False Killer Whales

Total Page:16

File Type:pdf, Size:1020Kb

False Killer Whales CetusGeoIssue 6 I Dec 2019 DOLPHIN & WHALE EMAGAZINE Northern Territory’s False Killer Whales Sounds Beneath the Waves: PLUS The acoustic world of whales & dolphins Boto fact file Latest news South America’s Complexities of the Dammed River Dolphins Sea Sponge Ocean Inspiration with Kohola Kai Creative SCIENCE I CULTURE I ART I CONSERVATION EDITOR’S NOTE The delicate BALANCE he delicate balance of this world In amongst the seemingly endless greed we live in is incredibly intricate, of human societies; whether in relation to T interconnected and sensitive. risking the extinction of endangered river Who would have thought that mangrove, dolphins in the Amazon by the construc- seagrass and saltmarsh systems store tion of dams (pg. 20), kidnapping belugas huge amounts of greenhouse gases and and orcas and holding them in small can absorb carbon dioxide up to 40 times jail-like pens with the intent to sell them faster than forests on land? These under- to captive facilities in China (pg. 12), or estimated systems are finally getting a the inaction of our politicians to address little credit for their importance in keeping global warming, it can be hard for us to the global balance (pg. 4). Yet, the human see the positive light. thirst for coastal encroachment still sees these systems disturbed and destroyed. Our world is an amazing place and one of With each disturbance, they release their a kind. Each new discovery and explora- carbon stores. In Australia, this results in tion reminds us of this. By diving into the 2-3 million tonnes of CO2 being released acoustic world of whales and dolphins each year. (pg. 8), or exploring the lives of false killer whales (pg. 17), and discovering the Our world is changing and we are begin- intricacies of sponges, there is much to ning to see the impact of the warming celebrate and conserve. In this issue, we climate. How marine life will be impacted gain inspiration from artist Tracie Sugo and respond to these changes is not fully from Kohola Kai Creative whose detailed understood. New research has found artworks help viewers to connect to the that warmer waters can have immediate lives of marine life and the need for their biological consequences to dolphins. In conservation through immediate positive Shark Bay, Western Australia, the impact action (pg. 26). of a warm water plume was evident in significantly lowered reproductive success I hope you enjoy and gain inspiration from of the Indo-Pacific bottlenose dolphin this issue of CetusGeo! population (pg. 5). This raises concerns in relation to how well and how quickly these Best Wishes animals (and others) can adapt to the changing world. Liz Photo: NOAA CetusGeo Dolphin & Whale EMagazine is produced and published by Dolphin Research Australia Inc., a marine research, education & conservation charity. © All material in this magazine is copyright and may not be reproduced in part or whole without written permission. Direct requests to the editor. 2 I Issue 6 Intrigue Contents Cetus Geo Contributors Editors: Liz Hawkins & Pete Garbett Article Contributors this issue: In this ISSUE: Carol Palmer CONTENTS Jessica Tsitonakis NEWS Heather Pheloung Lara Pogson-Manning 4 The marine predator’s vital role in protecting carbon Mia Gustavsson stocks Liz Hawkins Tammy Brown Global Warming causes decline in reproduction and 5 Design: Belinda Nelson survival in resident bottlenose dolphin populations. 5 Do drones bother you? Would you like to 6 Microplastics found in 50 stranded marine mammals Contribute? along the British Coast. CetusGeo is written by 7 Counting whales from space passionate people for your pleasure. If you have an idea for an article that you 7 Wading birds increase foraging efficiency would like to contribute, please email us and pitch your proposal. INTRIGUE 8 Sounds Beneath the Waves Image Credits Cover Image: C. Palmer ISSUES 12 Russian Whale Jail - The Harsh Reality of the Captive Whale Industry Subscriptions Annual subscriptions to CetusGeo DISCOVER Dolphin & Whale magazine are complementary with 17 False killer whales – Are they regular users or resident Dolphin Research Australia Inc. species of Australia’s Northern Territory coastal waters? memberships and dolphin adoptions. CRITICAL BY NATURE $30/year Dolphin Research South America’s Dammed River Dolphins 20 Australia membership $60/year Dolphin Research FACT FILE Australia dolphin adoption 24 Boto Fact File IN CONVERSATION Enquiries [email protected] 26 Ocean Inspiration with Kohola Kai Creative www.dolphinresearchaustralia.org FACT FILE 30 Absorbing the subtle complexities of the sponge Issue 6 I 3 News The marine predator’s vital role in protecting carbon stocks habitats. These relationships are incred- ibly complex, context-specific and influ- enced by the structure of the food web, trophic levels and species present. The presence of predators can both maintain the abundance and alter the behaviour of herbivore species along with the seques- tration of C in the system. The majority of C is stored in anoxic sed- iments where organic material is trapped underneath vegetation. The deposition of sediment is greatly influenced by the density and height of the vegetation (i.e. roots, trunks and canopies). If herbivores, for example, are too abundant or graze too heavily on root systems, the plants can be restricted in growth, and this can lower sedimentation rates and reduce the size of the habitat, ultimately reducing the biomass of the ecosystem. The loss of predator species directly or indirectly can result in an increase in the abundance of foraging/grazing behaviour of herbivores/bioturbators, ultimately Image: E Hawkins leading to a cascading effect and top- down loss. Imbalances in the system can egetated coastal habitats including subsequently lead to loss, die-off, and Vseagrass, mangrove and saltmarsh, fragmentation of coastal vegetation, and have a ‘disproportionately large role in the with it, the capacity for these habitats to global capture and storage of natural car- sequester CO2. bon (C)’ according to researchers from the University of Queensland and elsewhere. Researchers conclude that ‘the future role This is largely due to a process called that vegetated coastal ecosystems play biosequestration, which is the process of in climate change mitigation will in part CO2 being absorbed from the atmosphere depend on the preservation of marine and stored in plants, algae and sediment predators, and therefore, policy and man- where it can be retained for millennia (as agement need to reflect this important blue C). realization as a matter of urgency’. Predators, such as finfish, sharks, pinni- Reference: Atwood, T.B. et al. (2015) peds and dolphins, play important direct Predators help protect carbon stocks in and indirect roles in maintaining the func- blue carbon ecosystems, Nature Climate tion of, and preserving, coastal vegetation Change. 5(12), 1038. 4 I Issue 6 News Global Warming causes decline in reproduction and survival in resident bottlenose dolphin populations esearchers from the Universities of for a plethora of marine species, including RZurich and Bristol conducted a study the resident bottlenose populations. on the population status of resident Indo-Pacific bottlenose dolphins, following The simultaneous loss of extensive an unprecedented heatwave in Western habitat and consequently prey species, the two groups suggests that the use of Australia’s Shark Bay, a UNESCO World likely prevented fish stocks from recov- ‘foraging aids’ may have shielded those Heritage Site. ering in the following years. Researchers individuals against the effects of habitat speculate lower prey abundance would loss by allowing them exclusive access to The heatwave occurred in the summer have prompted higher foraging efforts a less-severely affected foraging niche. of 2011 and caused coastal waters within from keystone predators such as the the heritage site to rise by 2-4 degrees dolphins, and a subsequent lack of Scientists predict that the occurrence of above the average temperature for a total vigilance from mothers when hunting heatwaves could increase by 41% by the of two months. Following the event, would have resulted in higher rates of end of the century. As global warming researchers detected a long-term calf mortality from shark predation. continues to have a more drastic and reduction in both the survival and Additionally, survival rates for both widespread effect in our ecosystems, reproductive rates of the dolphins. mothers and calves could have plummet- researchers investigating this incident are ed from their inability to meet the higher concerned that the inability of species to Analysis of data collected over a ten-year energy requirements their respective life recover after such an extended period of period between 2007 and 2017, revealed stages demand. time will mean that they become function- that even 7 years after the event, normal ally extinct as reproductive output will be levels of survivability and reproduction Researchers surmised that even if calves, outcompeted by the rate of mortality. had not returned. The sudden climatic their growth may be stunted due to lower shift also destroyed an overwhelming nutrient intakes during vital life stages and Reference: S. Wild et al. (2019) Long-term 36% of seagrass habitat within Shark may not become reproductively active. decline in survival and reproduction of Bay, drastically reducing the availability Researchers believe that the differing resil- dolphins following a marine heatwave, of crucial foraging and nursery grounds ience to external changes seen between Current Biology, 29 Do Drones Bother You? f you were a dolphin, the answer would be yes. New Zealand researchers recently flew Ian Unmanned Aerial Vehicle (UAV) over bottlenose dolphins (Tursiops truncatus) near Great Barrier Island in New Zealand and tested their response. The researchers flew the UAV at 10m, 25m and 40m altitude and observed their behaviours before, during and after the flights. They detected more behavioural changes, including orientation chang- es and tail slaps, when the UAV was flown at 10m altitude.
Recommended publications
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • 213 Subpart I—Taking and Importing Marine Mammals
    National Marine Fisheries Service/NOAA, Commerce Pt. 218 regulations or that result in no more PART 218—REGULATIONS GOV- than a minor change in the total esti- ERNING THE TAKING AND IM- mated number of takes (or distribution PORTING OF MARINE MAM- by species or years), NMFS may pub- lish a notice of proposed LOA in the MALS FEDERAL REGISTER, including the asso- ciated analysis of the change, and so- Subparts A–B [Reserved] licit public comment before issuing the Subpart C—Taking Marine Mammals Inci- LOA. dental to U.S. Navy Marine Structure (c) A LOA issued under § 216.106 of Maintenance and Pile Replacement in this chapter and § 217.256 for the activ- Washington ity identified in § 217.250 may be modi- fied by NMFS under the following cir- 218.20 Specified activity and specified geo- cumstances: graphical region. (1) Adaptive Management—NMFS 218.21 Effective dates. may modify (including augment) the 218.22 Permissible methods of taking. existing mitigation, monitoring, or re- 218.23 Prohibitions. porting measures (after consulting 218.24 Mitigation requirements. with Navy regarding the practicability 218.25 Requirements for monitoring and re- porting. of the modifications) if doing so cre- 218.26 Letters of Authorization. ates a reasonable likelihood of more ef- 218.27 Renewals and modifications of Let- fectively accomplishing the goals of ters of Authorization. the mitigation and monitoring set 218.28–218.29 [Reserved] forth in the preamble for these regula- tions. Subpart D—Taking Marine Mammals Inci- (i) Possible sources of data that could dental to U.S. Navy Construction Ac- contribute to the decision to modify tivities at Naval Weapons Station Seal the mitigation, monitoring, or report- Beach, California ing measures in a LOA: (A) Results from Navy’s monitoring 218.30 Specified activity and specified geo- graphical region.
    [Show full text]
  • Food Consumption and Body Measurements of Amazon River Dolphins (Inia Geoffrensis)
    Aquatic Mammals 1999, 25.3, 173–182 Food consumption and body measurements of Amazon river dolphins (Inia geoffrensis) R. A. Kastelein1, B. Neurohr2, S. H. Nieuwstraten1 and P. R. Wiepkema3 1Harderwijk Marine Mammal Park, Strandboulevard Oost 1, 3841 AB Harderwijk, The Netherlands 2Tiergarten Nu¨rnberg, Am Tiergarten 30, D90480 Nu¨rnberg, Germany 3Emeritus Professor of Ethology, Wageningen Agricultural University, Stationsweg 1, 6861 EA Oosterbeek, The Netherlands Abstract dolphin is the most widespread freshwater dolphin in the world, its distribution is limited compared to This report is on the food consumption of 3 male that of most marine odontocetes and it is therefore Amazon river dolphins which were housed in water very likely to become a threatened species. For the of between 27 and 29 C at Duisburg Zoo, management of Amazon river dolphins in the wild, Germany. The food consumption of 2 animals was information is needed about the population size, recorded for 17 successive complete calendar years, age composition and sex ratio, seasonal distribu- that of the third animal for 3 complete successive tion, diet, energy requirements relative to seasonal years. In male 002 the total annual food intake prey distribution and density, and about competi- increased to 1280 kg at the age of 10 years, after tion with other animals and with fisheries. This which it decreased slightly and stabilised at around information could facilitate prey management 1170 kg/year. Male 001 was adult on arrival at the to allow for a certain number of Amazon river zoo. His annual food intake fluctuated at around dolphins in their distribution area.
    [Show full text]
  • Translocation of Trapped Bolivian River Dolphins (Inia Boliviensis)
    J. CETACEAN RES. MANAGE. 21: 17–23, 2020 17 Translocation of trapped Bolivian river dolphins (Inia boliviensis) ENZO ALIAGA-ROSSEL1,3AND MARIANA ESCOBAR-WW2 Contact e-mail: [email protected] ABSTRACT The Bolivian river dolphin, locally known as the bufeo, is the only cetacean in land-locked Bolivia. Knowledge about its conservation status and vulnerability to anthropogenic actions is extremely deficient. We report on the rescue and translocation of 26 Bolivian river dolphins trapped in a shrinking segment of the Pailas River, Santa Cruz, Bolivia. Several institutions, authorities and volunteers collaborated to translocate the dolphins, which included calves, juveniles, and pregnant females. The dolphins were successfully released into the Río Grande. Each dolphin was accompanied by biologists who assured their welfare. No detectable injuries occurred and none of the dolphins died during this process. If habitat degradation continues, it is likely that events in which river dolphins become trapped in South America may happen more frequently in the future. KEYWORDS: BOLIVIAN RIVER DOLPHIN; HABITAT DEGRADATION; CONSERVATION; STRANDINGS; TRANSLOCATION; SOUTH AMERICA INTRODUCTION distinct species, geographically isolated from the boto or Small cetaceans are facing several threats from direct or Amazon River dolphin (I. geoffrensis) (Gravena et al., 2014; indirect human impacts (Reeves et al., 2000). The pressure Ruiz-Garcia et al., 2008). This species has been categorised on South American and Asian river dolphins is increasing; by the Red Book of Wildlife Vertebrates of Bolivia as evidently, different river systems have very different problems. Vulnerable (VU), highlighting the need to conserve and Habitat degradation, dam construction, modification of river protect them from existing threats (Aguirre et al., 2009).
    [Show full text]
  • False Killer Whale Fact Sheet
    False Killer whale (pseudorca crassidens) Adult length: Up to 6m (male)/5m (female) Distribution: coastal and primarily offshore waters in tropical and temperate regions (see map below and Adult weight: up to 2,000kg (m) full list of countries in the detailed species account online at: https://wwhandbook.iwc.int/en/species/false- Newborn: 1.6-1.9m /Unknown killer-whale Dark grey/black body Prominent dorsal fin is Threats: entanglement, contaminants colour with only a faintly usually curved and slightly Habitat: offshore Long, slender head tapers darker cape (variable) rounded at the tip to rounded snout with no Diet: squid, fish pronounced beak Body may be scarred IUCN Conservation status: Data deficient Flukes are small in relation to body size False killer whales can eat Head hangs over large prey species like this mouth Ono/Wahoo. photo courtesy of Daniel Webster, Cascadia Reserach Lighter grey anchor or Long strongly curved flipper Long, slender body “W” shaped patch on with a pronounced corner or chest between the flippers bend giving the flipper an ‘S’ (variable) shape – unique to this species This photo illustrates the Fun Facts bullet-shaped head and typically ‘S’ shaped flip- pers that help observers False killer whales are so named because the to distinguish false killer shape of their skulls, not their external appear- ance, is similar to that of killer whales. whales from pilot whales. Photo courtesy of Paula Like killer whales and sperm whales, false killer Olson/SEFSC/NOAA. whales form stable family groups, and females who no longer produce calves themselves probably help to look after the young of other females False killer whales participate in prey-sharing; a behaviour thought to reinforce social bonds False Killer whale distribution.
    [Show full text]
  • Pseudorca Crassidens) and Nine Other Odontocete Species from Hawai‘I
    Ecotoxicology DOI 10.1007/s10646-014-1300-0 Cytochrome P4501A1 expression in blubber biopsies of endangered false killer whales (Pseudorca crassidens) and nine other odontocete species from Hawai‘i Kerry M. Foltz • Robin W. Baird • Gina M. Ylitalo • Brenda A. Jensen Accepted: 2 August 2014 Ó Springer Science+Business Media New York 2014 Abstract Odontocetes (toothed whales) are considered insular false killer whale. Significantly higher levels of sentinel species in the marine environment because of their CYP1A1 were observed in false killer whales and rough- high trophic position, long life spans, and blubber that toothed dolphins compared to melon-headed whales, and in accumulates lipophilic contaminants. Cytochrome general, trophic position appears to influence CYP1A1 P4501A1 (CYP1A1) is a biomarker of exposure and expression patterns in particular species groups. No sig- molecular effects of certain persistent organic pollutants. nificant differences in CYP1A1 were found based on age Immunohistochemistry was used to visualize CYP1A1 class or sex across all samples. However, within male false expression in blubber biopsies collected by non-lethal killer whales, juveniles expressed significantly higher lev- sampling methods from 10 species of free-ranging els of CYP1A1 whenP compared to adults. Total polychlo- Hawaiian odontocetes: short-finned pilot whale, melon- rinated biphenyl ( PCBs) concentrations in 84 % of false headed whale, pygmy killer whale, common bottlenose killer whalesP exceeded proposed threshold levels for health dolphin, rough-toothed dolphin, pantropical spotted dol- effects, and PCBs correlated with CYP1A1 expression. phin, Blainville’s beaked whale, Cuvier’s beaked whale, There was no significant relationship between PCB toxic sperm whale, and endangered main Hawaiian Islands equivalent quotient and CYP1A1 expression, suggesting that this response may be influenced by agonists other than the dioxin-like PCBs measured in this study.
    [Show full text]
  • False Killer Whale Dorsal Fin Disfigurements As A
    False Killer Whale Dorsal Fin Disfigurements as a Possible Indicator of Long-Line Fishery Interactions in Hawaiian Waters1 Robin W. Baird 2 and Antoinette M. Gorgone3 Abstract: Scarring resulting from entanglement in fishing gear can be used to examine cetacean fishery interactions. False killer whales (Pseudorca crassidens) are known to interact with the Hawai‘i-based tuna and swordfish long-line fish- ery in offshore Hawaiian waters. We examined the rate of major dorsal fin dis- figurements of false killer whales from nearshore waters around the main Hawaiian Islands to assess the likelihood that individuals around the main is- lands are part of the same population that interacts with the fishery. False killer whales were encountered on 11 occasions between 2000 and 2004, and 80 dis- tinctive individuals were photographically documented. Three of these (3.75%) had major dorsal fin disfigurements (two with the fins completely bent over and one missing the fin). Information from other research suggests that the rate of such disfigurements for our study population may be more than four times greater than for other odontocete populations. We suggest that the most likely cause of such disfigurements is interactions with longlines and that false killer whales found in nearshore waters around the main Hawaiian Islands are part of the same population that interacts with the fishery. Two of the animals docu- mented with disfigurements had infants in close attendance and were thought to be adult females. This implies that even with such injuries, at least some fe- males may be able to produce offspring, despite the importance of the dorsal fin in reproductive thermoregulation.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 45: 269–282, 2021 ENDANGERED SPECIES RESEARCH Published July 29 https://doi.org/10.3354/esr01133 Endang Species Res OPEN ACCESS Home range and movements of Amazon river dolphins Inia geoffrensis in the Amazon and Orinoco river basins Federico Mosquera-Guerra1,2,*, Fernando Trujillo1, Marcelo Oliveira-da-Costa3, Miriam Marmontel4, Paul André Van Damme5, Nicole Franco1, Leslie Córdova5, Elizabeth Campbell6,7,8, Joanna Alfaro-Shigueto6,7,8, José Luis Mena9, Jeffrey C. Mangel6,7,8, José Saulo Usma Oviedo3, Juan D. Carvajal-Castro10,11, Hugo Mantilla-Meluk12,13, Dolors Armenteras-Pascual2 1Fundación Omacha, 111211 Bogotá, D.C., Colombia 2Grupo de Ecología del Paisaje y Modelación de Ecosistemas-ECOLMOD, Departamento de Biología, Universidad Nacional de Colombia, 111321 Bogotá, D.C., Colombia 3World Wildlife Fund (WWF) − Brazil, Colombia, and Peru, Rue Mauverney 28, 1196 Gland, Switzerland 4Instituto de Desenvolvimento Sustentável Mamirauá, 69.553-225 Tefé (AM), Brazil 5Faunagua, 31001 Sacaba-Cochabamba, Bolivia 6ProDelphinus, 15074 Lima, Peru 7School of BioSciences, University of Exeter, Penryn, Cornwall TR10 9EZ, UK 8Carrera de Biología Marina, Universidad Cientifíca del Sur, 15067 Lima, Peru 9Museo de Historia Natural Vera Alleman Haeghebaert, Universidad Ricardo Palma, 1801 Lima, Peru 10Grupo de Investigación en Evolución, Ecología y Conservación (EECO), Programa de Biología, Universidad del Quindío, 630004 Armenia, Colombia 11Department of Biological Sciences, St. John’s University, 11366 Queens, NY, USA 12Grupo de Investigación en Desarrollo y Estudio del Recurso Hídrico y el Ambiente (CIDERA), Programa de Biología, Universidad del Quindío, 630004 Armenia, Colombia 13Centro de Estudios de Alta Montaña, Universidad del Quindío, 630004 Armenia, Colombia ABSTRACT: Studying the variables that describe the spatial ecology of threatened species allows us to identify and prioritize areas that are critical for species conservation.
    [Show full text]
  • Marine Mammal Taxonomy
    Marine Mammal Taxonomy Kingdom: Animalia (Animals) Phylum: Chordata (Animals with notochords) Subphylum: Vertebrata (Vertebrates) Class: Mammalia (Mammals) Order: Cetacea (Cetaceans) Suborder: Mysticeti (Baleen Whales) Family: Balaenidae (Right Whales) Balaena mysticetus Bowhead whale Eubalaena australis Southern right whale Eubalaena glacialis North Atlantic right whale Eubalaena japonica North Pacific right whale Family: Neobalaenidae (Pygmy Right Whale) Caperea marginata Pygmy right whale Family: Eschrichtiidae (Grey Whale) Eschrichtius robustus Grey whale Family: Balaenopteridae (Rorquals) Balaenoptera acutorostrata Minke whale Balaenoptera bonaerensis Arctic Minke whale Balaenoptera borealis Sei whale Balaenoptera edeni Byrde’s whale Balaenoptera musculus Blue whale Balaenoptera physalus Fin whale Megaptera novaeangliae Humpback whale Order: Cetacea (Cetaceans) Suborder: Odontoceti (Toothed Whales) Family: Physeteridae (Sperm Whale) Physeter macrocephalus Sperm whale Family: Kogiidae (Pygmy and Dwarf Sperm Whales) Kogia breviceps Pygmy sperm whale Kogia sima Dwarf sperm whale DOLPHIN R ESEARCH C ENTER , 58901 Overseas Hwy, Grassy Key, FL 33050 (305) 289 -1121 www.dolphins.org Family: Platanistidae (South Asian River Dolphin) Platanista gangetica gangetica South Asian river dolphin (also known as Ganges and Indus river dolphins) Family: Iniidae (Amazon River Dolphin) Inia geoffrensis Amazon river dolphin (boto) Family: Lipotidae (Chinese River Dolphin) Lipotes vexillifer Chinese river dolphin (baiji) Family: Pontoporiidae (Franciscana)
    [Show full text]
  • Captivity How Many ?
    Captivity How Many ? ≈ 3000 bottlenose dolphins 250 pilot whale 120 killer whale 100 beluga 800 harbour porpoise 150 striped dolphin common dolphin, false killer whale, river dolphin Survival Rates Species Since 1963 April 1995 Pacific White-sided 110 22 dolphins Short finned pilot 76 2 whales Beluga 67 29 Orca 77 16 Psuedo Orca 33 8 History 1860: 2 Beluga in US 1913: 5 Bottlenose dolphins – NY Museum 1938: Bottlenose dolphins in Florida 1956: Amazon river dolphin in Texas 1961: Killer whale in California 1965: Risso’s and bottlenose dolphin (Japan) 1966: First dolphin exported to Europe End of 1960’s 286 bottlenose dolphins in US CITES Convention on International Trade of Endangered Species (1980) • Control of the commercial transport of plants and animals 3 categories: Appendix I: Endangered species – commercial trade prohibited – Import & Export Appendix II: Commercial trade regulated – Import Only Appendix III: Trade of protected species regulated by individual states Washington Convention (CITES) Cetaceans are protected under Appendix I and II CITES Rules regarding the maintence of marine mammals in captivity Consent for the mainentence of marine mammals in captivity is soley for: education, research and reproduction. 1. EDUCATION The person in charge of education must be educated to degree level; An educational brochure regarding cetacean biology & conservation in their natural environment must be produced; Practical demonstrations based on dolphin’s natural behavior; Pools with viewing galleries or television circuit for the diving vision & vocalisations transmitted to the visitors; Staff prepared on cetaceans biology, eco-ethology, conservation and maintenance in captivity; 2. RESEARCH Use of the biological & post-mortem samples; CITES Collaboration with veterinaries & research Rules Institutes; A programme which gives more information about natural populations (knowledge & management).
    [Show full text]
  • Review of Small Cetaceans. Distribution, Behaviour, Migration and Threats
    Review of Small Cetaceans Distribution, Behaviour, Migration and Threats by Boris M. Culik Illustrations by Maurizio Wurtz, Artescienza Marine Mammal Action Plan / Regional Seas Reports and Studies no. 177 Published by United Nations Environment Programme (UNEP) and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals (CMS). Review of Small Cetaceans. Distribution, Behaviour, Migration and Threats. 2004. Compiled for CMS by Boris M. Culik. Illustrations by Maurizio Wurtz, Artescienza. UNEP / CMS Secretariat, Bonn, Germany. 343 pages. Marine Mammal Action Plan / Regional Seas Reports and Studies no. 177 Produced by CMS Secretariat, Bonn, Germany in collaboration with UNEP Coordination team Marco Barbieri, Veronika Lenarz, Laura Meszaros, Hanneke Van Lavieren Editing Rüdiger Strempel Design Karina Waedt The author Boris M. Culik is associate Professor The drawings stem from Prof. Maurizio of Marine Zoology at the Leibnitz Institute of Wurtz, Dept. of Biology at Genova Univer- Marine Sciences at Kiel University (IFM-GEOMAR) sity and illustrator/artist at Artescienza. and works free-lance as a marine biologist. Contact address: Contact address: Prof. Dr. Boris Culik Prof. Maurizio Wurtz F3: Forschung / Fakten / Fantasie Dept. of Biology, Genova University Am Reff 1 Viale Benedetto XV, 5 24226 Heikendorf, Germany 16132 Genova, Italy Email: [email protected] Email: [email protected] www.fh3.de www.artescienza.org © 2004 United Nations Environment Programme (UNEP) / Convention on Migratory Species (CMS). This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made.
    [Show full text]
  • Marine Mammals of British Columbia Current Status, Distribution and Critical Habitats
    Marine Mammals of British Columbia Current Status, Distribution and Critical Habitats John Ford and Linda Nichol Cetacean Research Program Pacific Biological Station Nanaimo, BC Outline • Brief (very) introduction to marine mammals of BC • Historical occurrence of whales in BC • Recent efforts to determine current status of cetacean species • Recent attempts to identify Critical Habitat for Threatened & Endangered species • Overview of pinnipeds in BC Marine Mammals of British Columbia - 25 Cetaceans, 5 Pinnipeds, 1 Mustelid Baleen Whales of British Columbia Family Balaenopteridae – Rorquals (5 spp) Blue Whale Balaenoptera musculus SARA Status = Endangered Fin Whale Balaenoptera physalus = Threatened = Spec. Concern Sei Whale Balaenoptera borealis Family Balaenidae – Right Whales (1 sp) Minke Whale Balaenoptera acutorostrata North Pacific Right Whale Eubalaena japonica Humpback Whale Megaptera novaeangliae Family Eschrichtiidae– Grey Whales (1 sp) Grey Whale Eschrichtius robustus Toothed Whales of British Columbia Family Physeteridae – Sperm Whales (3 spp) Sperm Whale Physeter macrocephalus Pygmy Sperm Whale Kogia breviceps Dwarf Sperm Whale Kogia sima Family Ziphiidae – Beaked Whales (4 spp) Hubbs’ Beaked Whale Mesoplodon carlhubbsii Stejneger’s Beaked Whale Mesoplodon stejnegeri Baird’s Beaked Whale Berardius bairdii Cuvier’s Beaked Whale Ziphius cavirostris Toothed Whales of British Columbia Family Delphinidae – Dolphins (9 spp) Pacific White-sided Dolphin Lagenorhynchus obliquidens Killer Whale Orcinus orca Striped Dolphin Stenella
    [Show full text]