DISTANT Ekos

Total Page:16

File Type:pdf, Size:1020Kb

DISTANT Ekos IssueNo.121 February2020 ✤✜ s ✓✏ DISTANT EKO ❞✐ ✒✑ The Kuiper Belt Electronic Newsletter ✣✢ r Edited by: Joel Wm. Parker [email protected] www.boulder.swri.edu/ekonews CONTENTS News & Announcements ................................. 2 Abstracts of 14 Accepted Papers ........................ 3 Abstract of 1 Submitted Papers .........................14 Conference Information .............................. 15 Newsletter Information .............................. 16 1 NEWS & ANNOUNCEMENTS There were 11 new TNO discoveries announced since the previous issue of Distant EKOs: 2003 UY413, 2014 HX209, 2014 JC92, 2015 KU178, 2016 SH57, 2016 SJ56, 2016 SQ55, 2016 SQ58, 2016 SZ57, 2019 RO4, 2018 MF13 and 12 new Centaur/SDO discoveries: 2012 GT41, 2013 CJ118, 2015 HA197, 2016 SA56, 2016 SU55, 2018 RR2, 2019 CJ3, 2019 GN22, 2019 QQ8, 2019 TL8, 2019 UH12, 2019 UO14 Reclassified objects: 2015 SV20 (SDO → Centaur) 2017 YK3 (Centaur → TNO) 2007 RL314 (TNO → SDO) 2010 RD188 (TNO → SDO) 2003 US292 (SDO → TNO) 2010 PK66 (SDO → TNO) 2014 OL394 (SDO → TNO) 2018 AZ18 (SDO → TNO) Objects recently assigned numbers: 2013 AP183 = (542258) 2013 MY11 = (542889) 2015 TG387 = (541132) Objects recently assigned names: 2007 UK126 = G!k´un||’h`omd´ım`a 2014 GE45 = Zhulong 2014 MU69 = Arrokoth Deleted/Re-identified objects: 2005 JZ185 = 2015 KU178 2010 TF182 = 2015 SO20 2010 TO182 = 2011 UK411 2010 TQ182 = 2014 UM33 2014 CH5 = 2014 DO143 2014 OZ391 = 2015 PN291 2019 CR 2016 GR206 Current number of TNOs: 2416 Current number of Centaurs/SDOs: 1085 Current number of Neptune Trojans: 24 Out of a total of 3525 objects: 670 have measurements from only one opposition 667 of those have had no measurements for more than a year 364 of those have arcs shorter than 10 days (for more details, see: http://www.boulder.swri.edu/ekonews/objects/recov_stats.jpg) 2 PAPERS ACCEPTED TO JOURNALS OSSOS XII: Variability Studies of 65 Trans-Neptunian Objects using the Hyper-Suprime Camera M. Alexandersen1, S.D. Benecchi2, Y.-T. Chen1, M.R. Eduardo1,3, A. Thirouin4, M.E. Schwamb5, M.J. Lehner1,6,7, S.-Y. Wang1, M.T. Bannister8, B.J. Gladman9, S.D.J. Gwyn10, JJ. Kavelaars10,11, J.-M. Petit12, and K. Volk13 1 Institute of Astronomy and Astrophysics, Academia Sinica; 11F of AS/NTU Astronomy-Mathematics Building, No. 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan 2 Planetary Science Institute, 1700 E. Fort Lowell, Suite 106, Tucson, AZ 85719, USA 3 Department of Physical Sciences, University of the Philippines Baguio, Gov. Pack Rd., Baguio City, Benguet, 2600, Philippines 4 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ 86001, USA 5 Gemini Observatory, Northern Operations Center, 670 North A’ohoku Pl., Hilo, HI 96720, USA 6 Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA 7 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA 8 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK 9 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada 10 Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada, 5071 W. Saanich Rd., Victoria, British Columbia V9E 2E7, Canada 11 Department of Physics and Astronomy, University of Victoria, Elliott Building, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada 12 Institut UTINAM UMR6213, CNRS, Univ. Bourgogne Franche-Comt´e, OSU Theta F-25000 Besan¸con, France 13 Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721, USA We present variability measurements and partial light curves of Trans-Neptunian Objects (TNOs) from a two-night pilot study using Hyper Suprime-Cam (HSC) on the Subaru Telescope (Maunakea, Hawai’i, USA). Subaru’s large aperture (8-m) and HSC’s large field of view (1.77 deg2) allow us to obtain measurements of multiple objects with a range of magnitudes in each telescope pointing. We observed 65 objects with mr = 22.6–25.5 mag in just six pointings, allowing 20–24 visits of each pointing over the two nights. Our sample, all discovered in the recent Outer Solar System Origins Survey (OSSOS), span absolute magnitudes Hr = 6.2–10.8 mag and thus investigates smaller objects than previous light curve projects have typically studied. Our data supports the existence of a correlation between light curve amplitude and absolute magnitude seen in other works, but does not support a correlation between amplitude and orbital inclination. Our sample includes a number of objects from different dynamical populations within the trans-Neptunian region, but we do not find any relationship between variability and dynamical class. We were only able to estimate periods for 12 objects in the sample and found that a longer baseline of observations is required for reliable period analysis. We find that 31 objects (just under half of our sample) have variability ∆mag greater than 0.4 mag during all of the observations; in smaller 1.25 hr, 1.85 hr and 2.45 hr windows, the median ∆mag is 0.13, 0.16 and 0.19 mags, respectively. The fact that variability on this scale is common for small TNOs has important implications for discovery surveys (such as OSSOS or the Large Synoptic Survey Telescope) and color measurements. Published in: The Astrophysical Journal Supplement Series, 244, 19 (2019 September) For preprints, contact [email protected] or on the web at http://adsabs.harvard.edu/abs/2019ApJS..244...19A ................................................... .................................................. 3 Trans-Neptunian Objects Found in the First Four Years of the Dark Energy Survey P. Bernardinelli1, G.M. Bernstein1, M. Sako1, T. Liu1, W. Saunders1,2, T. Khain3, E. Lin3, D.W. Gerdes4,3, D. Brout1, F. Adams4, M. Belyakov1, J. Locke1, K. Franson3, J. Becker3, K. Napier3, L. Markwardt3, J. Annis5, T.M.C. Abbott6, S. Avila7, D. Brooks8, D.L. Burke9,10, A. Carnero Rosell11,12, M. Carrasco Kind13,14, F.J. Castander15,16, L.N. da Costa12,17, J. De Vicente11, S. Desai18, H.T. Diehl5, P. Doel8, S. Everett19, B. Flaugher5, J. Garc´ıa-Bellido7, D. Gruen20,9,10, R.A. Gruendl13,14, J. Gschwend12,17, G. Gutierrez5, D.L. Hollowood19, D.J. James21, M.W.G. Johnson14, M.D. Johnson14, E. Krause22, N. Kuropatkin5, M.A.G. Maia12,17, M. March1, R. Miquel23,24, F. Paz-Chinch´on13,14, A.A. Plazas25, A.K. Romer26, E.S. Rykoff9,10, C. S´anchez1, E. Sanchez11, V. Scarpine5, S. Serrano15,16, I. Sevilla-Noarbe11, M. Smith27, F. Sobreira28,12, E. Suchyta29, M.E.C. Swanson14, G. Tarle3, A.R. Walker6, W. Wester5, and Y. Zhang5 1 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA 2 Department of Astronomy, Boston University, Boston, MA 02215, USA 3 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA 4 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA 5 Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA 6 Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile 7 Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain 8 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK 9 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA 10 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA 11 Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol´ogicas (CIEMAT), Madrid, Spain 12 Laborat´orio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jos´eCristino 77, Rio de Janeiro, RJ - 20921-400, Brazil 13 Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA 14 National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA 15 Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain 16 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain 17 Observat´orio Nacional, Rua Gal. Jos´eCristino 77, Rio de Janeiro, RJ - 20921-400, Brazil 18 Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India 19 Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA 20 Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA 21 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA 22 Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721- 0065, USA 23 Instituci´oCatalana de Recerca i Estudis Avan¸cats, E-08010 Barcelona, Spain 24 Institut de F´ısica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona) Spain 25 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA 26 Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton, BN1 9QH, UK 27 School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK 28 Instituto de F´ısica Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP, Brazil We present a catalog of 316 trans-Neptunian bodies (TNOs) detected from the first four seasons (“Y4” data) of the Dark Energy Survey (DES). The survey covers a contiguous 5000 deg2 of the southern sky in the grizY optical/NIR filter set, with a typical TNO in this part of the sky being targeted by 25-30 4 Y4 exposures. This paper focusses on the methods used to detect these objects from the ≈60,000 Y4 exposures, a process made challenging by the absence of the few-hour repeat observations employed by TNO-optimized surveys. Newly developed techniques include: transient/moving object detection by comparison of single-epoch catalogs to catalogs of “stacked” images; quantified astrometric error from atmospheric turbulence; new software for detecting TNO linkages in a temporally sparse transient catalog, and for estimating the rate of spurious linkages; and use of faint stars to determine the detection efficiency vs magnitude in all exposures.
Recommended publications
  • Calibration of the Angular Momenta of the Minor Planets in the Solar System Jian Li1, Zhihong Jeff Xia2, Liyong Zhou1
    Astronomy & Astrophysics manuscript no. arXiv c ESO 2019 September 26, 2019 Calibration of the angular momenta of the minor planets in the solar system Jian Li1, Zhihong Jeff Xia2, Liyong Zhou1 1School of Astronomy and Space Science & Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, 163 Xianlin Road, Nanjing 210023, PR China e-mail: [email protected] 2Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, USA e-mail: [email protected] September 26, 2019 ABSTRACT Aims. We aim to determine the relative angle between the total angular momentum of the minor planets and that of the Sun-planets system, and to improve the orientation of the invariable plane of the solar system. Methods. By utilizing physical parameters available in public domain archives, we assigned reasonable masses to 718041 minor plan- ets throughout the solar system, including near-Earth objects, main belt asteroids, Jupiter trojans, trans-Neptunian objects, scattered- disk objects, and centaurs. Then we combined the orbital data to calibrate the angular momenta of these small bodies, and evaluated the specific contribution of the massive dwarf planets. The effects of uncertainties on the mass determination and the observational incompleteness were also estimated. Results. We determine the total angular momentum of the known minor planets to be 1:7817 × 1046 g · cm2 · s−1. The relative angle α between this vector and the total angular momentum of the Sun-planets system is calculated to be about 14:74◦. By excluding the dwarf planets Eris, Pluto, and Haumea, which have peculiar angular momentum directions, the angle α drops sharply to 1:76◦; a similar result applies to each individual minor planet group (e.g., trans-Neptunian objects).
    [Show full text]
  • Westminsterresearch the Astrobiology Primer V2.0 Domagal-Goldman, S.D., Wright, K.E., Adamala, K., De La Rubia Leigh, A., Bond
    WestminsterResearch http://www.westminster.ac.uk/westminsterresearch The Astrobiology Primer v2.0 Domagal-Goldman, S.D., Wright, K.E., Adamala, K., de la Rubia Leigh, A., Bond, J., Dartnell, L., Goldman, A.D., Lynch, K., Naud, M.-E., Paulino-Lima, I.G., Kelsi, S., Walter-Antonio, M., Abrevaya, X.C., Anderson, R., Arney, G., Atri, D., Azúa-Bustos, A., Bowman, J.S., Brazelton, W.J., Brennecka, G.A., Carns, R., Chopra, A., Colangelo-Lillis, J., Crockett, C.J., DeMarines, J., Frank, E.A., Frantz, C., de la Fuente, E., Galante, D., Glass, J., Gleeson, D., Glein, C.R., Goldblatt, C., Horak, R., Horodyskyj, L., Kaçar, B., Kereszturi, A., Knowles, E., Mayeur, P., McGlynn, S., Miguel, Y., Montgomery, M., Neish, C., Noack, L., Rugheimer, S., Stüeken, E.E., Tamez-Hidalgo, P., Walker, S.I. and Wong, T. This is a copy of the final version of an article published in Astrobiology. August 2016, 16(8): 561-653. doi:10.1089/ast.2015.1460. It is available from the publisher at: https://doi.org/10.1089/ast.2015.1460 © Shawn D. Domagal-Goldman and Katherine E. Wright, et al., 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by- nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Tilting Saturn II. Numerical Model
    Tilting Saturn II. Numerical Model Douglas P. Hamilton Astronomy Department, University of Maryland College Park, MD 20742 [email protected] and William R. Ward Southwest Research Institute Boulder, CO 80303 [email protected] Received ; accepted Submitted to the Astronomical Journal, December 2003 Resubmitted to the Astronomical Journal, June 2004 – 2 – ABSTRACT We argue that the gas giants Jupiter and Saturn were both formed with their rotation axes nearly perpendicular to their orbital planes, and that the large cur- rent tilt of the ringed planet was acquired in a post formation event. We identify the responsible mechanism as trapping into a secular spin-orbit resonance which couples the angular momentum of Saturn’s rotation to that of Neptune’s orbit. Strong support for this model comes from i) a near match between the precession frequencies of Saturn’s pole and the orbital pole of Neptune and ii) the current directions that these poles point in space. We show, with direct numerical inte- grations, that trapping into the spin-orbit resonance and the associated growth in Saturn’s obliquity is not disrupted by other planetary perturbations. Subject headings: planets and satellites: individual (Saturn, Neptune) — Solar System: formation — Solar System: general 1. INTRODUCTION The formation of the Solar System is thought to have begun with a cold interstellar gas cloud that collapsed under its own self-gravity. Angular momentum was preserved during the process so that the young Sun was initially surrounded by the Solar Nebula, a spinning disk of gas and dust. From this disk, planets formed in a sequence of stages whose details are still not fully understood.
    [Show full text]
  • Distant Ekos: 2017 OG69 and 9 New Centaur/SDO Discoveries: 2017 SN132, 2017 WH30, 2018 AX18, 2018 AY18, 2018 VM35, 2018 VO35, 2019 AB7, 2019 CR, 2019 CY4
    IssueNo.118 February2019 ✤✜ s ✓✏ DISTANT EKO ❞✐ ✒✑ The Kuiper Belt Electronic Newsletter ✣✢ r Edited by: Joel Wm. Parker [email protected] www.boulder.swri.edu/ekonews CONTENTS News & Announcements ................................. 2 Abstracts of 6 Accepted Papers ......................... 4 Abstracts of 1 Submitted Paper ......................... 7 Titles of 55 Conference Contributions . 8 Newsletter Information .............................. 11 1 NEWS & ANNOUNCEMENTS Request for Nominations for 9th “Paolo Farinella” Prize To honor the memory and the outstanding figure of Paolo Farinella (1953-2000), an extraordinary scientist and person, a prize has been established in recognition of significant contributions in one of the fields of interest of Paolo, which spanned from planetary sciences to space geodesy, fundamental physics, science popularization, security in space, weapons control and disarmament. The prize has been proposed during the “International Workshop on Paolo Farinella, the scientist and the man”, held in Pisa in 2010, and the 2019 edition is supported by the “Observatoire de la Cote d’Azur” in France. Previous recipients of the “Paolo Farinella Prize” were: • 2011: William F. Bottke, for his contribution to the field of “Physics and dynamics of small solar system bodies” • 2012: John Chambers, for his contribution to the field of “Formation and early evolution of the solar system ” • 2013: Patrick Michel, for his contribution to the field of “Collisional processes in the Solar System” • 2014: David Vokrouhlicky, for his
    [Show full text]
  • New Horizons Ultima Thule Flyby Events
    New Horizons Ultima Thule Flyby Events – Dec 31, 2018 – Jan 3, 2019 Event Date/Time Communications Event Speaker 31 Dec 12:00 PM K‐Center Opens at Noon Guest Ops team 1:00 Welcome Adrian Hill and VIP Welcome 1:05 The New Horizons Mission Alan Stern 1:25 What is the Kuiper Belt and what are Kuiper Belt Hal Weaver Objects 1:30 What We Know About MU69 – Ultima Thule Cathy Olkin 1:35 The Flyby of MU69 – Ultima Thule John Spencer NYE press 2:00 – 3:00 Daily media update on Webcast Mike Buckley; panel: Alan Stern, Helene Winters, John Spencer, Fred Pelletier. 3:15 ‐ 3:45 Flyby Ask Me Anything Webcast Moderator Adrian Hill; Panelists: Kelsi Singer; Alex Parker; Gabe Rogers 3:45 – 3:50 Song ‐ Acoustic Craig Werth – move to dining area 3:50 ‐ 4:45 Exploration for Kids Janet Ivey of Janet’s Planet ‐ dining area 4:45‐4:50 Closeout Afternoon 5:00 Doors Close for 2 hours – dinner break 7:00 PM K center reopens Kick off. 8:00 Welcome Adrian Hill and VIPs 8:10 Solar System Archaeology Ken Lacovara 8:15 NASA’s Study of Ancient Bodies. Small bodies mission panel. OSIRIS‐REx (Barnouin), Lucy (Levison), Psyche (Elkins), NH (Stern) *NASA Rep 9:00 Short break Transition to Guest ops. 9:15 Craig Werth Video Craig Werth 9:20 Doing Geology by Looking Up; Doing Walter Alvarez Astronomy by Looking Down 9:35 Pluto Flyby: Summer of 2015 Hal Weaver 9:50 Pluto and the Human Imagination David Grinspoon 10:10 Break 10:20 Meet the New Horizons Team Alan Stern and Helene Winters 10:30 Finding MU69 – Ultima Thule Marc Buie 10:45 MU69: What we expect to learn Panel: Silvia Protopapa, Hal Weaver, Cathy Olkin, John Spencer 11:00 The Eyes and Ears of New Horizons Kelsi Singer, Kirby Runyon.
    [Show full text]
  • Long Term Behavior of a Hypothetical Planet in a Highly Eccentric Orbit
    Long term behavior of a hypothetical planet in a highly eccentric orbit R. Nufer,∗ W. Baltensperger,† W. Woelfli‡ March 29, 2018 Abstract crossed this cloud, molecules activating a Green- house effect were produced in the upper atmosphere For a hypothetical planet on a highly eccentric or- in an amount sufficient to transiently enhance the bit, we have calculated the osculating orbital pa- mean surface temperature on Earth. Very close rameters and its closest approaches to Earth and flyby events even resulted in earthquakes and vol- Moon over a period of 750 kyr. The approaches canic activities. In extreme cases, a rotation of the which are close enough to influence the climate of entire Earth relative to its rotation axis occured in the Earth form a pattern comparable to that of the response to the transient strong gravitational inter- past climatic changes, as recorded in deep sea sedi- action. These polar shifts took place with a fre- ments and polar ice cores. quency of about one in one million years on the average. The first of them was responsible for the major drop in mean temperature, whereas the last 1 Motivation one terminated Earth’s Pleistocene Ice Age 11.5 kyr ago. At present, planet Z does not exist any more. The information on Earth’s past climate obtained The high eccentricity of Z’s orbit corresponds to from deep sea sediments and polar ice cores indi- a small orbital angular momentum. This could be cates that the global temperature oscillated with a transferred to one of the inner planets during a close small amplitude around a constant mean value for encounter, so that Z plunged into the sun.
    [Show full text]
  • Orbital Resonances in the Inner Neptunian System I. the 2:1 Proteus–Larissa Mean-Motion Resonance Ke Zhang ∗, Douglas P
    Icarus 188 (2007) 386–399 www.elsevier.com/locate/icarus Orbital resonances in the inner neptunian system I. The 2:1 Proteus–Larissa mean-motion resonance Ke Zhang ∗, Douglas P. Hamilton Department of Astronomy, University of Maryland, College Park, MD 20742, USA Received 1 June 2006; revised 22 November 2006 Available online 20 December 2006 Abstract We investigate the orbital resonant history of Proteus and Larissa, the two largest inner neptunian satellites discovered by Voyager 2.Due to tidal migration, these two satellites probably passed through their 2:1 mean-motion resonance a few hundred million years ago. We explore this resonance passage as a method to excite orbital eccentricities and inclinations, and find interesting constraints on the satellites’ mean density 3 3 (0.05 g/cm < ρ¯ 1.5g/cm ) and their tidal dissipation parameters (Qs > 10). Through numerical study of this mean-motion resonance passage, we identify a new type of three-body resonance between the satellite pair and Triton. These new resonances occur near the traditional two-body resonances between the small satellites and, surprisingly, are much stronger than their two-body counterparts due to Triton’s large mass and orbital inclination. We determine the relevant resonant arguments and derive a mathematical framework for analyzing resonances in this special system. © 2007 Elsevier Inc. All rights reserved. Keywords: Resonances, orbital; Neptune, satellites; Triton; Satellites, dynamics 1. Introduction Most of the debris was probably swept up by Triton (Cuk´ and Gladman, 2005), while some material close to Neptune sur- Prior to the Voyager 2 encounter, large icy Triton and dis- vived to form a new generation of satellites with an accretion tant irregular Nereid were Neptune’s only known satellites.
    [Show full text]
  • Exploring the Orbital Evolution of Planetary Systems
    Exploring the orbital evolution of planetary systems Tabar´e Gallardo∗ Instituto de F´ısica, Facultad de Ciencias, Udelar. (Dated: January 22, 2017) The aim of this paper is to encourage the use of orbital integrators in the classroom to discover and understand the long term dynamical evolution of systems of orbiting bodies. We show how to perform numerical simulations and how to handle the output data in order to reveal the dynamical mechanisms that dominate the evolution of arbitrary planetary systems in timescales of millions of years using a simple but efficient numerical integrator. Trough some examples we reveal the fundamental properties of the planetary systems: the time evolution of the orbital elements, the free and forced modes that drive the oscillations in eccentricity and inclination, the fundamental frequencies of the system, the role of the angular momenta, the invariable plane, orbital resonances and the Kozai-Lidov mechanism. To be published in European Journal of Physics. 2 I. INTRODUCTION With few exceptions astronomers cannot make experiments, they are limited to observe the universe. The laboratory for the astronomer usually takes the form of computer simulations. This is the most important instrument for the study of the dynamical behavior of gravitationally interacting bodies. A planetary system, for example, evolves mostly due to gravitation acting over very long timescales generating what is called a secular evolution. This secular evolution can be deduced analytically by means of the theory of perturbations, but can also be explored in the classroom by means of precise numerical integrators. Some facilities exist to visualize and experiment with the gravitational interactions between massive bodies1–3.
    [Show full text]
  • Education Employment Research Activities
    Eric Quirico Curiculum Vitae Professor University Grenoble Alpes / CNRS Institut de Plan´etologieet Astrophysique de Grenoble Domaine Universitaire - BP 53 38041 Grenoble Cedex 9 - France E-mail : [email protected] Education 1992-95 : Ph. D. Thesis : Spectroscopic studies of molecular solids. Application to the study of the surfaces of Triton and Pluto. (University Joseph Fourier) 1990-91 : Master Degree in Material Sciences (Universit´eJoseph Fourier) 1987-90 : Ecole Nationale Sup´erieurede Physique de Marseille (now Ecole Centrale Marseille) 1985-87 : Classes Pr´eparatoiresaux Grandes Ecoles CPGE Sup/P' (Lyc´eeBer- thollet, Annecy - France) Employment 2010-... : Professor - University Joseph Fourier, Institut de Plan´etologieet Astro- physique de Grenoble. 2002-10 : Associate Professor - University Joseph Fourier, Laboratoire de Plan´etologiede Grenoble. 1997-01 : Associate Professor - University Paris XI, Institut d'Astrophysique Spa- tiale 1996-97 : Assistant Professor Laboratoire de Plan´etologieet G´eodynamique, Uni- versity of Nantes - France Research activities Organics in Early Solar System | Pre-accretion origin of organics, and ISM Heritage | Organics, water and minerals co-evolution in primitive asteroids | Carbon-based tracers of parent body thermal metamorphism Surface composition and evolution of small bodies, satellites | Analysis of VNIR reflectance observations | Optical properties of planetary materials and their analogs | Space weathering and surface processes My activities are essentially based on
    [Show full text]
  • Forced Obliquities and Moments of Inertia of Ceres and Vesta ⇑ B.G
    Icarus 213 (2011) 496–509 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Forced obliquities and moments of inertia of Ceres and Vesta ⇑ B.G. Bills a, , F. Nimmo b a Jet Propulsion Laboratory, Pasadena, CA 91109, USA b Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA article info abstract Article history: We examine models of secular variations in the orbit and spin poles of Ceres and Vesta, the two most Received 22 July 2009 massive bodies in the main asteroid belt. If the spin poles are fully damped, then the current values of Revised 30 August 2010 obliquity, or angular separation between spin and orbit poles, are diagnostic of the moments of inertia Accepted 1 September 2010 and thus indicative of the extent of differentiation of these bodies. Using existing shape models and Available online 21 September 2010 assuming uniform density, the present obliquity values are predicted to be 12.31° for Ceres and 15.66° for Vesta. Part of this difference is related to differing orbital inclinations; a more centrally condensed Keywords: internal structure would yield more rapid spin pole precession, and larger obliquity. Time scales for tidal Asteroids, Dynamics damping are expected to be rather long. However, at least for Vesta, current estimates of the spin pole Asteroid Ceres Asteroid Vesta location are consistent with its obliquity being fully damped. When the degree two gravity coefficients Rotational dynamics and spin pole orientations are determined by the Dawn spacecraft, it will allow accurate determination of the moments of inertia of these bodies, assuming the obliquities are damped.
    [Show full text]
  • Astro 250: Solutions to Problem Set 5 by Eugene Chiang
    Astro 250: Solutions to Problem Set 5 by Eugene Chiang Problem 1. Precessing Planes and the Invariable Plane Consider a star of mass mc orbited by two planets on nearly circular orbits. The mass and semi-major axis of the inner planet are m1 and a1, respectively, and those of the outer planet, m2 = (1/2) × m1 and a2 = 4 × a1. The mutual inclination between the two orbits is i 1. This problem explores the inclination and nodal behavior of the two planets. a) What is the inclination of each planet with respect to the invariable plane of the system? The invariable plane is perpendicular to the total (vector) angular momentum of all planetary orbits. Neglect the contribution of orbital eccentricity to the angular momentum. Call these inclinations i1 and i2. The masses and semi-major axes of the two planets are so chosen as to make the arithmetic easy;√ the norm of each planet’s angular momentum is the same as the other, |~l1| = |~l2| = m1 Gmca1. Orient the x-y axes in the invariable plane so that the y-axis lies along the line of intersection between the two orbit planes (the nodal line). Then in the x-z plane, the total angular momentum vector lies along the z-axis, while ~l1 lies (say) in quadrant II and makes an angle with respect to the z-axis of i1 > 0, while l~2 lies in quadrant I and makes an angle with respect to the z-axis of i2 > 0. Remember that the mutual inclination i = i1 + i2.
    [Show full text]