USP7 Couples DNA Replication Termination to Mitotic Entry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Replisome Assembly at Oric, the Replication Origin of E. Coli, Reveals an Explanation for Initiation Sites Outside an Origin
Molecular Cell, Vol. 4, 541±553, October, 1999, Copyright 1999 by Cell Press Replisome Assembly at oriC, the Replication Origin of E. coli, Reveals an Explanation for Initiation Sites outside an Origin Linhua Fang,*§ Megan J. Davey,² and Mike O'Donnell²³ have not been addressed. For example, is the local un- *Microbiology Department winding sufficiently large for two helicases to assemble Joan and Sanford I. Weill Graduate School of Medical for bidirectional replication, or does one helicase need Sciences of Cornell University to enter first and expand the bubble via helicase action New York, New York 10021 to make room for the second helicase? The known rep- ² The Rockefeller University and licative helicases are hexameric and encircle ssDNA. Howard Hughes Medical Institute Which strand does the initial helicase(s) at the origin New York, New York 10021 encircle, and if there are two, how are they positioned relative to one another? Primases generally require at least transient interaction with helicase to function. Can Summary primase function with the helicase(s) directly after heli- case assembly at the origin, or must helicase-catalyzed This study outlines the events downstream of origin DNA unwinding occur prior to RNA primer synthesis? unwinding by DnaA, leading to assembly of two repli- Chromosomal replicases are comprised of a ring-shaped cation forks at the E. coli origin, oriC. We show that protein clamp that encircles DNA, a clamp-loading com- two hexamers of DnaB assemble onto the opposing plex that uses ATP to assemble the clamp around DNA, strands of the resulting bubble, expanding it further, and a DNA polymerase that binds the circular clamp, yet helicase action is not required. -
USP7 [6His-Tagged] Deubiquitylating Enzyme
USP7 [6His-tagged] Deubiquitylating Enzyme Alternate Names: Herpesvirus-Associated Ubiquitin-Specific Protease, HAUSP VMW110- associated protein Cat. No. 64-0003-050 Quantity: 50 µg Lot. No. 1736 Storage: -70˚C FOR RESEARCH USE ONLY NOT FOR USE IN HUMANS CERTIFICATE OF ANALYSIS Page 1 of 2 Background Physical Characteristics The deubiquitylating enzymes (DUBs) Species: human Protein Sequence: Please see page 2 regulate ubiquitin dependent signaling pathways. The activities of the DUBs Source: E. coli expression include the generation of free ubiquitin from precursor molecules, the recy- Quantity: 50 μg cling of ubiquitin following substrate Concentration: 0.5 mg/ml degradation to maintain cellular ubiq- uitin homeostasis and the removal Formulation: 50 mM HEPES pH 7.5, of ubiquitin or ubiquitin-like proteins 150 mM sodium chloride, 2 mM (UBL) modifications through chain dithiothreitol, 10% glycerol editing to rescue proteins from protea- somal degradation or to influence cell Molecular Weight: ~130 kDa signalling events (Komander et al., 2009). There are two main classes of Purity: >80% by InstantBlue™ SDS-PAGE DUB, cysteine proteases and metallo- Stability/Storage: 12 months at -70˚C; proteases. Ubiquitin specific process- aliquot as required ing protease 7 (USP-7) is a member of the cysteine protease enzyme fam- ily and cloning of the gene in humans Quality Assurance was first described by Everett et al. (1997). Overexpression of p53 and Purity: Protein Identification: USP7 stabilizes p53 through the re- 4-12% gradient SDS-PAGE Confirmed by mass spectrometry. InstantBlue™ staining moval of ubiquitin moieties from polyu- Lane 1: MW markers Deubiquitylating Enzyme Assay: biquitylated p53 (Kon et al., 2010). -
Therapeutic Inhibition of USP7-PTEN Network in Chronic Lymphocytic Leukemia: a Strategy to Overcome TP53 Mutated/ Deleted Clones
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 22), pp: 35508-35522 Priority Research Paper Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/ deleted clones Giovanna Carrà1, Cristina Panuzzo1, Davide Torti1,2, Guido Parvis2,3, Sabrina Crivellaro1, Ubaldo Familiari4, Marco Volante4,5, Deborah Morena5, Marcello Francesco Lingua5, Mara Brancaccio6, Angelo Guerrasio1, Pier Paolo Pandolfi7, Giuseppe Saglio1,2,3, Riccardo Taulli5 and Alessandro Morotti1 1 Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy 2 Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy 3 Division of Hematology, Azienda Ospedaliera, Mauriziano, Torino, Italy 4 Division of Pathology, San Luigi Hospital, Orbassano, Italy 5 Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy 6 Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy 7 Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Correspondence to: Alessandro Morotti, email: [email protected] Correspondence to: Riccardo Taulli, email: [email protected] Keywords: chronic lymphocytic leukemia, USP7, PTEN, miR181, miR338 Received: June 14, 2016 Accepted: February 20, 2017 Published: March 17, 2017 Copyright: Carrà et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disorder with either indolent or aggressive clinical course. -
Targeting Mdm2 and Mdmx in Cancer Therapy: Better Living Through Medicinal Chemistry?
Subject Review Targeting Mdm2 and Mdmx in Cancer Therapy: Better Living through Medicinal Chemistry? Mark Wade and Geoffrey M.Wahl Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California Abstract In the second model, Mdm2 and Mdmx are proposed to form Genomic and proteomic profiling of human tumor a complex that is more effective at inhibiting p53 transactiva- samples and tumor-derived cell lines are essential for tion or enhancing p53 turnover. Although the former possibility the realization of personalized therapy in oncology. has not been excluded, several studies indicate that Mdm2 Identification of the changes required for tumor initiation and Mdmx function as a heterodimeric pair to augment p53 or maintenance will likely provide new targets for degradation. Mdm2 is a member of the RING E3 ubiquitin small-molecule and biological therapeutics.For ligase family and promotes proteasome-dependent degradation example, inactivation of the p53 tumor suppressor of p53. By binding to the target substrate and to an E2 ubiquitin- pathway occurs in most human cancers.Although this conjugating enzyme, RING E3s facilitate E2-to-substrate can be due to frank p53 gene mutation, almost half of all ubiquitin transfer (5). Similar to other RING E3s, it does not cancers retain the wild-type p53 allele, indicating that seem that Mdm2 forms a covalent link with ubiquitin during the pathway is disabled by other means.Alternate the reaction. Thus, Mdm2 does not have a ‘‘classic’’ catalytic mechanisms include deletion or epigenetic inactivation site but acts as a molecular scaffold that presumably positions of the p53-positive regulator arf, methylation of the p53 p53 for E2-dependent ubiquitination (Fig. -
The Role of Ubiquitination in NF-Κb Signaling During Virus Infection
viruses Review The Role of Ubiquitination in NF-κB Signaling during Virus Infection Kun Song and Shitao Li * Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; [email protected] * Correspondence: [email protected] Abstract: The nuclear factor κB (NF-κB) family are the master transcription factors that control cell proliferation, apoptosis, the expression of interferons and proinflammatory factors, and viral infection. During viral infection, host innate immune system senses viral products, such as viral nucleic acids, to activate innate defense pathways, including the NF-κB signaling axis, thereby inhibiting viral infection. In these NF-κB signaling pathways, diverse types of ubiquitination have been shown to participate in different steps of the signal cascades. Recent advances find that viruses also modulate the ubiquitination in NF-κB signaling pathways to activate viral gene expression or inhibit host NF-κB activation and inflammation, thereby facilitating viral infection. Understanding the role of ubiquitination in NF-κB signaling during viral infection will advance our knowledge of regulatory mechanisms of NF-κB signaling and pave the avenue for potential antiviral therapeutics. Thus, here we systematically review the ubiquitination in NF-κB signaling, delineate how viruses modulate the NF-κB signaling via ubiquitination and discuss the potential future directions. Keywords: NF-κB; polyubiquitination; linear ubiquitination; inflammation; host defense; viral infection Citation: Song, K.; Li, S. The Role of 1. Introduction Ubiquitination in NF-κB Signaling The nuclear factor κB (NF-κB) is a small family of five transcription factors, including during Virus Infection. Viruses 2021, RelA (also known as p65), RelB, c-Rel, p50 and p52 [1]. -
Tumor Suppressors in Chronic Lymphocytic Leukemia: from Lost Partners to Active Targets
cancers Review Tumor Suppressors in Chronic Lymphocytic Leukemia: From Lost Partners to Active Targets 1, 1, 2 1 Giacomo Andreani y , Giovanna Carrà y , Marcello Francesco Lingua , Beatrice Maffeo , 3 2, 1, , Mara Brancaccio , Riccardo Taulli y and Alessandro Morotti * y 1 Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; [email protected] (G.A.); [email protected] (G.C.); beatrice.maff[email protected] (B.M.) 2 Department of Oncology, University of Torino, 10043 Orbassano, Italy; [email protected] (M.F.L.); [email protected] (R.T.) 3 Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-011-9026305 These authors equally contributed to the work. y Received: 21 January 2020; Accepted: 4 March 2020; Published: 9 March 2020 Abstract: Tumor suppressors play an important role in cancer pathogenesis and in the modulation of resistance to treatments. Loss of function of the proteins encoded by tumor suppressors, through genomic inactivation of the gene, disable all the controls that balance growth, survival, and apoptosis, promoting cancer transformation. Parallel to genetic impairments, tumor suppressor products may also be functionally inactivated in the absence of mutations/deletions upon post-transcriptional and post-translational modifications. Because restoring tumor suppressor functions remains the most effective and selective approach to induce apoptosis in cancer, the dissection of mechanisms of tumor suppressor inactivation is advisable in order to further augment targeted strategies. This review will summarize the role of tumor suppressors in chronic lymphocytic leukemia and attempt to describe how tumor suppressors can represent new hopes in our arsenal against chronic lymphocytic leukemia (CLL). -
Structural Insight Into the Mechanisms of Activation and Substrate
University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 12-12-2016 Structural Insight into the Mechanisms of Activation and Substrate Specificity of Human Deubiquitinating Enzyme USP7 Alexandra Pozhidaeva University of Connecticut, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Pozhidaeva, Alexandra, "Structural Insight into the Mechanisms of Activation and Substrate Specificity of Human Deubiquitinating Enzyme USP7" (2016). Doctoral Dissertations. 1287. https://opencommons.uconn.edu/dissertations/1287 Structural Insight into the Mechanisms of Activation and Substrate Specificity of Human Deubiquitinating Enzyme USP7 Alexandra Pozhidaeva, PhD University of Connecticut, 2016 The major part of this thesis describes studies of human ubiquitin-specific protease 7 (USP7), a deubiquitinating enzyme that regulates cellular levels of key oncoproteins and tumor suppressors. Inactivation of USP7 has recently emerged as a new approach to treatment of malignancies. However, design of potent and specific small-molecule compounds requires detailed understanding of the molecular mechanisms of USP7 substrate recognition and regulation of its catalytic activity. The goal of this work was to explore these mechanisms using solution nuclear magnetic resonance spectroscopy in combination with other methods. In our studies of USP7 substrate recognition, we structurally characterized its interaction with ICP0 protein from Herpes Simplex virus 1 and identified a novel USP7 substrate-binding site harbored within its C-terminal region. To address the question of USP7 activity regulation, we investigated its interaction with ubiquitin, which was believed to cause structural rearrangement of USP7 active site from an unproductive to a catalytically competent conformation. Surprisingly, we showed that in solution USP7 – ubiquitin interaction alone is not sufficient for activation of the enzyme as was previously postulated. -
Polymerase Δ Deficiency Causes Syndromic Immunodeficiency with Replicative Stress
Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress Cecilia Domínguez Conde, … , Mirjam van der Burg, Kaan Boztug J Clin Invest. 2019. https://doi.org/10.1172/JCI128903. Research Article Genetics Immunology Graphical abstract Find the latest version: https://jci.me/128903/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress Cecilia Domínguez Conde,1,2 Özlem Yüce Petronczki,1,2,3 Safa Baris,4,5 Katharina L. Willmann,1,2 Enrico Girardi,2 Elisabeth Salzer,1,2,3,6 Stefan Weitzer,7 Rico Chandra Ardy,1,2,3 Ana Krolo,1,2,3 Hanna Ijspeert,8 Ayca Kiykim,4,5 Elif Karakoc-Aydiner,4,5 Elisabeth Förster-Waldl,9 Leo Kager,6 Winfried F. Pickl,10 Giulio Superti-Furga,2,11 Javier Martínez,7 Joanna I. Loizou,2 Ahmet Ozen,4,5 Mirjam van der Burg,8 and Kaan Boztug1,2,3,6 1Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 2CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and 3St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria. 4Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey. 5Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey. 6St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria. 7Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria. 8Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands. 9Department of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, 10Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, and 11Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria. -
The Obscure World of Integrative and Mobilizable Elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget
The obscure world of integrative and mobilizable elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget To cite this version: Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget. The obscure world of integrative and mobilizable elements: Highly widespread elements that pirate bacterial conjugative systems. Genes, MDPI, 2017, 8 (11), pp.337. 10.3390/genes8110337. hal- 01686871 HAL Id: hal-01686871 https://hal.archives-ouvertes.fr/hal-01686871 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License G C A T T A C G G C A T genes Review The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems Gérard Guédon *, Virginie Libante, Charles Coluzzi, Sophie Payot and Nathalie Leblond-Bourget * ID DynAMic, Université de Lorraine, INRA, 54506 Vandœuvre-lès-Nancy, France; [email protected] (V.L.); [email protected] (C.C.); [email protected] (S.P.) * Correspondence: [email protected] (G.G.); [email protected] (N.L.-B.); Tel.: +33-037-274-5142 (G.G.); +33-037-274-5146 (N.L.-B.) Received: 12 October 2017; Accepted: 15 November 2017; Published: 22 November 2017 Abstract: Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements. -
An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1 Zhi-Min Zhang University of California, Riverside
University of the Pacific Scholarly Commons College of the Pacific aF culty Articles All Faculty Scholarship 9-1-2015 An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1 Zhi-Min Zhang University of California, Riverside Scott .B Rothbart Van Andel Research Institute David F. Allison University of North Carolina at Chapel Hill Qian Cai University of California, Riverside Joseph S. Harrison University of the Pacific, [email protected] See next page for additional authors Follow this and additional works at: https://scholarlycommons.pacific.edu/cop-facarticles Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Chemistry Commons Recommended Citation Zhang, Z., Rothbart, S. B., Allison, D. F., Cai, Q., Harrison, J. S., Li, L., Wang, Y., Strahl, B. D., Wang, G. G., & Song, J. (2015). An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1. Cell Reports, 12(9), 1400–1406. DOI: 10.1016/j.celrep.2015.07.046 https://scholarlycommons.pacific.edu/cop-facarticles/575 This Article is brought to you for free and open access by the All Faculty Scholarship at Scholarly Commons. It has been accepted for inclusion in College of the Pacific aF culty Articles by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Authors Zhi-Min Zhang, Scott .B Rothbart, David F. Allison, Qian Cai, Joseph S. Harrison, Lin Li, Yinsheng Wang, Brian D. Strahl, Gang Greg Wang, and Jikui Song This article is available at Scholarly Commons: https://scholarlycommons.pacific.edu/cop-facarticles/575 Report An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1 Graphical Abstract Authors Zhi-Min Zhang, Scott B. -
Therapeutic Inhibition of USP7- PTEN Network in Chronic Lymphocytic Leukemia: a Strategy to Overcome TP53 Mutated/Deleted Clones
Therapeutic inhibition of USP7- PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Carrà, G., C. Panuzzo, D. Torti, G. Parvis, S. Crivellaro, U. Familiari, M. Volante, et al. 2017. “Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones.” Oncotarget 8 (22): 35508-35522. doi:10.18632/oncotarget.16348. http://dx.doi.org/10.18632/ oncotarget.16348. Published Version doi:10.18632/oncotarget.16348 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33490830 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 22), pp: 35508-35522 Priority Research Paper Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/ deleted clones Giovanna Carrà1, Cristina Panuzzo1, Davide Torti1,2, Guido Parvis2,3, Sabrina Crivellaro1, Ubaldo Familiari4, Marco Volante4,5, Deborah Morena5, Marcello Francesco Lingua5, Mara Brancaccio6, Angelo Guerrasio1, Pier Paolo Pandolfi7, Giuseppe Saglio1,2,3, Riccardo Taulli5 and Alessandro Morotti1 1 Department of Clinical and Biological Sciences, -
DNA Polymerases at the Eukaryotic Replication Fork Thirty Years After: Connection to Cancer
cancers Review DNA Polymerases at the Eukaryotic Replication Fork Thirty Years after: Connection to Cancer Youri I. Pavlov 1,2,* , Anna S. Zhuk 3 and Elena I. Stepchenkova 2,4 1 Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA 2 Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] 3 International Laboratory of Computer Technologies, ITMO University, 197101 Saint Petersburg, Russia; [email protected] 4 Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, 199034 Saint Petersburg, Russia * Correspondence: [email protected] Received: 30 September 2020; Accepted: 13 November 2020; Published: 24 November 2020 Simple Summary: The etiology of cancer is linked to the occurrence of mutations during the reduplication of genetic material. Mutations leading to low replication fidelity are the culprits of many hereditary and sporadic cancers. The archetype of the current model of replication fork was proposed 30 years ago. In the sequel to our 2010 review with the words “years after” in the title inspired by A. Dumas’s novels, we go over new developments in the DNA replication field and analyze how they help elucidate the effects of the genetic variants of DNA polymerases on cancer. Abstract: Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization.