Genetics: Published Articles Ahead of Print, published on July 30, 2012 as 10.1534/genetics.112.142802 Comparative oncogenomics implicates the Neurofibromin 1 gene (NF1) as a breast cancer driver Marsha D. Wallace1,2, Adam D. Pfefferle3,4 ^, Lishuang Shen1^, Adrian J. McNairn1, Ethan G. Cerami5, Barbara L. Fallon1, Vera D. Rinaldi1, Teresa L. Southard1,6, Charles M. Perou3,4,7, John C. Schimenti1,2,8 1Department of Biomedical Sciences 2Department of Molecular Biology and Genetics 6Section of Anatomic Pathology 8Center for Vertebrate Genomics Cornell University, Ithaca, NY 14853 3Department of Pathology and Laboratory Medicine 4Lineberger Comprehensive Cancer Center 7Department of Genetics University of North Carolina, Chapel Hill, NC 27514 5Memorial Sloan-Kettering Cancer Center, New York, NY 10065 1 Copyright 2012. ^ Contributed equally to this paper Running Title: NF1 deletion in breast cancer Key Words: breast cancer; mouse genetics; neurofibromin; NF1; genomic instability. Corresponding author: John Schimenti, Ph.D. Cornell Univ. College of Veterinary Medicine Ithaca, NY 14850 email:
[email protected] phone 607-253-3636 Fax 607-253-3789 2 ABSTRACT Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases.