Sympathetic Input Into the Enteric Nervous System Gut: First Published As 10.1136/Gut.47.Suppl 4.Iv33 on 1 December 2000

Total Page:16

File Type:pdf, Size:1020Kb

Sympathetic Input Into the Enteric Nervous System Gut: First Published As 10.1136/Gut.47.Suppl 4.Iv33 on 1 December 2000 Gut 2000;(Suppl IV)47:iv33–iv35 iv33 Sympathetic input into the enteric nervous system Gut: first published as 10.1136/gut.47.suppl_4.iv33 on 1 December 2000. Downloaded from O Lundgren Introduction nerves to the gut elicits a blood flow response The basic concepts of the autonomic nervous which is very characteristic. Immediately on system of organs and tissues were formulated electrically stimulating the splanchnic nerves, around the turn of the century and summa- pronounced vasoconstriction is observed rised in a classical monograph by Langley which, however, subsides within a few minutes (1921).1 The detailed distribution of the to reach a steady state level of blood flow. It sympathetic nerves was, however, not eluci- seems probable that flow during steady state dated until it became possible to stain sympa- represents the “physiological” response to thetic neurones specifically using the Falck- nerve activation. Intestinal flow resistance is Hillarp technique. When this technique was thus only moderately increased (2–3 times) applied to the gastrointestinal tract the picture even when stimulating the sympathetic vaso- seen was in some respects surprising. At the constrictor nerves at high rates (8–16 Hz). time it was generally believed that most organs When investigating blood flow distribution and tissues had a dual innervation (sympa- within the intestinal wall it has been demon- thetic and parasympathetic) with opposite strated that villus blood flow is not under neu- eVects on function. It seemed, therefore, ral influence during the steady state part of puzzling when the Falck-Hillarp technique vasoconstriction. The decrease in blood flow revealed that innervation of a major part of the occurs in the crypts and muscle layers.3 gastrointestinal wall, the smooth muscle layers, The sympathetic nerves not only control was very scarce. Instead it was found that most resistance vessels; stimulation frequency de- adrenergic fibres make contact with one of the pendent constriction of the veins is observed, two major plexuses in the alimentary canal. decreasing regional blood volume by 40% at Adrenergic innervation is seen in the mucosa, most. Furthermore, the capillary filtration in particular around the crypt epithelium.2 The coeYcient is markedly decreased, which indi- functional consequences of this distribution are cates that the number of perfused capillaries is discussed below. attenuated, presumably secondary to constric- Department of This brief review of the interplay between tion of precapillary sphincters. Physiology, the sympathetic and enteric nervous systems The enteric nervous system (ENS) also con- Gothenburg will discuss the control of blood vessels, epithe- trols intestinal blood flow. In vivo studies have University, lial transport, motility, and endocrine cells (the shown that mechanical stimulation of the Medicinaregatan 11, enterochromaYn cells in particular). intestinal mucosa evokes marked vasodilata- http://gut.bmj.com/ 400 33 Gothenburg, Sweden tion. This response is apparently neurally mediated as it is abolished by nerve blocking O Lundgren Blood flow There is dense adrenergic innervation of both agents (tetrodotoxin or lidocaine). The vaso- Corresponding author: precapillary and postcapillary vessels in the dilatation cannot be blocked by cholinergic Professor O Lundgren. receptor blockers, suggesting that there is no [email protected] digestive tract. Stimulating the sympathetic cholinergic synapse in the reflex. Furthermore, SF PF SF the response is not influenced by “chronic” on September 26, 2021 by guest. Protected copyright. Myenteric denervation of the intestine, implying that plexus vasodilatation is not mediated via an axon Muscle reflex of the “classical” type. However, layer 5-hydroxytryptamine (5-HT) tachyphylaxis or serotonin receptor blockers attenuate the Submucosal vasodilatation caused by mucosal mechanical Submucosa plexus stimulation. Based on such observations it was suggested that mechanical stimulation causes release of 5-HT from enterochromaYn (EC) cells which in turn stimulate dendrites located 4 Mucosa just underneath the intestinal epithelium. This is illustrated schematically in fig lA. It should be emphasised that the detailed arrangement of this vasodilator reflex is not known. Some AB C observations made by Surprenant5 suggest the Figure 1 (A) Schematic illustration of the vasodilator reflex elicited by mechanical possibility that an axon reflex may be involved. stimulation of the intestinal mucosa. The reflex is probably activated via release of In contrast with sympathetic control of 5-hydroxytryptamine (5-HT) from enterochromaYn cells functioning as mechanoreceptors. motility and epithelial transport, vasodilatation (B) Sympathetic nervous control of secretory nervous reflexes of the enteric nervous system. Sympathetic fibres (SF) exert their action at a synapse in the submucosal plexus and evoked by mechanical mucosal stimulation is possibly also in the myenteric plexus. (C) Schematic illustration of the sympathetic control not influenced by stimulating sympathetic of gastrointestinal motility. In analogy with the sympathetic control of fluid and electrolyte transport, SF exert their control at a ganglionic site. In the figure, SF inhibits the motor activity induced by parasympathetic fibres (PF). SF may also inhibit intrinsic excitatory Abbreviations used in this paper: 5-HT, motor reflexes. Inhibitory action of a neurone is indicated by a filled circle at the end of the 5-hydroxytryptamine; EC, enterochromaYn; CNS, neurone. central nervous system; ENS, enteric nervous system. www.gutjnl.com iv34 Lundgren vasoconstrictor fibres.4 The nervous arrange- Enterochromaffin cell Gut: first published as 10.1136/gut.47.suppl_4.iv33 on 1 December 2000. Downloaded from ment of the local vasodilator mechanism is apparently organised in a diVerent way from that of motility and fluid transport. Adrenergic Cholinergic receptors receptor Fluid and electrolyte transport The morphological observations of the adren- ergic innervation briefly summarised in the introduction suggest two sites of action for the α control of epithelial transport: a direct action 2 _ on epithelial cells and an indirect action on + [cAMP] [Ca] M3 enteric neurones, in particular those of the + submucous plexus. Evidence for the latter β mechanism has been obtained in electrophysi- ological studies which have shown that the non-cholinergic submucous neurones, presum- ably controlling epithelial functions, are under Capillary adrenergic influence via inhibitory postsynap- atic potentials.6 This action evokes a decrease Figure 2 Adrenergic and cholinergic control of the release of 5-hydroxytryptamine (5-HT) from enterochromaYn in electrolyte and fluid tissue to lumen cells. cAMP,cyclic adenosine monophosphate. transport, for example. Interestingly, choliner- gic submucous neurones do not receive any smooth muscle layers in a manner similar to such innervation.6 that described for sympathetic control of fluid It is well established that many secretory and electrolyte transport (fig 1C).9 states of the intestinal tract, including cholera, It is apparent from figure 1 that sympathetic are evoked via activation of the ENS. Figure lB nervous control of epithelial transport and illustrates the simplest model for the nervous motility is organised in a similar way, namely secretory reflex of the ENS stimulated by chol- control is exerted at a synaptic site. The era toxin that can be constructed from our cur- sympathetic nerve may exert its action at a syn- rent knowledge. There is experimental evi- apse in at least two ways. It may inhibit the dence for the view that cholera toxin and some release of acetylcholine, for example, from an bile salts, at least in part, activate the ENS via intramural synapse, and/or noradrenaline re- release of 5-HT from EC cells. In line with the leased from sympathetic nerves may hyperpo- electrophysiological observation described larise the membrane potential of the postsyn- above it has been shown that splanchnic nerve aptic neurone. There is experimental evidence stimulation inhibits fluid secretion caused by for both mechanisms. ENS control of blood cholera toxin. This eVect is more pronounced flow, lacking at least a cholinergic synapse, is the higher the rate of fluid secretion and is not influenced by sympathetic neurones. probably explained by a higher activity in the http://gut.bmj.com/ ENS when toxin induced fluid secretion is EnterochromaYn cells large. Hence the sympathetic inhibitory influ- The gastrointestinal tract is the largest endo- ence is dependent on the level of activity in the crine organ in the body, containing a large secretory nervous reflexes of the ENS (fig 1B).7 number of peptides/amines located in endo- There is also experimental evidence for a direct crine cells dispersed among the transporting action of neurally released noradrenaline on epithelial cells. It is well established that diVer- crypt enterocytes although this eVect is less ent chemicals in the intestinal lumen can evoke on September 26, 2021 by guest. Protected copyright. important than the nervous eVect on the ENS. the release of specific peptides. Hence glucose Sympathetic nervous control of epithelial causes release of gastric inhibitory peptide, and fluid transport in the small intestine can be long chain fatty acids evoke release of chole- reflexly activated by deloading baroreceptors in cystokinin and neurotensin. Endocrine cells the aorta and neck arteries and/or intrathoracic may also be sensitive to luminal physical
Recommended publications
  • General Principles of GIT Physiology Objectives
    General Principles of GIT Physiology Objectives: ❖ Physiologic Anatomy of the Gastrointestinal Wall. ❖ The General & Specific Characteristics of Smooth Muscle. ❖ Neural & Hormonal Control of Gastrointestinal Function. ❖ Types of Neurotransmitters Secreted by Enteric Neurons. ❖ Functional Types of Movements in the GIT. ❖ Gastrointestinal Blood Flow "Splanchnic Circulation". ❖ Effect of Gut Activity and Metabolic Factors on GI Blood Flow. Done by : ➔ Team leader: Rahaf AlShammari ➔ Team members: ◆ Renad AlMigren, Rinad Alghoraiby ◆ Yazeed AlKhayyal, Hesham AlShaya Colour index: ◆ Turki AlShammari, Abdullah AlZaid ● Important ◆ Dana AlKadi, Alanoud AlEssa ● Numbers ◆ Saif AlMeshari, Ahad AlGrain ● Extra َ Abduljabbar AlYamani ◆ َوأن َّل ْي َ َس ِلْ ِْلن َسا ِنَ ِإََّلَ َما َس َع ىَ Gastrointestinal System: GIT Gastrointestinal System Associated Organs (Liver,gallbladder,pancreas,salivary gland) Gastrointestinal Function: ● The alimentary tract provides the body with a continual supply of water, electrolytes, and nutrients. To achieve this function, it requires: 1 Movement of food through the alimentary tract (motility). 2 Secretion of digestive juices and digestion of the food. 3 Absorption of water, various electrolytes, and digestive products. 4 Circulation of blood through the gastrointestinal organs to carry away the absorbed substances. ● Control of all these functions is by local, nervous, and hormonal systems. The Four Processes Carried Out by the GIT: 2 Physiologic Anatomy of the Gastrointestinal Wall ● The following layers structure the GI wall from inner surface outward: ○ The mucosa ○ The submucosa ○ Circular muscle layer ○ longitudinal muscle layer Same layers in Same layers Histology lecture Histology ○ The serosa. ● In addition, sparse bundles of smooth muscle fibers, the mucosal muscle, lie in the deeper layers of the mucosa. The General Characteristics of Smooth Muscle 1- Two Smooth Muscle Classification: Unitary type ● Contracts spontaneously in response to stretch, in the Rich in gap junctions absence of neural or hormonal influence.
    [Show full text]
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • General Principles of GIT Physiology
    LECTURE I: General Principles of GIT Physiology EDITING FILE IMPORTANT MALE SLIDES EXTRA FEMALE SLIDES LECTURER’S NOTES 1 GENERAL PRINCIPlES OF GIT PHYSIOLOGY Lecture One OBJECTIVES • Physiologic Anatomy of the Gastrointestinal Wall • The General/specific Characteristics of Smooth Muscle • Smooth muscle cell classifications and types of contraction • Muscle layers in GI wall • Electrical Activity of Gastrointestinal Smooth Muscle • Slow Waves and spike potentials • Calcium Ions and Muscle Contraction • Neural Control of Gastrointestinal Function-Enteric Nervous System (ENS) • Differences Between the Myenteric and Submucosal Plexuses • Types of Neurotransmitters Secreted by Enteric Neurons • Autonomic Control of the Gastrointestinal Tract • Hormonal Control of Gastrointestinal Motility • Functional Types of Movements in the GI Tract • Gastrointestinal Blood Flow (Splanchnic Circulation) • Effects of Gut Activity and Metabolic Factors on Gastrointestinal Blood Flow Case Study Term baby boy born to a 29 year old G2P1+ 0 by NSVD found to have features of Down’s syndrome. At 30 hours of age Baby was feeding well but didn’t pass meconium. On examination abdomen distended. Anus patent in normal position. During PR examination passed gush of meconium. Diagnosis: Hirschsprung disease. Figure 1-1 It is a developmental disorder characterized by the absence of ganglia in the distal colon, resulting in a functional obstruction. Gastrointestinal Tract (GIT) ★ A hollow tube from mouth to anus ★ Hollow organs are separated from each other at key locations by sphincters. System Gastrointestinal Accessory (Glands & Organs) ★ Produce secretions. Figure 1-2 2 GENERAL PRINCIPlES OF GIT PHYSIOLOGY Lecture One Functions of the GI System (Alimentary Tract) provides the body with a continual supply of Water Electrolytes Nutrients ★ To achieve this function it requires: 1 Movement of food through the alimentary tract (motility).
    [Show full text]
  • EFSUMB Recommendations and Guidelines for Gastrointestinal Ultrasound EFSUMB-Empfehlungen Und Leitlinien Des Gastrointestinalen
    Guidelines & Recommendations EFSUMB Recommendations and Guidelines for Gastrointestinal Ultrasound Part 1: Examination Techniques and Normal Findings (Long version) EFSUMB-Empfehlungen und Leitlinien des Gastrointestinalen Ultraschalls Teil 1: Untersuchungstechniken und Normalbefund (Langversion) Authors Kim Nylund1, Giovanni Maconi2, Alois Hollerweger3,TomasRipolles4, Nadia Pallotta5, Antony Higginson6, Carla Serra7, Christoph F. Dietrich8,IoanSporea9,AdrianSaftoiu10, Klaus Dirks11, Trygve Hausken12, Emma Calabrese13, Laura Romanini14, Christian Maaser15, Dieter Nuernberg16, Odd Helge Gilja17 Affiliations and Department of Clinical Medicine, University of Bergen, 1 National Centre for Ultrasound in Gastroenterology, Norway Haukeland University Hospital, Bergen, Norway Key words 2 Gastroenterology Unit, Department of Biomedical and guideline, ultrasound, gastrointestinal, examination Clinical Sciences, “L.Sacco” University Hospital, Milan, Italy technique, normal variants 3 Department of Radiology, Hospital Barmherzige Brüder, Salzburg, Austria received 24.06.2016 4 Department of Radiology, Hospital Universitario Doctor accepted 09.08.2016 Peset, Valencia, Spain 5 Department of Internal Medicine and Medical Specialties, Bibliography Sapienza University of Rome, Roma, Italy DOI https://doi.org/10.1055/s-0042-115853 6 Department of Radiology, Queen Alexandra Hospital, Published online: September 07, 2016 | Ultraschall in Med Portsmouth Hospitals NHS Trust, Portsmouth, United 2017; 38: e1–15 © Georg Thieme Verlag KG, Stuttgart · New Kingdom
    [Show full text]
  • Duodenal Leiomyoma: a Rare Cause of Gastrointestinal Haemorrhage S Sahu, S Raghuvanshi, P Sachan, D Bahl
    The Internet Journal of Surgery ISPUB.COM Volume 11 Number 2 Duodenal Leiomyoma: A Rare Cause Of Gastrointestinal Haemorrhage S Sahu, S Raghuvanshi, P Sachan, D Bahl Citation S Sahu, S Raghuvanshi, P Sachan, D Bahl. Duodenal Leiomyoma: A Rare Cause Of Gastrointestinal Haemorrhage. The Internet Journal of Surgery. 2006 Volume 11 Number 2. Abstract Benign neoplasms of smooth muscles of the duodenum are a rare condition. A 60-year-old male presented with recurrent history of melaena. Upper GI endoscopy showed a smooth bulging in the second part of the duodenum. Contrast enhanced CT scan of the abdomen showed a lobulated duodenal wall thickening in the second part of the duodenum causing luminal distortion without any exoenteric component and local infiltration, suggestive of leiomyoma. Awareness and proper evaluation of patients with upper gastrointestinal bleeding may help in diagnosing this rare condition. INTRODUCTION Figure 1 Leiomyomas are benign neoplasms of smooth muscles that Figure 1: Contrast enhanced computed tomography of the abdomen showing duodenal wall thickening in the second commonly arise in tissues with a high content of smooth part. muscles such as uterus. CASE A 60-year-old male presented with recurrent history of malaena and pain in the upper abdomen since one year. Examination revealed a moderate degree of pallor and tenderness in the right hypochondrium. Investigations showed a haemoglobin of 7.5gm/dl, a total leukocyte count of 9500/cu.mm and a differential count with neutrophils 63%, lymphocytes 31%, eosinophils 4% and basophils 2%. Liver and renal function tests were within normal limits. Upper GI endoscopy was planned which showed a smooth bulging in the second part of the duodenum.
    [Show full text]
  • Goblet Cell LRRC26 Regulates BK Channel Activation and Protects Against Colitis in Mice
    Goblet cell LRRC26 regulates BK channel activation and protects against colitis in mice Vivian Gonzalez-Pereza,1, Pedro L. Martinez-Espinosaa, Monica Sala-Rabanala, Nikhil Bharadwaja, Xiao-Ming Xiaa, Albert C. Chena,b, David Alvaradoc, Jenny K. Gustafssonc,d,e, Hongzhen Hua, Matthew A. Ciorbab, and Christopher J. Linglea aDepartment of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; bMcKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130; cDepartment of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; dDepartment of Medical Chemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden; and eDepartment of Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved December 21, 2020 (received for review September 16, 2020) Goblet cells (GCs) are specialized cells of the intestinal epithelium Despite this progress, ionic transport in GCs and its implications contributing critically to mucosal homeostasis. One of the func- in GC physiology is a topic that remains poorly understood. tions of GCs is to produce and secrete MUC2, the mucin that forms Here, we address the role of the Ca2+- and voltage-activated K+ the scaffold of the intestinal mucus layer coating the epithelium channel (BK channel) in GCs. and separates the luminal pathogens and commensal microbiota GCs play two primary roles: One related to the maintenance from the host tissues. Although a variety of ion channels and of the mucosal barrier (reviewed in refs.
    [Show full text]
  • Enteric Nervous System (ENS): 1) Myenteric (Auerbach) Plexus & 2
    Enteric Nervous System (ENS): 1) Myenteric (Auerbach) plexus & 2) Submucosal (Meissner’s) plexus à both triggered by sensory neurons with chemo- and mechanoreceptors in the mucosal epithelium; effector motors neurons of the myenteric plexus control contraction/motility of the GI tract, and effector motor neurons of the submucosal plexus control secretion of GI mucosa & organs. Although ENS neurons can function independently, they are subject to regulation by ANS. Autonomic Nervous System (ANS): 1) parasympathetic (rest & digest) – can innervate the GI tract and form connections with ENS neurons that promote motility and secretion, enhancing/speeding up the process of digestion 2) sympathetic (fight or flight) – can innervate the GI tract and inhibit motility & secretion by inhibiting neurons of the ENS Sections and dimensions of the GI tract (alimentary canal): Esophagus à ~ 10 inches Stomach à ~ 12 inches and holds ~ 1-2 L (full) up to ~ 3-4 L (distended) Duodenum à first 10 inches of the small intestine Jejunum à next 3 feet of small intestine (when smooth muscle tone is lost upon death, extends to 8 feet) Ileum à final 6 feet of small intestine (when smooth muscle tone is lost upon death, extends to 12 feet) Large intestine à 5 feet General Histology of the GI Tract: 4 layers – Mucosa, Submucosa, Muscularis Externa, and Serosa Mucosa à epithelium, lamina propria (areolar connective tissue), & muscularis mucosae Submucosa à areolar connective tissue Muscularis externa à skeletal muscle (in select parts of the tract); smooth muscle (at least 2 layers – inner layer of circular muscle and outer layer of longitudinal muscle; stomach has a third layer of oblique muscle under the circular layer) Serosa à superficial layer made of areolar connective tissue and simple squamous epithelium (a.k.a.
    [Show full text]
  • The Influence of the Pharmaceutical Industry on Medicine, As Exemplified by Proton Pump Inhibitors
    The Influence of the Pharmaceutical Industry on Medicine, as Exemplified by Proton Pump Inhibitors The Influence of the Pharmaceutical Industry on Medicine, as Exemplified by Proton Pump Inhibitors By Helge L. Waldum The Influence of the Pharmaceutical Industry on Medicine, as Exemplified by Proton Pump Inhibitors By Helge L. Waldum This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by Helge L. Waldum All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-5882-7 ISBN (13): 978-1-5275-5882-3 CONTENTS Acknowledgements .................................................................................. vii Preface ....................................................................................................... ix Chapter 1 .................................................................................................... 1 Background References ............................................................................................. 7 Chapter 2 .................................................................................................... 9 Gastric Juice and its Function Regulation of gastric acid secretion
    [Show full text]
  • 1 the Anatomy and Physiology of the Oesophagus
    111 2 3 1 4 5 6 The Anatomy and Physiology of 7 8 the Oesophagus 9 1011 Peter J. Lamb and S. Michael Griffin 1 2 3 4 5 6 7 8 911 2011 location deep within the thorax and abdomen, 1 Aims a close anatomical relationship to major struc- 2 tures throughout its course and a marginal 3 ● To develop an understanding of the blood supply, the surgical exposure, resection 4 surgical anatomy of the oesophagus. and reconstruction of the oesophagus are 5 ● To establish the normal physiology and complex. Despite advances in perioperative 6 control of swallowing. care, oesophagectomy is still associated with the 7 highest mortality of any routinely performed ● To determine the structure and function 8 elective surgical procedure [1]. of the antireflux barrier. 9 In order to understand the pathophysiol- 3011 ● To evaluate the effect of surgery on the ogy of oesophageal disease and the rationale 1 function of the oesophagus. for its medical and surgical management a 2 basic knowledge of oesophageal anatomy and 3 physiology is essential. The embryological 4 Introduction development of the oesophagus, its anatomical 5 structure and relationships, the physiology of 6 The oesophagus is a muscular tube connecting its major functions and the effect that surgery 7 the pharynx to the stomach and measuring has on them will all be considered in this 8 25–30 cm in the adult. Its primary function is as chapter. 9 a conduit for the passage of swallowed food and 4011 fluid, which it propels by antegrade peristaltic 1 contraction. It also serves to prevent the reflux Embryology 2 of gastric contents whilst allowing regurgita- 3 tion, vomiting and belching to take place.
    [Show full text]
  • The Relationship Between Duodenal Enterochromaffin Cell Distribution
    The Relationship Between Duodenal Enterochromaffin Cell Distribution and Degree of Inflammatory Bowel Disease (IBD) In Dogs 1 2 2 2 3 2 2 Twito, R., Famigli Bergamini,, P., Galiazzo, G., Peli, A., Cocchi, M., Bettini, G., Chiocchetti, R., Bresciani, F.2 and Pietra, M.2 * 1 Private Practitioner, Tierklinik Dr. Krauß, Düsseldorf GmbH, Germany. 2 Departement of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, Ozzano dell’Emilia (BO), Italy. 3 L.U.DE.S. University, Lugano, Switzerland. * Corresponding Author: Prof. Marco Pietra, University of Bologna, School of Agriculture and Veterinary Medicine, Department of Veterinary Medical Sciences, Ozzano dell’Emilia (BO), Italy. Tel.+39 051 20 9 7303, Fax +39 051 2097038. Email: [email protected] ABSTRACT Despite numerous studies carried out over the last 15 years in veterinary medicine, the pathogenesis of canine Inflammatory Bowel Disease (IBD) has still not been completely elucidated. In particular, unlike what has been demonstrated in human medicine, the influence of serotonin on clinical signs in canine IBD has not yet been clarified. The objective of this paper has been to seek a possible correlation between duodenal epithelial distribution of serotonin-producing cells (enterochromaffin cells) and disease-grading parameters (clinical, clinico-pathological, endoscopic and histopathological) in dogs with IBD. The medical records of dogs with a diagnosis of IBD were retrospectively reviewed and 21 client-owned dogs with a diagnosis of IBD were registered. Clinical score (by Canine Chronic Enteropathy Clinical Activity Index), laboratory examinations (albumin, total cholesterol, folate, cobalamin), endoscopic score and histopathological score, were compared by regression analysis with duodenal enterochromaffin cell percentage.
    [Show full text]
  • NROSCI/BIOSC 1070 and MSNBIO 2070 November 15, 2017 Gastrointestinal 1 Functions of the Digestive Tract
    NROSCI/BIOSC 1070 and MSNBIO 2070 November 15, 2017 Gastrointestinal 1 Functions of the Digestive Tract. The digestive system has two primary roles: digestion, or the chemical and mechanical breakdown of foods into small molecules that can absorbed, or moved across the intestinal mucosa into the bloodstream. In order to accomplish these functions, the secretion of enzymes, hormones, mucus, and paracrines by the gastrointestinal organs is needed. Furthermore, motility, or controlled movement of materials through the digestive tract is required. In addition to these primary functions, the gastrointestinal tract faces a number of challenges. Almost 7 liters of fluid must be released into the lumen of the digestive tract per day to allow for digestion and absorption to occur. Clearly, most of this fluid must be reabsorbed or dehydration will occur. Furthermore, the inner surface of the digestive tract is technically in contact with the external environment; for this reason, protective mechanisms are needed. In part, these mechanisms must protect against the secretions of the GI tract, including acid and enzymes. Anatomy of the Gastrointestinal System November 15, 2017 Page 1 GI 1 The anatomy of the GI system is illustrated in the previous 2 figures. The organs involved in digestion and absorption include the salivary glands, esophagus, stomach, small intestine, liver, pancreas, and large intestine. In addition, 7 sphincters control the movement of material and secretions between the organs. The total length of the GI tract is about 15 feet, of which 13 feet are comprised of intestine. The processed material within the GI tract is referred to as chyme.
    [Show full text]
  • Interactions of the Enteric Nervous System with the Gut Microbiome in the Neuroligin-3 R451C Mouse Model of Autism
    Interactions of the enteric nervous system with the gut microbiome in the neuroligin-3R451C mouse model of autism M.H.M. Madusani Herath Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy September 2020 Department of Physiology The University of Melbourne ABSTRACT Autism patients are four times more likely to be hospitalized due to gastrointestinal (GI) dysfunction compared to the general public. However, the exact cause of GI dysfunction in individuals with autism is currently unknown. Genetic predisposition to autism spectrum disorder (ASD) has been highlighted in various studies and mutations in genes that affect nervous system function can drive both behavioural abnormalities and GI dysfunction in autism. Neuroligin-3 (NLGN3) is a postsynaptic membrane protein and the R451C missense mutation in the NLGN3 gene is associated with ASD. Recent studies revealed that the NLGN3 R451C mutation induces GI dysfunction in autism patients as well as in mice but, the cellular localization and the effects of this mutation on NLGN3 production in the enteric nervous system (ENS) have not been reported to date. The intestinal mucosal barrier is the interface separating the external environment from the interior of the body. Mucosal barrier functions are directly regulated by the enteric nervous system. Therefore, ENS dysfunction can induce mucosal barrier impairments. An impaired intestinal barrier has been reported in autism patients, but neurally-mediated barrier dysfunctions have not been assessed in transgenic autism mouse models with an altered nervous system. The intestinal mucus layer is the outermost layer of the mucosa which separates the intestinal microbiota from the intestinal epithelium.
    [Show full text]