Differential Analysis of Proteins Involved in Ester Metabolism in Two
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness
Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness Level, in Different Cultivars and During Eating Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gulsah Ozcan Graduate Program in Food Science and Technology The Ohio State University 2010 Thesis Committee: Sheryl Ann Barringer, Adviser W. James Harper John Litchfield 1 Copyright by Gülşah Özcan 2010 ii ABSTRACT Strawberry samples with enzyme activity and without enzyme activity (stannous chloride added) were measured for real time formation of lipoxygenase (LOX) derived aroma compounds after 5 min pureeing using selected ion flow tube mass spectrometry (SIFT-MS). The concentration of (Z)-3-hexenal and (E)-2-hexenal increased immediately after blending and gradually decreased over time while hexanal concentration increased for at least 5 min in ground strawberries. The formation of hexanal was slower than the formation of (Z)-3-hexenal and (E)-2-hexenal in the headspace of pureed strawberries. The concentration of LOX aldehydes and esters significantly increased during refrigerated storage. Damaging strawberries increased the concentration of LOX aldehydes but did not significantly affect the concentration of esters. The concentrations of many of the esters were strongly correlated to their corresponded acids and/or aldehydes. The concentration of LOX generated aldehydes decreased during ripening, while fruity esters increased. Different varieties had different aroma profiles and esters were the greatest percentage of the volatiles. The aroma release of some of the LOX derived aldehydes in the mouthspace in whole strawberries compared to chopped strawberries showed that these volatiles are formed in the mouth during chewing. -
The Composition of Strawberry Aroma Is Influenced by Cultivar, Maturity, and Storage Charles F
WORKSHOP The Composition of Strawberry Aroma Is Influenced by Cultivar, Maturity, and Storage Charles F. Forney1, Willy Kalt2, and Michael A. Jordan3 Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, N.S., B4N 1J5, Canada Strawberry (Fragaria ×ananassa Duch.) fruit have a unique, they both may contribute to strawberry aroma (Dirinck et al., 1981; highly desirable flavor and are one of the most popular summer fruits. Schreier, 1980). Sugars, acids, and aroma volatiles contribute to the characteristic The volatile profile obtained from strawberry fruit is influenced by strawberry flavor, which is dependent on the proper balance of these the analytical methods used to characterize these compounds. Volatiles chemical constituents. While sugars and acids are responsible for the from whole, intact fruit can be collected using headspace techniques; sweetness and tartness of the fruit, aroma volatiles provide the unique, these samples can be analyzed directly or concentrated using adsor- fruity flavors that characterize a fresh strawberry. bent or cold traps. Volatiles are also collected from homogenized fruit The aroma of fresh strawberries is dependent on many factors. The or juice, using either headspace or solvent extraction techniques. large genetic variability in the nature of strawberry aroma results in Volatile samples are normally analyzed by gas liquid chromatography differences in flavor among cultivars. In addition, the aroma changes using a variety of methods of sample introduction, including liquid dramatically during fruit ripening after harvest; therefore, it is impor- injection, thermal desorption, and cold on-column injection. High tant to preserve and enhance the ripe fruit aroma during postharvest performance liquid chromatography (HPLC) has been used for some handling. -
Differences in Volatile Ester Composition Between Fragaria Ananassa and F
Scientia Horticulturae 150 (2013) 47–53 Contents lists available at SciVerse ScienceDirect Scientia Horticulturae journa l homepage: www.elsevier.com/locate/scihorti × Differences in volatile ester composition between Fragaria ananassa and F. ଝ vesca and implications for strawberry aroma patterns a,b b c b a,∗ Jing Dong , Yuntao Zhang , Xiaowei Tang , Wanmei Jin , Zhenhai Han a Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China b Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, No. 12 Ruiwangfen, Xiangshan, Haidian District, Beijing 100093, PR China c Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Banjin, Haidian District, Beijing 100097, PR China a r t i c l e i n f o a b s t r a c t Article history: Esters are a very important component of strawberry (Fragaria sp.) aroma. In this study, fruit volatiles Received 8 April 2012 were isolated by solid-phase microextraction and analyzed by gas chromatography–mass spectrometry Received in revised form 1 November 2012 (SPME/GC–MS). It was found that F. × ananassa had more esters than F. vesca, but there was no significant Accepted 1 November 2012 difference in average relative content of esters. Twenty five esters were selected as predominant esters, 16 of which were prevalent in F. × ananassa and another 16 in F. vesca. Among them, hexyl acetate, Keywords: octyl acetate, ethyl butyrate, ethyl hexanoate, ethyl octanoate, methyl decanoate, and ethyl decanoate Volatile ester composition were found in both F. -
Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC
Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC R E S E A R C H A N D D E V E L O P M E N T EPA/600/R-06/105 September 2006 Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC By S. H. Hilal Ecosystems Research Division National Exposure Research Laboratory Athens, Georgia U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460 NOTICE The information in this document has been funded by the United States Environmental Protection Agency. It has been subjected to the Agency's peer and administrative review, and has been approved for publication. Mention of trade names of commercial products does not constitute endorsement or recommendation for use. ii ABSTRACT SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external mechanistic perturbation components. The internal perturbations quantify the interactions of the appended perturber (P) with the reaction center (C). These internal perturbations are factored into SPARC’s mechanistic components of electrostatic and resonance effects. External perturbations quantify the solute-solvent interactions (solvation energy) and are factored into H-bonding, field stabilization and steric effects. These models have been tested using 1471 reliable measured base, acid and general base-catalyzed carboxylic acid ester hydrolysis rate constants in water and in mixed solvent systems at different temperatures. -
Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters from Volatile Organic Acids
ARTICLE Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters From Volatile Organic Acids Donovan S. Layton,1,2 Cong T. Trinh1,2,3 1 Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 2 BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 3 Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee; telephone: þ865-974-8121; fax: 865-974-7076; e-mail: [email protected] Biotechnol. Bioeng. 2016;113: 1764–1776. ABSTRACT: Volatile organic acids are byproducts of fermentative ß 2016 Wiley Periodicals, Inc. metabolism, for example, anaerobic digestion of lignocellulosic KEYWORDS: modular chassis cell; carboxylate; ester; acyl acetate; biomass or organic wastes, and are often times undesired inhibiting acyl acylate; ester fermentative pathway cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol Introduction acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic Harnessing renewable or waste feedstocks (e.g., switchgrass, corn acids to acyl CoAs and alcohols to form a combinatorial library of stover, agricultural residue, or municipal solid waste) -
Assessment of Free and Immobilized Kefir Culture in Simultaneous
LWT - Food Science and Technology 76 (2017) 67e78 Contents lists available at ScienceDirect LWT - Food Science and Technology journal homepage: www.elsevier.com/locate/lwt Assessment of free and immobilized kefir culture in simultaneous alcoholic and malolactic cider fermentations Anastasios Nikolaou a, Alex Galanis a, Maria Kanellaki b, Chrysoula Tassou c, * Konstantoula Akrida-Demertzi d, Yiannis Kourkoutas a, a Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, GR-68100, Greece b Food Biotechnology Group, Section of Analytical Environmental and Applied Chemistry, Department of Chemistry, University of Patras, Patras, GR-26500, Greece c Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DEMETER, 1 S. Venizelou Str, Lykovrissi, Athens, GR-14123, Greece d Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, Dourouti, Ioannina, GR-45110, Greece article info abstract Article history: The aim of the present study was to assess application of free or immobilized kefir culture on apple Received 30 March 2016 pieces and delignified cellulosic material (DCM) in simultaneous alcoholic and malolactic cider fer- Received in revised form mentations at a wide temperature range (5e45 C). Repeated batch fermentations were continued for 12 October 2016 higher than 7 months, showing a high operational stability of the systems and were completed in less Accepted 13 October 2016 than 24 h with immobilized cells on DCM at 37 C. Malic acid conversion up to 71.5% and ethanol Available online 15 October 2016 productivity values up to 56.9 g/(Ld) were recorded, which could be adopted by the industrial sector. -
Comprehensive Mapping of Volatile Organic Compounds in Fruits
International PhD Program in Biomolecular Sciences XXVII Cycle Comprehensive Mapping of Volatile Organic Compounds in Fruits Tutor Dr. Fulvio Mattivi Department of Food Quality and Nutrition, Fondazione Edmund Mach Advisor Prof. Vladimir Shulaev Department of Biological Sciences, University of North Texas Ph.D. Thesis of Manoj Shahaji Ghaste Department of Food Quality and Nutrition Fondazione Edmund Mach 2013-2014 This thesis is lovingly dedicated to my Mother. Her support, encouragement, belief and constant love have sustained me throughout my life. Declaration I, Manoj Shahaji Ghaste confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Thesis abstract Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory quality of fruits is widely determined by qualitative and quantitative composition of VOCs. The aroma of grape is a complex of hundreds of VOCs belonging to different chemical classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids and many more. VOCs play important role as they determine the flavor of grapes and wine made from it. The objective of this thesis is to study of VOCs through development of different mass spectrometry based analytical methodologies and its applications for the comprehensive investigation and construction of database of the VOCs in grapes. First part of the study was dedicated to generation of a database of grape VOCs through the screening of multiple grape varieties (n=124) representing different species, color and origin. The experiment was carried out using headspace solid-phase microextraction (HS-SPME) and gas chromatography mass spectrometry (GC-MS) based approach and according to metabolomics protocols. -
Effect of Thickeners and Sweeteners on the Release of Blended Aroma
Effect of thickeners and sweeteners on the release of blended aroma compounds in fat-free stirred yoghurt during shear conditions Nicolas Decourcelle, Samuel Lubbers, Nadine Vallet, Pascale Rondeau, Elisabeth Guichard To cite this version: Nicolas Decourcelle, Samuel Lubbers, Nadine Vallet, Pascale Rondeau, Elisabeth Guichard. Effect of thickeners and sweeteners on the release of blended aroma compounds in fat-free stirred yo- ghurt during shear conditions. International Dairy Journal, Elsevier, 2004, 14 (9), pp.783 - 789. 10.1016/j.idairyj.2004.02.007. hal-01413574 HAL Id: hal-01413574 https://hal.archives-ouvertes.fr/hal-01413574 Submitted on 9 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE IN PRESS International Dairy Journal 14 (2004) 783–789 Effect of thickeners and sweeteners on the release of blended aroma compounds in fat-free stirred yoghurt during shear conditions Nicolas Decourcellea, Samuel Lubbersa,*, Nadine Valletb, Pascale Rondeaub, Elisabeth Guicharda a Unite Mixte de Recharche sur les Aromes, ENESAD-INRA, 17, rue de Sully Dijon Cedex F-21065, France b UMA Danone Vitapole, RD128, Palaiseau Cedex 92767, France Received 3 July 2003; accepted 18 February 2004 Abstract The present study was conducted on aromatised fat-free stirred yoghurts and dealt with the influence of some thickeners and sweeteners on aroma compounds release and rheology. -
Stability of Volatile Profile and Sensory Properties of Passion Fruit Juice During Storage in Glass Bottles
Ciência e Tecnologia de Alimentos ISSN 0101-2061 Stability of volatile profile and sensory properties of passion fruit juice during storage in glass bottles Original Estabilidade do perfil de voláteis e propriedades sensoriais de suco de maracujá durante estocagem em garrafas de vidro Vitória Matos de FREitas1, Deborah dos Santos GARRUTI2*, Manoel Alves SOUZA NETO2, Heliofábia Virgínia de Vasconcelos FacUNDO1, José Maria CORREia1 Abstract This study aimed at assessing the stability of passion fruit juice in glass bottles during a 120-day storage period, regarding its volatile compounds profile and sensory properties (aroma and flavor). Samples were obtained from a Brazilian tropical juice industry (Fortaleza, Brazil) and submitted to sensory and chromatographic analyses. The characteristic aroma and flavor of passion fruit were evaluated by a trained panel with a non-structured scale of 9 cm. The headspace volatile compounds were isolated from the product by suction and trapped in Porapak Q, analyzed through high-resolution gas chromatography and identified through gas chromatography-mass spectrometry (GC-MS). Twelve odoriferous compounds were monitored: ethyl butanoate, ethyl propanoate, 3-methyl-1-butanol, 3-methyl-2-butenol, (E)-3-hexenol, (Z)- 3-hexenol, 3-methylbutyl acetate, benzaldehyde, ethyl hexanoate, hexyl acetate, limonene and furfural. The slight variations observed in the volatile profile were not enough to provoke significant changes in the characteristic aroma and flavor of the passion fruit juice. Keywords: Passiflora; tropical juice; packaging material; volatile compounds; sensory analysis; storage. Resumo O objetivo deste estudo foi avaliar a estabilidade do suco de maracujá em garrafas de vidro durante 120 dias de estocagem, em relação ao perfil de compostos voláteis e características sensoriais (aroma e sabor). -
Comprehensive Overview of Common E-Liquid Ingredients and How They Can Be Used to Predict an E-Liquid's Flavour Category
Original research Tob Control: first published as 10.1136/tobaccocontrol-2019-055447 on 10 February 2020. Downloaded from Comprehensive overview of common e- liquid ingredients and how they can be used to predict an e- liquid’s flavour category Erna J Z Krüsemann ,1,2 Anne Havermans ,1 Jeroen L A Pennings,1 Kees de Graaf,2 Sanne Boesveldt,2 Reinskje Talhout1 10–14 ► Additional material is ABSTRact cigarette smoking. In line with this, the use and published online only. To view Objectives Flavours increase e- cigarette attractiveness marketing of e- liquid flavours that are appealing to please visit the journal online (http:// dx. doi. org/ 10. 1136/ and use and thereby exposure to potentially toxic smokers may contribute to public health benefits. tobaccocontrol- 2019- 055447). ingredients. An overview of e- liquid ingredients is needed However, flavours may also stimulate vaping among to select target ingredients for chemical analytical and non- users, in particular young people.15–17 This is 1 Centre for Health toxicological research and for regulatory approaches concerning, as e- cigarettes are not safe10 18 19 That Protection, Rijksinstituut voor aimed at reducing e- cigarette attractiveness. Using is, chemicals in e- cigarette emissions (eg, tobacco- Volksgezondheid en Milieu, Bilthoven, The Netherlands information from e- cigarette manufacturers, we aim to specific nitrosamines, metals, aldehydes and other 2Division of Human Nutrition identify the flavouring ingredients most frequently added flavourings) can be toxic and thus harmful to and Health, Wageningen to e- liquids on the Dutch market. Additionally, we used consumers’ health.20–22 In addition, e- cigarettes University, Wageningen, The flavouring compositions to automatically classify e-liquids may facilitate smoking initiation among never- Netherlands into flavour categories, thereby generating an overview smokers.23 As a consequence, e- liquid flavours are that can facilitate market surveillance. -
Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products
Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products Edited by Enrique Durán-Guerrero and Remedios Castro-Mejías Printed Edition of the Special Issue Published in Foods www.mdpi.com/journal/foods Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products Editors Enrique Dur´an-Guerrero Remedios Castro-Mej´ıas MDPI Basel Beijing Wuhan Barcelona Belgrade Manchester Tokyo Cluj Tianjin • • • • • • • • • Editors Enrique Duran-Guerrero´ Remedios Castro-Mej´ıas University of Cadiz´ University of Cadiz´ Spain Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: https://www.mdpi.com/journal/foods/special issues/Wine Aroma). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0000-0 (Hbk) ISBN 978-3-0365-0000-0 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.