vided the worms are complete. However L) parasites include Diphyllobothrium, the anisakids larvae of Contra caecum osculatum, C. spiculi- and two fresh water trematodes. New sources of gerum and Phocascaris spp. are almost im- fresh fish supply from cultured fish, semi- possible to differentiate and aspects of their intensive (ponds) and intensive (marine and transmission dynamics and potential patho- freshwater cage culture), have added to the genicity to humans remain unclear. Anisakis logistic problems of inspection. Superimposed simplex and A. physeteris L) larvae are also on these are the potential effects of warming of difficult to separate. There is considerable the temperate region and the desire of humans overlap in the distribution of the anisakids in to preserve remaining natural resources such as Canadian waters (Margolis and Arai, 1990) fish eating birds and mammals which serve as which adds to the problem. Little is known primary hosts of these parasites. about Contracaecum spp. in Canadian fresh- This paper will emphasize the Canadian water systems. Recently, semi-intensive stocking situation with respect to fish-borne zoonoses, programs with rainbow trout, for example, particularly anisakiasis and diphyllobothriasis, and resulted in very heavy infections in the viscera will discuss some of the unresolved and potential and flesh and a 10-fold increase over 3 years, new problems and methods of identification. thus rapidly altering the parasitofauna of a pristine system by attracting piscivorous birds (Dick et ai, 1987). There are at least three DISCUSSION species of Contracaecum reported from pelicani form birds in North America (Deardorff and Anisakid roundworms Overstreet, 1980) and their impact on inshore A large volume of literature exists on fisheries is unclear. anisakids in fish and their pathogenicity to Diphyllobothriid tapeworms humans (Desowitz, 1986; Hafsteinsson and Rizvi, 1987), and a recent case of human Of the 12 species of Diphyllobothrium re- infection from Alberta, Canada (Kowalewska- ported in North America, three species are Grochowska et al, 1989) reinforces the health known to infect humans in Canada; D. latum 150 FISH-BORNE ZOONOSES IN NORTH AMERICA and D. ursi utilize mammals as the primary host mise but the use of restriction digest profiles of while D. dendriticum utilizes a bird host (An- genomic DNA require extensive procedures that derson et al, 1987). It is generally believed are time consuming. Use of specific DNA that larval plerocercoids can be differentiated on probes are good but require the extraction of the basis of their morphology but considerable DNA prior to hybridization with a radiolabelled morphological variability among individual ple- probe. Amplification of a specific sequence of rocercoids in fish makes species identification DNA has considerable promise as small amounts tentative, at best. The location of plercercoids of DNA can be used and the time to diagnose in the viscera (D. dendriticum) and in the is about 4-5 hours. We have developed ribo- musculature (D. latum) generally holds as a somal DNA probes from the intergenic spacer distinguishing feature but from our experience, regions, sequenced this DNA, synthesized D. dendriticum often occurs in the flesh in specific primers which were used in the poly- both salmonid and coregonid fishes. Positive merase chain reaction (PCR) to accurately identification of plerocercoids is only possible identify D. latum and D. dendriticum plero- by obtaining adult worms from experimentally cercoids. We are able to obtain sufficient DNA, infected hosts. Gulls are likely the primary hosts by amplification from pieces of parasite tissue, of D. dendriticum while the natural primary host to serve as a template for the PCR. Future of D. latum in Canada is less well understood identification methods will incorporate this but generally thought to be aquatic mammals technology as it is quick, accurate and requires or bears. It is also not clear how the North little specialized skill once the primers and American D. latum compares with the Eurasian methods have been developed. species which infect humans. Larval trematodes REFERENCES Clinostomum complanatum and Metorchis conjuctus are considered potential human Andersen K, Cheng HL, Vik R. A review of fresh- pathogens in Canada. Clinostomum, usually water species of Diphyllobothrium with redes- criptions and the distribution of D. dendriticum considered a yellow perch parasite, has recently (Nitzsch, 1824) and D. ditremum (Creplin, 1825) caused heavy infections in fillets of pond from North America. Can J Zool 1987; 65:2216- (semi-intensive) cultured rainbow trout (Szalai 28. and Dick, 1988). Human infections of M. conjuctus, are from wild freshwate~ fish and Deardorff TL, Overstreet RM. Contracaecum multi- papillatum (= C. robustumy from fishes and occur infrequently. There has been one case only birds in the Northern Gulf of Mexico. J Parasitol in the last 10 years (Naiman et ai, 1980). 1980; 66:853-6. This parasite is restricted to northern Ontario, Manitoba and Saskatchewan' in central Canada. Desowitz RS. Human and experimental anisakiasis in the United States. Hokkaido Igaku Zasshi 1986; 61:358-71. deVos T, Szalai AI, Dick TA. Genetic and morpho- DIAGNOSIS logical variability in a population of Diphyllo- As stated earlier, problems in identification bothrium dendriticum (Nitzsch, 1924). Syst Parasitoll990; 16:99-105. arise at the species level or when only pieces of worms are available. Methods other than Dick TA, Papst MH, Paul HC. Rainbow trout morphological, such as isozyme and molecular (Salmo gairdneri) stocking and Contracaecum biology techniques have been developed to spp. J Wild Dis 1987; 23:242-7. overcome such problems in identification of Hafsteinsson H, Rizvi SSH. A Review of the larval anisakids and diphyllobothriids (Orecchia sealworm problem: biology, implications and et al, 1986; deVos et al, 1990). Isozymes require solutions. J Food Protect 1987; 50:70-84. considerable care in the handling of specimens, Kowalewska-Grochowska K, Quinn J, Perry I, often not the case for the material one receives Sherbaniuk R. A case of anisakiasis - Alberta. for diagnosis. Molecular techniques show pro- CanDis WkJyRep 1989; 15:221-3. 151 FOOD - BORNE PARASITIC ZOONOSIS Margolis L, Arai HP. Synopsis of Vertebrates of G, Bullini L. Electrophoretic identification of Canada, Parasites of Marine Mammals. Alberta larvae and adults of Anisakis (Ascaridida: Agriculture, Animal Health Division. 1990: 26pp. Anisakidae). J Helmithol 1986; 60:331-9. Naiman HL, Sekla L, Albritton WL. Giardiasis and Szalai AI, Dick, TA. Helminths of stocked rainbow other intestinal parasitic infections in a Manitoba trout (Salmo gairdneri) with special reference to residential school for the mentally retarded. Can Clinostomum complanatum. J Wild Dis 1988; Med Assoc J 1980; 122:\85-8. 24:456-60. Orecchia P, Paggi L, Mattiucci S, Smith JW, Nascetti 152.
Recommended publications
  • Globalization and Infectious Diseases: a Review of the Linkages
    TDR/STR/SEB/ST/04.2 SPECIAL TOPICS NO.3 Globalization and infectious diseases: A review of the linkages Social, Economic and Behavioural (SEB) Research UNICEF/UNDP/World Bank/WHO Special Programme for Research & Training in Tropical Diseases (TDR) The "Special Topics in Social, Economic and Behavioural (SEB) Research" series are peer-reviewed publications commissioned by the TDR Steering Committee for Social, Economic and Behavioural Research. For further information please contact: Dr Johannes Sommerfeld Manager Steering Committee for Social, Economic and Behavioural Research (SEB) UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) World Health Organization 20, Avenue Appia CH-1211 Geneva 27 Switzerland E-mail: [email protected] TDR/STR/SEB/ST/04.2 Globalization and infectious diseases: A review of the linkages Lance Saker,1 MSc MRCP Kelley Lee,1 MPA, MA, D.Phil. Barbara Cannito,1 MSc Anna Gilmore,2 MBBS, DTM&H, MSc, MFPHM Diarmid Campbell-Lendrum,1 D.Phil. 1 Centre on Global Change and Health London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK 2 European Centre on Health of Societies in Transition (ECOHOST) London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK TDR/STR/SEB/ST/04.2 Copyright © World Health Organization on behalf of the Special Programme for Research and Training in Tropical Diseases 2004 All rights reserved. The use of content from this health information product for all non-commercial education, training and information purposes is encouraged, including translation, quotation and reproduction, in any medium, but the content must not be changed and full acknowledgement of the source must be clearly stated.
    [Show full text]
  • Fishery Bulletin/U S Dept of Commerce National Oceanic
    Abstract.-Seventeen species of parasites representing the Cestoda, Parasite Fauna of Three Species Nematoda, Acanthocephala, and Crus­ tacea are reported from three spe­ of Antarctic Whales with cies of Antarctic whales. Thirty-five sei whales Balaenoptera borealis, Reference to Their Use 106 minke whales B. acutorostrata, and 35 sperm whales Pkyseter cato­ as Potentia' Stock Indicators don were examined from latitudes 30° to 64°S, and between longitudes 106°E to 108°W, during the months Murray D. Dailey ofNovember to March 1976-77. Col­ Ocean Studies Institute. California State University lection localities and regional hel­ Long Beach, California 90840 minth fauna diversity are plotted on distribution maps. Antarctic host-parasite records from Wolfgang K. Vogelbein B. borealis, B. acutorostrata, and P. Virginia Institute of Marine Science catodon are updated and tabulated Gloucester Point. Virginia 23062 by commercial whaling sectors. The use of acanthocephalan para­ sites of the genus Corynosoma as potential Antarctic sperm whale stock indicators is discussed. The great whales of the southern hemi­ easiest to find (Gaskin 1976). A direct sphere migrate annually between result of this has been the successive temperate breeding and Antarctic overexploitation of several major feeding grounds. However, results of whale species. To manage Antarctic Antarctic whale tagging programs whaling more effectively, identifica­ (Brown 1971, 1974, 1978; Ivashin tion and determination of whale 1988) indicate that on the feeding stocks is of high priority (Schevill grounds circumpolar movement by 1971, International Whaling Com­ sperm and baleen whales is minimal. mission 1990). These whales apparently do not com­ The Antarctic whaling grounds prise homogeneous populations were partitioned by the International whose members mix freely through­ Whaling Commission into commer­ out the entire Antarctic.
    [Show full text]
  • Opisthorchiasis: an Emerging Foodborne Helminthic Zoonosis of Public Health Significance
    IJMPES International Journal of http://ijmpes.com doi 10.34172/ijmpes.2020.27 Medical Parasitology & Vol. 1, No. 4, 2020, 101-104 eISSN 2766-6492 Epidemiology Sciences Review Article Opisthorchiasis: An Emerging Foodborne Helminthic Zoonosis of Public Health Significance Mahendra Pal1* ID , Dimitri Ketchakmadze2 ID , Nino Durglishvili3 ID , Yagoob Garedaghi4 ID 1Narayan Consultancy on Veterinary Public Health and Microbiology, Gujarat, India 2Faculty of Chemical Technologies and Metallurgy, Georgian Technical University, Tbilisi, Georgia 3Department of Sociology and Social Work, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia 4Department of Parasitology, Tabriz Branch, Islamic Azad University, Tabriz, Iran Abstract Opisthorchiasis is an emerging foodborne parasitic zoonosis that has been reported from developing as well as developed nations of the world. Globally, around 80 million people are at risk of acquiring Opisthorchis infection. The source of infection is exogenous, and ingestion is considered as the primary mode of transmission. Humans get the infection by consuming raw or undercooked fish. In most cases, the infection remains asymptomatic. However, in affected individuals, the clinical manifestations are manifold. Occasionally, complications including cholangitis, cholecystitis, and cholangiocarcinoma are observed. The people who have the dietary habit of eating raw fish usually get the infection. Certain occupational groups, such as fishermen, agricultural workers, river fleet employees, and forest industry personnel are mainly infected with Opisthorchis. The travelers to the endemic regions who consume raw fish are exposed to the infection. Parasitological, immunological, and molecular techniques are employed to confirm the diagnosis of disease. Treatment regimens include oral administration of praziquantel and albendazole. In the absence of therapy, the acute phase transforms into a chronic one that may persist for two decades.
    [Show full text]
  • Classification of Parasites BLY 459 First Lab Test (October 10, 2010)
    Classification of Parasites BLY 459 First Lab Test (October 10, 2010) If a taxonomic name is not in bold type, you will not be held responsible for it on the lab exam. Terms and common names that may be asked are also listed. I have attempted to be consistent with the taxonomic schemes in your text as well as to list all slides and live specimens that were displayed. In addition to highlighted taxa, be familiar with, material in lab handouts (especially proper nomenclature), lab display sheets, as well as material presented in lecture. Questions about vectors and locations within hosts will be asked. Be able to recognize healthy from infected tissue. Phylum Platyhelminthes (Flatworms) Class Turbellaria Dugesia (=Planaria ) Free-living, anatomy, X-section Bdelloura horseshoe crab gills Class Monogenea Gyrodactylus , Neobenedenis, Ergocotyle gills of freshwater fish Neopolystoma urinary bladder of turtles Class Trematoda ( Flukes ) Subclass Digenea Life-cycle stages: Recognize miracidia, sporocyst, redia, cercaria , metacercaria, adults & anatomy, model Order ?? Hirudinella ventricosa wahoo stomach Nasitrema nasal cavity of bottlenose dolphin Order Strigeiformes Family Schistosomatidae Schistosoma japonicum adults, male & female, liver granuloma & healthy liver, ova, cercariae, no metacercariae, adults in mesenteric intestinal veins Order Echinostomatiformes Family Fasciolidae Fasciola hepatica sheep & human liver, liver fluke Order Plagiorchiformes Family Dicrocoeliidae Dicrocoelium & Eurytrema Cure for All Diseases by Hulda Clark, Paragonimus
    [Show full text]
  • Possible Influence of the ENSO Phenomenon on the Pathoecology
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Karl Reinhard Papers/Publications Natural Resources, School of 2010 Possible influence of the ENSO phenomenon on the pathoecology of diphyllobothriasis and anisakiasis in ancient Chinchorro populations Bernardo Arriaza Universidad de Tarapacá, [email protected] Karl Reinhard University of Nebraska-Lincoln, [email protected] Adauto Araujo Escola Nacional de Saúde Pública-Fiocruz, [email protected] Nancy C. Orellana Convenio de Desempeño Vivien G. Standen Universidad de Tarapacá, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/natresreinhard Arriaza, Bernardo; Reinhard, Karl; Araujo, Adauto; Orellana, Nancy C.; and Standen, Vivien G., "Possible influence of the ENSO phenomenon on the pathoecology of diphyllobothriasis and anisakiasis in ancient Chinchorro populations" (2010). Karl Reinhard Papers/Publications. 10. http://digitalcommons.unl.edu/natresreinhard/10 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Karl Reinhard Papers/Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 66 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 105(1): 66-72, February 2010 Possible influence of the ENSO phenomenon on the pathoecology of diphyllobothriasis and anisakiasis in ancient Chinchorro populations Bernardo T Arriaza1/+, Karl J Reinhard2, Adauto
    [Show full text]
  • Broad Tapeworms (Diphyllobothriidae)
    IJP: Parasites and Wildlife 9 (2019) 359–369 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: T Recent progress and future challenges ∗ Tomáš Scholza, ,1, Roman Kuchtaa,1, Jan Brabeca,b a Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic b Natural History Museum of Geneva, PO Box 6434, CH-1211, Geneva 6, Switzerland ABSTRACT Tapeworms of the family Diphyllobothriidae, commonly known as broad tapeworms, are predominantly large-bodied parasites of wildlife capable of infecting humans as their natural or accidental host. Diphyllobothriosis caused by adults of the genera Dibothriocephalus, Adenocephalus and Diphyllobothrium is usually not a life-threatening disease. Sparganosis, in contrast, is caused by larvae (plerocercoids) of species of Spirometra and can have serious health consequences, exceptionally leading to host's death in the case of generalised sparganosis caused by ‘Sparganum proliferum’. While most of the definitive wildlife hosts of broad tapeworms are recruited from marine and terrestrial mammal taxa (mainly carnivores and cetaceans), only a few diphyllobothriideans mature in fish-eating birds. In this review, we provide an overview the recent progress in our understanding of the diversity, phylogenetic relationships and distribution of broad tapeworms achieved over the last decade and outline the prospects of future research. The multigene family-wide phylogeny of the order published in 2017 allowed to propose an updated classi- fication of the group, including new generic assignment of the most important causative agents of human diphyllobothriosis, i.e., Dibothriocephalus latus and D.
    [Show full text]
  • Identity of Diphyllobothrium Spp. (Cestoda: Diphyllobothriidae) from Sea Lions and People Along the Pacific Coast of South America
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 4-2010 Identity of Diphyllobothrium spp. (Cestoda: Diphyllobothriidae) from Sea Lions and People along the Pacific Coast of South America Robert L. Rausch University of Washington, [email protected] Ann M. Adams United States Food and Drug Administration Leo Margolis Fisheries Research Board of Canada Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Rausch, Robert L.; Adams, Ann M.; and Margolis, Leo, "Identity of Diphyllobothrium spp. (Cestoda: Diphyllobothriidae) from Sea Lions and People along the Pacific Coast of South America" (2010). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 498. https://digitalcommons.unl.edu/parasitologyfacpubs/498 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Parasitol., 96(2), 2010, pp. 359–365 F American Society of Parasitologists 2010 IDENTITY OF DIPHYLLOBOTHRIUM SPP. (CESTODA: DIPHYLLOBOTHRIIDAE) FROM SEA LIONS AND PEOPLE ALONG THE PACIFIC COAST OF SOUTH AMERICA Robert L. Rausch, Ann M. Adams*, and Leo MargolisÀ Department of Comparative Medicine and Department of Pathobiology, Box 357190, University of Washington, Seattle, Washington 98195-7190. e-mail: [email protected] ABSTRACT: Host specificity evidently is not expressed by various species of Diphyllobothrium that occur typically in marine mammals, and people become infected occasionally when dietary customs favor ingestion of plerocercoids.
    [Show full text]
  • Parasite Findings in Archeological Remains: a Paleogeographic View 20
    Part III - Parasite Findings in Archeological Remains: a paleogeographic view 20. The Findings in South America Luiz Fernando Ferreira Léa Camillo-Coura Martín H. Fugassa Marcelo Luiz Carvalho Gonçalves Luciana Sianto Adauto Araújo SciELO Books / SciELO Livros / SciELO Libros FERREIRA, L.F., et al. The Findings in South America. In: FERREIRA, L.F., REINHARD, K.J., and ARAÚJO, A., ed. Foundations of Paleoparasitology [online]. Rio de Janeiro: Editora FIOCRUZ, 2014, pp. 307-339. ISBN: 978-85-7541-598-6. Available from: doi: 10.7476/9788575415986.0022. Also available in ePUB from: http://books.scielo.org/id/zngnn/epub/ferreira-9788575415986.epub. All the contents of this work, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 International license. Todo o conteúdo deste trabalho, exceto quando houver ressalva, é publicado sob a licença Creative Commons Atribição 4.0. Todo el contenido de esta obra, excepto donde se indique lo contrario, está bajo licencia de la licencia Creative Commons Reconocimento 4.0. The Findings in South America 305 The Findings in South America 20 The Findings in South America Luiz Fernando Ferreira • Léa Camillo-Coura • Martín H. Fugassa Marcelo Luiz Carvalho Gonçalves • Luciana Sianto • Adauto Araújo n South America, paleoparasitology first developed with studies in Brazil, consolidating this new science that Ireconstructs past events in the parasite-host relationship. Many studies on parasites in South American archaeological material were conducted on human mummies from the Andes (Ferreira, Araújo & Confalonieri, 1988). However, interest also emerged in parasites of animals, with studies of coprolites found in archaeological layers as a key source of ancient climatic data (Araújo, Ferreira & Confalonieri, 1982).
    [Show full text]
  • Diphyllobothrium, Diseases of Wild and Cultured Fishes in Alaska
    HELMINTHS Diphyllobothrium I. Causative Agent and Disease predatory fish that become paratenic Six species of diphyllobothrid ces- hosts when other infested fish are eaten. todes (tapeworm) occur in Alaska, all of The life cycle is complete when the fish which use fish as a second intermediate host is eaten by a mammal or bird defini- and/or as a paratenic host. Three species tive host where the worm becomes an of larval Diphyllobothrium that most egg-producing adult. commonly occur in Alaskan salmonid fishes include D. ditremum, dendriticum V. Diagnosis and nihonkaiense. The cestode larvae Diagnosis is made by visual identi- can be found free in the visceral cavity fication of the cestode during necropsy or encysted in the viscera or muscle tis- of a parasitized fish. Plerocercoid stages sues. of Diphyllobothrium have a compressed scolex with characteristic bothria or II. Host Species grooves. The body is usually slightly Planktivorous and carnivorous fresh- wrinkled, suggesting segmentation. PCR water fishes are potential hosts in North/ has been useful in confirming species South America and Eurasia including that has resulted in changing taxonomy. salmonids, whitefish, perch, northern pike, sticklebacks, burbot, and blackfish. VI. Prognosis for Host Prognosis for the host is good pro- III. Clinical Signs vided the infestation is low and there are The larval Diphyllobothrium can not other stressors involved. Juvenile fish be found (sometimes encysted) in the are more adversely affected than older muscles, viscera and connective tis- fish and can die from severe plerocercoid sues of the fish host causing adhesions, infestations. hemorrhaging (particularly the liver) and ascitic fluid resulting in abdominal dis- VII.
    [Show full text]
  • Fish Tapeworm.Pmd
    August 2005 Agdex 485/655-11 Fish Tapeworm in Man Many parasites infect fish, but only a few such as the broad tapeworm, Diphyllobothrium spp., occasionally infect How common is the fish man. The larval stage of these parasites develops in fish while the adults develop in various fish-eating mammals, tapeworm? marine mammals or fish-eating birds. Infections are mainly confined to regions where fish is eaten raw, marinated or undercooked. The parasite can be The best known species in this group, D. latum, is the common in some communities in Alaska and Canada, and longest tapeworm in man, reaching a length of 10 meters. rare or absent in others. This parasite is found worldwide and is common in countries where raw or undercooked fish is eaten. Several species of Diphyllobothrium occur in fish. The species most likely to infect people of a particular region will depend on the fish they consume. Diphyllobothrium latum occur in pike, walleye and perch; Diphyllobothrium Life cycle dendriticum occur primarily in whitefish and salmonids, The life cycle of the D. latum tapeworm consists of three including arctic char and trout. obligatory hosts: a mammal, a copepod and a fish (Figure 1). • The adult tapeworm attaches to the This parasite Can I see the larvae in small intestine of man, matures and sheds eggs that pass in the feces. is found fish? • The egg continues its development in D. latum is not easily seen in fish because water, eventually producing a ciliated worldwide the plerocercoids lie unencysted in fish embryo, called a coracidium, which muscle.
    [Show full text]
  • Occurrence and Spatial Distribution of Dibothriocephalus Latus (Cestoda: Diphyllobothriidea) in Lake Iseo (Northern Italy): an Update
    International Journal of Environmental Research and Public Health Article Occurrence and Spatial Distribution of Dibothriocephalus Latus (Cestoda: Diphyllobothriidea) in Lake Iseo (Northern Italy): An Update Vasco Menconi 1 , Paolo Pastorino 1,2,* , Ivana Momo 3, Davide Mugetti 1, Maria Cristina Bona 1, Sara Levetti 1, Mattia Tomasoni 1, Elisabetta Pizzul 2 , Giuseppe Ru 1 , Alessandro Dondo 1 and Marino Prearo 1 1 The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy; [email protected] (V.M.); [email protected] (D.M.); [email protected] (M.C.B.); [email protected] (S.L.); [email protected] (M.T.); [email protected] (G.R.); [email protected] (A.D.); [email protected] (M.P.) 2 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] 3 Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, TO, Italy; [email protected] * Correspondence: [email protected]; Tel.: +390112686251 Received: 11 June 2020; Accepted: 12 July 2020; Published: 14 July 2020 Abstract: Dibothriocephalus latus (Linnaeus, 1758) (Cestoda: Diphyllobothriidea; syn. Diphyllobothrium latum), is a fish-borne zoonotic parasite responsible for diphyllobothriasis in humans. Although D. latus has long been studied, many aspects of its epidemiology and distribution remain unknown. The aim of this study was to investigate the prevalence, mean intensity of infestation, and mean abundance of plerocercoid larvae of D. latus in European perch (Perca fluviatilis) and its spatial distribution in three commercial fishing areas in Lake Iseo (Northern Italy). A total of 598 specimens of P.
    [Show full text]
  • Thirty-Seven Human Cases of Sparganosis from Ethiopia and South Sudan Caused by Spirometra Spp
    Am. J. Trop. Med. Hyg., 93(2), 2015, pp. 350–355 doi:10.4269/ajtmh.15-0236 Copyright © 2015 by The American Society of Tropical Medicine and Hygiene Case Report: Thirty-Seven Human Cases of Sparganosis from Ethiopia and South Sudan Caused by Spirometra Spp. Mark L. Eberhard,* Elizabeth A. Thiele, Gole E. Yembo, Makoy S. Yibi, Vitaliano A. Cama, and Ernesto Ruiz-Tiben Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia; Ethiopia Dracunculiasis Eradication Program, Federal Ministry of Health, Addis Ababa, Ethiopia; South Sudan Guinea Worm Eradication Program, Ministry of Health, Juba, Republic of South Sudan; The Carter Center, Atlanta, Georgia Abstract. Thirty-seven unusual specimens, three from Ethiopia and 34 from South Sudan, were submitted since 2012 for further identification by the Ethiopian Dracunculiasis Eradication Program (EDEP) and the South Sudan Guinea Worm Eradication Program (SSGWEP), respectively. Although the majority of specimens emerged from sores or breaks in the skin, there was concern that they did not represent bona fide cases of Dracunculus medinensis and that they needed detailed examination and identification as provided by the World Health Organization Collaborating Center (WHO CC) at Centers for Disease Control and Prevention (CDC). All 37 specimens were identified on microscopic study as larval tapeworms of the spargana type, and DNA sequence analysis of seven confirmed the identification of Spirometra sp. Age of cases ranged between 7 and 70 years (mean 25 years); 21 (57%) patients were male and 16 were female. The presence of spargana in open skin lesions is somewhat atypical, but does confirm the fact that populations living in these remote areas are either ingesting infected copepods in unsafe drinking water or, more likely, eating poorly cooked paratenic hosts harboring the parasite.
    [Show full text]