Offensive Anti-‐Botnet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress
Order Code RL32114 Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress Updated January 29, 2008 Clay Wilson Specialist in Technology and National Security Foreign Affairs, Defense, and Trade Division Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress Summary Cybercrime is becoming more organized and established as a transnational business. High technology online skills are now available for rent to a variety of customers, possibly including nation states, or individuals and groups that could secretly represent terrorist groups. The increased use of automated attack tools by cybercriminals has overwhelmed some current methodologies used for tracking Internet cyberattacks, and vulnerabilities of the U.S. critical infrastructure, which are acknowledged openly in publications, could possibly attract cyberattacks to extort money, or damage the U.S. economy to affect national security. In April and May 2007, NATO and the United States sent computer security experts to Estonia to help that nation recover from cyberattacks directed against government computer systems, and to analyze the methods used and determine the source of the attacks.1 Some security experts suspect that political protestors may have rented the services of cybercriminals, possibly a large network of infected PCs, called a “botnet,” to help disrupt the computer systems of the Estonian government. DOD officials have also indicated that similar cyberattacks from individuals and countries targeting economic, -
Botection: Bot Detection by Building Markov Chain Models of Bots Network Behavior Bushra A
BOTection: Bot Detection by Building Markov Chain Models of Bots Network Behavior Bushra A. Alahmadi Enrico Mariconti Riccardo Spolaor University of Oxford, UK University College London, UK University of Oxford, UK [email protected] [email protected] [email protected] Gianluca Stringhini Ivan Martinovic Boston University, USA University of Oxford, UK [email protected] [email protected] ABSTRACT through DDoS (e.g. DDoS on Estonia [22]), email spam (e.g. Geodo), Botnets continue to be a threat to organizations, thus various ma- ClickFraud (e.g. ClickBot), and spreading malware (e.g. Zeus). 10,263 chine learning-based botnet detectors have been proposed. How- malware botnet controllers (C&C) were blocked by Spamhaus Mal- ever, the capability of such systems in detecting new or unseen ware Labs in 2018 alone, an 8% increase from the number of botnet 1 botnets is crucial to ensure its robustness against the rapid evo- C&Cs seen in 2017. Cybercriminals are actively monetizing bot- lution of botnets. Moreover, it prolongs the effectiveness of the nets to launch attacks, which are evolving significantly and require system in detecting bots, avoiding frequent and time-consuming more effective detection mechanisms capable of detecting those classifier re-training. We present BOTection, a privacy-preserving which are new or unseen. bot detection system that models the bot network flow behavior Botnets rely heavily on network communications to infect new as a Markov Chain. The Markov Chains state transitions capture victims (propagation), to communicate with the C&C server, or the bots’ network behavior using high-level flow features as states, to perform their operational task (e.g. -
The Downadup Codex a Comprehensive Guide to the Threat’S Mechanics
Security Response The Downadup Codex A comprehensive guide to the threat’s mechanics. Edition 2.0 Introduction Contents Introduction.............................................................1 Since its appearance in late-2008, the Downadup worm has become Editor’s Note............................................................5 one of the most wide-spread threats to hit the Internet for a number of Increase in exploit attempts against MS08-067.....6 years. A complex piece of malicious code, this threat was able to jump W32.Downadup infection statistics.........................8 certain network hurdles, hide in the shadows of network traffic, and New variants of W32.Downadup.B find new ways to propagate.........................................10 defend itself against attack with a deftness not often seen in today’s W32.Downadup and W32.Downadup.B threat landscape. Yet it contained few previously unseen features. What statistics................................................................12 set it apart was the sheer number of tricks it held up its sleeve. Peer-to-peer payload distribution...........................15 Geo-location, fingerprinting, and piracy...............17 It all started in late-October of 2008, we began to receive reports of A lock with no key..................................................19 Small improvements yield big returns..................21 targeted attacks taking advantage of an as-yet unknown vulnerability Attempts at smart network scanning...................23 in Window’s remote procedure call (RPC) service. Microsoft quickly Playing with Universal Plug and Play...................24 released an out-of-band security patch (MS08-067), going so far as to Locking itself out.................................................27 classify the update as “critical” for some operating systems—the high- A new Downadup variant?......................................29 Advanced crypto protection.................................30 est designation for a Microsoft Security Bulletin. -
Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G
Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G. van Eeten, Delft University of Technology https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/asghari This paper is included in the Proceedings of the 24th USENIX Security Symposium August 12–14, 2015 • Washington, D.C. ISBN 978-1-939133-11-3 Open access to the Proceedings of the 24th USENIX Security Symposium is sponsored by USENIX Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere and Michel J.G. van Eeten Delft University of Technology Abstract more sophisticated C&C mechanisms that are increas- ingly resilient against takeover attempts [30]. Research on botnet mitigation has focused predomi- In pale contrast to this wealth of work stands the lim- nantly on methods to technically disrupt the command- ited research into the other side of botnet mitigation: and-control infrastructure. Much less is known about the cleanup of the infected machines of end users. Af- effectiveness of large-scale efforts to clean up infected ter a botnet is successfully sinkholed, the bots or zom- machines. We analyze longitudinal data from the sink- bies basically remain waiting for the attackers to find hole of Conficker, one the largest botnets ever seen, to as- a way to reconnect to them, update their binaries and sess the impact of what has been emerging as a best prac- move the machines out of the sinkhole. This happens tice: national anti-botnet initiatives that support large- with some regularity. The recent sinkholing attempt of scale cleanup of end user machines. -
Undergraduate Report
UNDERGRADUATE REPORT Attack Evolution: Identifying Attack Evolution Characteristics to Predict Future Attacks by MaryTheresa Monahan-Pendergast Advisor: UG 2006-6 IINSTITUTE FOR SYSTEMSR RESEARCH ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical, heterogeneous and dynamic problems of engineering technology and systems for industry and government. ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol- ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center. Web site http://www.isr.umd.edu Attack Evolution 1 Attack Evolution: Identifying Attack Evolution Characteristics To Predict Future Attacks MaryTheresa Monahan-Pendergast Dr. Michel Cukier Dr. Linda C. Schmidt Dr. Paige Smith Institute of Systems Research University of Maryland Attack Evolution 2 ABSTRACT Several approaches can be considered to predict the evolution of computer security attacks, such as statistical approaches and “Red Teams.” This research proposes a third and completely novel approach for predicting the evolution of an attack threat. Our goal is to move from the destructive nature and malicious intent associated with an attack to the root of what an attack creation is: having successfully solved a complex problem. By approaching attacks from the perspective of the creator, we will chart the way in which attacks are developed over time and attempt to extract evolutionary patterns. These patterns will eventually -
2015 Threat Report Provides a Comprehensive Overview of the Cyber Threat Landscape Facing Both Companies and Individuals
THREAT REPORT 2015 AT A GLANCE 2015 HIGHLIGHTS A few of the major events in 2015 concerning security issues. 08 07/15: Hacking Team 07/15: Bugs prompt 02/15: Europol joint breached, data Ford, Range Rover, 08/15: Google patches op takes down Ramnit released online Prius, Chrysler recalls Android Stagefright botnet flaw 09/15: XcodeGhost 07/15: Android 07/15: FBI Darkode tainted apps prompts Stagefright flaw 08/15: Amazon, ENFORCEMENT bazaar shutdown ATTACKS AppStore cleanup VULNERABILITY reported SECURITYPRODUCT Chrome drop Flash ads TOP MALWARE BREACHING THE MEET THE DUKES FAMILIES WALLED GARDEN The Dukes are a well- 12 18 resourced, highly 20 Njw0rm was the most In late 2015, the Apple App prominent new malware family in 2015. Store saw a string of incidents where dedicated and organized developers had used compromised tools cyberespionage group believed to be to unwittingly create apps with malicious working for the Russian Federation since behavior. The apps were able to bypass at least 2008 to collect intelligence in Njw0rm Apple’s review procedures to gain entry support of foreign and security policy decision-making. Angler into the store, and from there into an ordinary user’s iOS device. Gamarue THE CHAIN OF THE CHAIN OF Dorkbot COMPROMISE COMPROMISE: 23 The Stages 28 The Chain of Compromise Nuclear is a user-centric model that illustrates Kilim how cyber attacks combine different Ippedo techniques and resources to compromise Dridex devices and networks. It is defined by 4 main phases: Inception, Intrusion, WormLink Infection, and Invasion. INCEPTION Redirectors wreak havoc on US, Europe (p.28) INTRUSION AnglerEK dominates Flash (p.29) INFECTION The rise of rypto-ransomware (p.31) THREATS BY REGION Europe was particularly affected by the Angler exploit kit. -
Power-Law Properties in Indonesia Internet Traffic. Why Do We Care About It
by Bisyron Wahyudi Muhammad Salahuddien Amount of malicious traffic circulating on the Internet is increasing significantly. Increasing complexity and rapid change in hosts and networks technology suggests that there will be new vulnerabilities. Attackers have interest in identifying networks and hosts to expose vulnerabilities : . Network scans . Worms . Trojans . Botnet Complicated methods of attacks make difficult to identify the real attacks : It is not simple as filtering out the traffic from some sources Security is implemented like an “add on” module for the Internet. Understanding nature behavior of malicious sources and targeted ports is important to minimize the damage by build strong specific security rules and counter measures Help the cyber security policy-making process, and to raise public awareness Questions : . Do malicious sources generate the attacks uniformly ? . Is there any pattern specific i.e. recurrence event ? . Is there any correlation between the number of some attacks over specific time ? Many systems and phenomena (events) are distributed according to a “power law” When one quantity (say y) depends on another (say x) raised to some power, we say that y is described by a power law A power law applies to a system when: . large is rare and . small is common Collection of System logs from Networked Intrusion Detection System (IDS) The NIDS contains 11 sensors installed in different core networks in Indonesian ISP (NAP) Period : January, 2012 - September, 2012 . Available fields : ▪ Event Message, Timestamp, Dest. IP, Source IP, Attacks Classification, Priority, Protocol, Dest. Port/ICMP code, Source Port/ICMP type, Sensors ID Two quantities x and y are related by a power law if y is proportional to x(-c) for a constant c y = .x(-c) If x and y are related by a power law, then the graph of log(y) versus log(x) is a straight line log(y) = -c.log(x) + log() The slope of the log-log plot is the power exponent c Destination Port Distribution . -
Miscellaneous: Malware Cont'd & Start on Bitcoin
Miscellaneous: Malware cont’d & start on Bitcoin CS 161: Computer Security Prof. Raluca Ada Popa April 19, 2018 Credit: some slides are adapted from previous offerings of this course Viruses vs. Worms VIRUS WORM Propagates By infecting Propagates automatically other programs By copying itself to target systems Usually inserted into A standalone program host code (not a standalone program) Another type of virus: Rootkits Rootkit is a ”stealthy” program designed to give access to a machine to an attacker while actively hiding its presence Q: How can it hide itself? n Create a hidden directory w /dev/.liB, /usr/src/.poop and similar w Often use invisiBle characters in directory name n Install hacked Binaries for system programs such as netstat, ps, ls, du, login Q: Why does it Become hard to detect attacker’s process? A: Can’t detect attacker’s processes, files or network connections By running standard UNIX commands! slide 3 Sony BMG copy protection rootkit scandal (2005) • Sony BMG puBlished CDs that apparently had copy protection (for DRM). • They essentially installed a rootkit which limited user’s access to the CD. • It hid processes that started with $sys$ so a user cannot disaBle them. A software engineer discovered the rootkit, it turned into a Big scandal Because it made computers more vulneraBle to malware Q: Why? A: Malware would choose names starting with $sys$ so it is hidden from antivirus programs Sony BMG pushed a patch … But that one introduced yet another vulneraBility So they recalled the CDs in the end Detecting Rootkit’s -
The Blaster Worm: Then and Now
Worms The Blaster Worm: Then and Now The Blaster worm of 2003 infected at least 100,000 Microsoft Windows systems and cost millions in damage. In spite of cleanup efforts, an antiworm, and a removal tool from Microsoft, the worm persists. Observing the worm’s activity can provide insight into the evolution of Internet worms. MICHAEL n Wednesday, 16 July 2003, Microsoft and continued to BAILEY, EVAN Security Bulletin MS03-026 (www. infect new hosts COOKE, microsoft.com/security/incident/blast.mspx) more than a year later. By using a wide area network- FARNAM O announced a buffer overrun in the Windows monitoring technique that observes worm infection at- JAHANIAN, AND Remote Procedure Call (RPC) interface that could let tempts, we collected observations of the Blaster worm DAVID WATSON attackers execute arbitrary code. The flaw, which the during its onset in August 2003 and again in August 2004. University of Last Stage of Delirium (LSD) security group initially This let us study worm evolution and provides an excel- Michigan uncovered (http://lsd-pl.net/special.html), affected lent illustration of a worm’s four-phase life cycle, lending many Windows operating system versions, including insight into its latency, growth, decay, and persistence. JOSE NAZARIO NT 4.0, 2000, and XP. Arbor When the vulnerability was disclosed, no known How the Blaster worm attacks Networks public exploit existed, and Microsoft made a patch avail- The initial Blaster variant’s decompiled source code re- able through their Web site. The CERT Coordination veals its unique behavior (http://robertgraham.com/ Center and other security organizations issued advisories journal/030815-blaster.c). -
Detecting Botnets Using File System Indicators
Detecting botnets using file system indicators Master's thesis University of Twente Author: Committee members: Peter Wagenaar Prof. Dr. Pieter H. Hartel Dr. Damiano Bolzoni Frank Bernaards LLM (NHTCU) December 12, 2012 Abstract Botnets, large groups of networked zombie computers under centralised control, are recognised as one of the major threats on the internet. There is a lot of research towards ways of detecting botnets, in particular towards detecting Command and Control servers. Most of the research is focused on trying to detect the commands that these servers send to the bots over the network. For this research, we have looked at botnets from a botmaster's perspective. First, we characterise several botnet enhancing techniques using three aspects: resilience, stealth and churn. We see that these enhancements are usually employed in the network communications between the C&C and the bots. This leads us to our second contribution: we propose a new botnet detection method based on the way C&C's are present on the file system. We define a set of file system based indicators and use them to search for C&C's in images of hard disks. We investigate how the aspects resilience, stealth and churn apply to each of the indicators and discuss countermeasures botmasters could take to evade detection. We validate our method by applying it to a test dataset of 94 disk images, 16 of which contain C&C installations, and show that low false positive and false negative ratio's can be achieved. Approaching the botnet detection problem from this angle is novel, which provides a basis for further research. -
Transition Analysis of Cyber Attacks Based on Long-Term Observation—
2-3 nicterReport —TransitionAnalysisofCyberAttacksBasedon Long-termObservation— NAKAZATO Junji and OHTAKA Kazuhiro In this report, we provide a statistical data concerning cyber attacks and malwares based on a long-term network monitoring on the nicter. Especially, we show a continuous observation report of Conficker, which is a pandemic malware since November 2008. In addition, we report a transition analysis of the scale of botnet activities. Keywords Incident analysis, Darknet, Network monitoring, Malware analysis 1 Introduction leverages the traffic as detected by the four black hole sensors placed on different network We have been monitoring the IP address environments as shown by Fig. 1. space that is reachable and unused on the ● Sensor I : Structure where live nets and Internet (i.e. darknets) on a large-scale to darknets coexist in a class B understand the overall impact inflicted by network infectious activities including malware. This ● Sensor II : Structure where only darknets report analyzes the darknet traffic that has exist in a class B network been monitored and accumulated over six ● Sensor III : Structure where a /24 subnet years by an incident analysis center named in a class B network is a dark- *1 the nicter[1][2] to provide changing trends of net cyber attacks and fluctuation of attacker host ● Sensor IV : Structure where live nets and activities as obtained by long-term monitor- darknets coexist in a class B ing. In particular, we focus on Conficker, a network worm that has triggered large-scale infections The traffic obtained by these four sensors since November 2008, and report its impact on is analyzed by different analysis engines[3][4] the Internet and its current activities. -
Modeling and Evaluating the Resilience of Peer-To-Peer Botnets
P2PWNED: Modeling and Evaluating the Resilience of Peer-to-Peer Botnets Christian Rossow∗‡, Dennis Andriesse‡, Tillmann Werner¶, Brett Stone-Gross†, Daniel Plohmann§, Christian J. Dietrich∗, Herbert Bos‡ ∗ Institute for Internet Security, Gelsenkirchen, Germany {rossow,dietrich}@internet-sicherheit.de ‡ VU University Amsterdam, The Netherlands {d.a.andriesse,h.j.bos}@vu.nl § Fraunhofer FKIE, Bonn, Germany, [email protected] † Dell SecureWorks, [email protected] ¶ CrowdStrike, Inc. Abstract—Centralized botnets are easy targets for takedown disrupted using the traditional approach of attacking critical efforts by computer security researchers and law enforcement. centralized infrastructure. Thus, botnet controllers have sought new ways to harden the Even though active P2P botnets such as the Zeus P2P infrastructures of their botnets. In order to meet this objective, some botnet operators have (re)designed their botnets to use variant, Sality, ZeroAccess and Kelihos have survived in the Peer-to-Peer (P2P) infrastructures. Many P2P botnets are far wild for as long as five years, relatively little is known about more resilient to takedown attempts than centralized botnets, the sizes of these botnets. It is difficult to estimate a P2P because they have no single points of failure. However, P2P botnets are subject to unique classes of attacks, such as node botnet’s size, for a number of reasons. P2P botnets often enumeration and poisoning. In this paper, we introduce a use custom protocols, so that researchers must first reverse formal graph model to capture the intrinsic properties and engineer the protocol and encryption before they can track fundamental vulnerabilities of P2P botnets. We apply our the botnet’s population.