Analiza Efektu Przeciwbólowego Nowych Analogów Neuropeptydów W Mysim Modelu Bólu Nowotworowego

Total Page:16

File Type:pdf, Size:1020Kb

Analiza Efektu Przeciwbólowego Nowych Analogów Neuropeptydów W Mysim Modelu Bólu Nowotworowego POLSKA AKADEMIA NAUK Instytut Medycyny Doświadczalnej i Klinicznej im. Mirosława Mossakowskiego Analiza efektu przeciwbólowego nowych analogów neuropeptydów w mysim modelu bólu nowotworowego Anna Leśniak Rozprawa doktorska wykonana w Zakładzie Neuropeptydów Promotor: prof. dr hab. n. med Andrzej W. Lipkowski Warszawa, 2013 http://rcin.org.pl Pragnę złożyć serdeczne podziękowania: Panu prof. dr hab. n. med. Andrzejowi Lipkowskiemu za podjęcie się roli promotora pracy oraz za opiekę merytoryczną, cenne rady i wskazówki na każdym etapie wykonywania pracy Paniom prof. dr hab. n.med Janinie Rafałowskiej oraz dr n. biol. Hannie Szymańskiej za pomoc w wykonaniu i interpretacji badań histologicznych Panom prof. Gézie Tóth oraz dr Sándorowi Benyhe za użyczenie radioligandów oraz pomoc w badaniach radioizotopowych Panu dr hab. Mariuszowi Sacharczukowi za pomoc w badaniach farmakologicznych a także Koleżankom i Kolegom z Zakładu Neuropeptydów IMDiK PAN za wsparcie i stworzenie miłej atmosfery pracy Anna Leśniak 2 http://rcin.org.pl SPIS TREŚCI: 1. WSTĘP ................................................................................................................. 9 1.1 Funkcja i definicja bólu .................................................................................... 9 1.2 Fizjologia bólu ................................................................................................ 9 1.3 Charakterystyka i funkcja receptorów opioidowych ....................................... 16 1.4 Endogenne ligandy receptorów opioidowych ................................................ 21 1.5 Mechanizmy hamowania bólu przez związki opioidowe ................................ 26 1.6 Mechanizm analgezji obwodowej .................................................................. 35 1.7 Ból nowotworowy ........................................................................................ 38 1.7.1 Klasyfikacja i etiologia bólu nowotworowego ............................................... 38 1.7.2 Farmakoterapia bólu nowotworowego ......................................................... 43 2. CELE PRACY: ....................................................................................................... 50 3. MATERIAŁY I METODY ........................................................................................ 52 3.1 Doświadczenia radioizotopowe .................................................................... 52 3.1.2 Przygotowanie homogenatu z mózgu szczura .............................................. 52 3.1.3 Kompetycyjne wiązanie radioizotopowe ...................................................... 53 3.1.4 Analiza [35S]GTPγS ......................................................................................... 54 3.2 Doświadczenia in vitro .................................................................................. 54 3.2.1 Hodowla komórek czerniaka linii B16F0 ....................................................... 54 3.2.2 Test przeżywalności komórek ........................................................................ 55 3.3 Doświadczenia in vivo ................................................................................... 56 3.3.1 Zwierzęta ....................................................................................................... 56 3.3.2 Implantacja komórek czerniaka linii B16F0 ................................................... 56 3.3.3 Preparatyka mikroskopowa ........................................................................... 57 3.3.4. Test podeszwowy oraz test cofania ogona ................................................... 58 3.3.5 Pomiar rozwoju termicznej hiperalgezji ........................................................ 59 3.3.6 Pomiar objętości kończyny ............................................................................ 59 3.3.7 Doświadczenia farmakologiczne ................................................................... 59 3.4 Związki użyte w doświadczeniach in vivo ...................................................... 60 3.5 Statystyczna analiza wyników ....................................................................... 61 3 http://rcin.org.pl 4. WYNIKI .............................................................................................................. 61 4.1 Charakterystyka morfologiczna i behawioralna mysiego modelu bólu nowotworowego .......................................................................................... 61 4.2 Farmakodynamika bifaliny i peptydów 5320 oraz 5311 w kompetycyjnych i funkcjonalnych badaniach radioizotopowych ................................................... 72 4.3 Działanie analgetyczne bifaliny i peptydów 5320 oraz 5311 w teście podeszwowym ....................................................................................... 78 4.4 Działanie analgetyczne bifaliny i peptydów 5320 oraz 5311 w teście cofania ogona ......................................................................................... 89 4.5 Porównanie udziału analgezji ośrodkowej i obwodowej bifaliny i peptydów 5320 oraz 5311..................................................................... 94 4.6 Rozwój tolerancji na bifalinę, peptyd 5320 oraz morfinę .................................... 98 5. DYSKUSJA .......................................................................................................... 102 6. WNIOSKI ........................................................................................................... 119 7. STRESZCZENIE.................................................................................................... 120 8. ABSTRACT ......................................................................................................... 123 9. LITERATURA ...................................................................................................... 128 4 http://rcin.org.pl SPIS SKRÓTÓW %MPE – % maksymalnego możliwego efektu analgetycznego [35S]GTPγS – guanozyno 5-O- [γ-35S]-trifosforan 5-HT – 5-hydroksytryptamina 5-HT2 – receptor serotoninergiczny - 2 AMPA – kwas α-amino-3-hydroksy-5-metylo-4-izoksazolo-propionowy ANOVA – analiza wariancji ASIC – kanał aktywowany protonami AUC – pole powierzchni pod krzywą B1 – receptor dla bradykininy - 1 BAM – bydlęcy peptyd rdzenia nadnerczy BBB – bariera krew-mózg BK – bradykinina CaMK– kinaza zależna od jonów wapnia i kalmoduliny cAMP – cykliczny 3',5'- adenozynomonofosforan CCK– cholecystokinina cGMP – cykliczny 3'5'-guanozynomonofosforan CGRP – peptyd związany z genem kalcytoniny COX-2 – cyklooksygenaza 2 CREB – białko wiążące się z elementem odpowiedzi na cAMP DALDA – amid [D-Arg2, Lys4] (1-4) dermorfiny 2 4 5 DAMGO – (D-Ala ,NMePhe ,Gly -ol)enkefalina DELT II – tyrosyl-3,5-3H]deltorfina II DPDPE – [D-Pen2,D-Pen5]enkefalina DSLET – D-Ser2-Leu-enkefalina-Thr6 EAA – aminokwasy pobudzające EAPC – Europejskie Stowarzyszenia Opieki Paliatywnej EDTA – kwas etylenodiaminotetraoctowy ERK 1 i 2 – kinaza zależna od sygnału zewnątrzkomórkowego 1 i 2 FBS – bydlęca surowica płodowa 5 http://rcin.org.pl GABA – kwas γ-aminomasłowy GDP – guanozyno-5'-difosforan GIRK – sprzężone z białkiem G wewnątrzprostownicze kanały potasowe GPCR – receptory sprzężone z białkiem G GTP – guanozyno-5'-trifosforan IASP– Międzynarodowe Stowarzyszenie Badania Bólu IL-1β – interleukina - 1β IL-2 – interleukina -2 IP3 – inozytolotrifosforan KAR – receptor kainianowy LC – jądro sinawe pnia mózgu LNAAT – transporter dużych obojętnych aminokwasów LOX – lipooksygenaza LT – neuron o niskim progu pobudzenia M3G – morfino-3-glukuronian M6G – morfino-6-glukuronian MAPK – kinaza białkowa aktywowana mitogenami mGluR – metabotropowy receptor glutamatergiczny NK-1 – neurokinina-1 NKA – neurokinina A NLPZ – niesterydowe leki przeciwzapalne NLX – naltrekson NLXM – metylojodek naloksonu NMDA – kwas N-metylo-D-asparaginowy NO – tlenek azotu NOS – syntaza tlenku azotu NRM – jądro wielkie szwu NS – neurony nocyceptywne NTDDS – System Celowanego Dostarczania Leku do Neuronu ORL1 – receptor opioidopodobny - 1 OUN – ośrodkowy układ nerwowy 6 http://rcin.org.pl P75 NGF – receptor dla neurotrofiny p75 PAG – substancja szara okołowodociągowa PBS – sól fizjologiczna buforowana fosforanami (pre-) PDYN – (pre-) prodynorfina (pre-) PENK – (pre-) proenkefalina PEI – polietyloimina PG – prostaglandyna PKA – kinaza białkowa A PKC – kinaza białkowa C PLA2 – fosfolipaza A2 PLC – fosfolipaza C (pre-) PNOC – (pre-) pronocyceptyna (pre-) POMC – (pre-) proopiomelanokortyna PPT – preprotachykinina PTX – toksyna krztuścowa RM ANOVA – analiza wariancji z powtarzanymi pomiarami RT-PCR – reakcja łańcuchowa polimerazy z przyrostem produktu w czasie rzeczywistym RVM – brzuszno-dogłowowa część rdzenia przedłużonego SP – substancja P TRKA – kinaza tyrozynowa A TRP – kanał jonowy aktywowany przejściowym potencjałem TRPV1 – receptor waniloidowy-1 TRPV4 – receptor waniloidowy-4 TTX – tetrodotoksyna VGCC – zależny od napięcia kanał wapniowy VPL – jądro brzuszne tylno-boczne WDR – neuron konwergencyjny WHO – Światowa Organizacja Zdrowia 7 http://rcin.org.pl CZĘŚĆ TEORETYCZNA 8 http://rcin.org.pl 1. WSTĘP 1.1 Funkcja i definicja bólu Ból jest zjawiskiem towarzyszącym człowiekowi od zarania dziejów a opisy tego zjawiska sięgają czasów starożytnego Egiptu i Babilonu. Słowo "ból" pochodzi od łacińskiego wyrazu „poena” oznaczającego karę. Ból ostry jest zjawiskiem nieodłącznie związanym z życiem człowieka, gdyż sygnalizuje zagrożenie dla integralności i homeostazy organizmu. Biologiczna, czyli ostrzegawcza funkcja bólu prowadzi do wytworzenia
Recommended publications
  • An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional D
    J Mol Cell Cardiol 32, 2187–2193 (2000) doi:10.1006/jmcc.2000.1241, available online at http://www.idealibrary.com on An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional -Opioid Receptor Claire L. Neilan1, Erin Kenyon1, Melissa A. Kovach1, Kristin Bowden1, William C. Claycomb2, John R. Traynor3 and Steven F. Bolling1 1Department of Cardiac Surgery, University of Michigan, B558 MSRB II, Ann Arbor, MI 48109-0686, USA, 2Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, LA 70112, USA and 3Department of Pharmacology, University of Michigan, 1301 MSRB III, Ann Arbor, MI 48109-0632, USA (Received 17 March 2000, accepted in revised form 30 August 2000, published electronically 25 September 2000) C. L. N,E.K,M.A.K,K.B,W.C.C,J.R.T S. F. B.An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional -Opioid Receptor. Journal of Molecular and Cellular Cardiology (2000) 32, 2187–2193. The present study characterizes opioid receptors in an immortalized myocyte cell line, HL-1. Displacement of [3H]bremazocine by selective ligands for the mu (), delta (), and kappa () receptors revealed that only the -selective ligands could fully displace specific [3H]bremazocine binding, indicating the presence of only the -receptor in these cells. Saturation binding studies with the -antagonist naltrindole 3 afforded a Bmax of 32 fmols/mg protein and a KD value for [ H]naltrindole of 0.46 n. The binding affinities of various ligands for the receptor in HL-1 cell membranes obtained from competition binding assays were similar to those obtained using membranes from a neuroblastoma×glioma cell line, NG108-15.
    [Show full text]
  • Design and Synthesis of Cyclic Analogs of the Kappa Opioid Receptor Antagonist Arodyn
    Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn By © 2018 Solomon Aguta Gisemba Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Dr. Michael Rafferty Dr. Teruna Siahaan Dr. Thomas Tolbert Date Defended: 18 April 2018 The dissertation committee for Solomon Aguta Gisemba certifies that this is the approved version of the following dissertation: Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Date Approved: 10 June 2018 ii Abstract Opioid receptors are important therapeutic targets for mood disorders and pain. Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and 1,2,3 4 8 depression. Arodyn (Ac[Phe ,Arg ,D-Ala ]Dyn A(1-11)-NH2), an acetylated dynorphin A (Dyn A) analog, has demonstrated potent and selective KOR antagonism, but can be rapidly metabolized by proteases. Cyclization of arodyn could enhance metabolic stability and potentially stabilize the bioactive conformation to give potent and selective analogs. Accordingly, novel cyclization strategies utilizing ring closing metathesis (RCM) were pursued. However, side reactions involving olefin isomerization of O-allyl groups limited the scope of the RCM reactions, and their use to explore structure-activity relationships of aromatic residues. Here we developed synthetic methodology in a model dipeptide study to facilitate RCM involving Tyr(All) residues. Optimized conditions that included microwave heating and the use of isomerization suppressants were applied to the synthesis of cyclic arodyn analogs.
    [Show full text]
  • Characterization and Re-Evaluation of Experimental Pain Models in Healthy Subjects
    pain models in healthy subje healthy in models pain re-evaluation of experimental Chara pieter siebenga CharaCterization and C terization and re-evaluation of experimental pain models in healthy subjeCts pieter siebenga C ts 342_Omslag_01.indd 1 04-02-20 12:59 CharaCterization and re-evaluation of experimental pain models in healthy subjeCts 04-02-20 12:59 04-02-20 2 342_Omslag_01.indd CharaCterization and re-evaluation of experimental pain models in healthy subjeCts proefsChrift Ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. Mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 04 maart 2020 klokke 10:00 uur door Pieter Sjoerd Siebenga geboren te Dronten in 1984 Promotor 1 Pharmacodynamic Evaluation: Pain Methodologies — 7 Prof. dr. A.F. Cohen SECTION I The efficacy of different (novel) analgesics by using the Co-promotor PainCart Dr. G.J. Groeneveld 2 Analgesic potential of pf-06372865, an α2/α3/α5 subtype Leden promotiecommissie selective GABAA partial agonist, demonstrated using a battery Prof. dr. A. Dahan of evoked pain tasks in humans — 53 Prof. dr. A.E.W. Evers Dr. J.L.M. Jongen 3 Demonstration of an anti-hyperalgesic effect of a novel Prof. dr. E.C.M. de Lange pan-Trk inhibitor pf-06273340 in a battery of human evoked pain models — 73 4 Lack of detection of the analgesic properties of pf-05089771, a selective Nav1.7 inhibitor, using a battery of pain models in healthy subjects — 93 SECTION II Validation and improvement of human
    [Show full text]
  • Rubsicolins Are Naturally Occurring G-Protein-Biased Delta Opioid Receptor Peptides
    bioRxiv preprint doi: https://doi.org/10.1101/433805; this version posted October 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title page Title: Rubsicolins are naturally occurring G-protein-biased delta opioid receptor peptides Short title: Rubsicolins are G-protein-biased peptides Authors: Robert J. Cassell1†, Kendall L. Mores1†, Breanna L. Zerfas1, Amr H.Mahmoud1, Markus A. Lill1,2,3, Darci J. Trader1,2,3, Richard M. van Rijn1,2,3 Author affiliation: 1Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 2Purdue Institute for Drug Discovery, 3Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907 †Robert J Cassell and Kendall Mores contributed equally to this work Corresponding author: ‡Richard M. van Rijn, Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907 (Phone: 765-494- 6461; Email: [email protected]) Key words: delta opioid receptor; beta-arrestin; natural products; biased signaling; rubisco; G protein-coupled receptor Abstract: 187 Figures: 2 Tables: 2 References: 27 1 bioRxiv preprint doi: https://doi.org/10.1101/433805; this version posted October 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The impact that β-arrestin proteins have on G-protein-coupled receptor trafficking, signaling and physiological behavior has gained much appreciation over the past decade. A number of studies have attributed the side effects associated with the use of naturally occurring and synthetic opioids, such as respiratory depression and constipation, to excessive recruitment of β-arrestin.
    [Show full text]
  • Opioid Receptorsreceptors
    OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors.
    [Show full text]
  • Dynorphin Induces Task-Specific Impairment of Memory
    Psychobiology 1987, Vol. 15 (2), 171-174 Dynorphin induces task-specific impairment of memory INES B. INTROINI-COLLISON and LARRY CAHILL University of California, Irvine, California CARLOS M. BARATTl Universidad de Buenos Aires, Buenos Aires, Argentina and JAMES L. McGAUGH University of California, Irvine, California Immediate posttraining administration of the opioid peptide dynorphin(1-13) (0.1, 0.3, and 1.0l'g/kg i.p.) significantly impaired 24-h retention of a one-trial inhibitory avoidance task in mice. In contrast, posttraining dynorphin did not modify retention of either a Y-maze discrimi- nation (0.1, 1.0, or 10.0I'g/kg i.p.) or habituation of exploration (0.1, 0.3, 1.0, or 2.0 I'g/kg i.p.). The administration of dynorphin (0.1, 1.0, and 10.0I'g/kg i.p.) 2 min prior to the inhibitory avoidance retention test did not modify retention latencies of mice injected with either saline or dynorphin (O.ll'g/kg i.p.) immediately after training. In mice, dynorphin appears to impair retention by interfering with memory storage processes, and this effect seems to be task specific. There are three families of opioid peptides in the brain: range studied by Izquierdo et al. (1985). Interestingly, the ,B-endorphins, the enkephalins, and the dynorphins Castellano and Pavone (in press) showed that posttrain- (Akil et al., 1984; Weber, Evans, & Barchas, 1983). Re- ing administration of the x-opioid receptor agonist ports from many different laboratories have shown that bremazocine impairs retention of an inhibitory avoidance in rats and mice posttraining administration of ,6-endorphin task in DBA/2 mice, and that this effect is time- and dose- or the enkephalins produces retrograde amnesia in a wide dependent.
    [Show full text]
  • The Cardiovascular Actions of Mu and Kappa Opioid Agonists In
    THE CARDIOVASCULAR ACTIONS OF MU AND KAPPA OPIOID AGONISTS IN VIVO AND IN VITRO. By Abimbola T. Omoniyi, BSc (Hons) A thesis submitted in accordance with the requirements of the University of Surrey for the Degree of Doctor of Philosophy. Department of Pharmacology, September 1998. Cornell University Medical College, New York, NY 10021, ProQuest Number: 27733163 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 27733163 Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 ACKNOWLEDGEMENTS I would like to thank God through whom all things are made possible. Many thanks to Dr. Hazel Szeto for funding this thesis. Heartfelt gratitude to Dr. Dunli Wu for his support, encouragement and for keeping me sane. I thoroughly enjoyed the funny stories, the relentless Viagra jokes and endless tales of the Chinese revolution! Thanks to Dr. Yi Soong for all her support and generous assistance and all that food! Thanks to Dr. Ian Kitchen and Dr. Susanna Hourani for making this a successful collaborative degree. Thanks to my family for all their support and belief in me.
    [Show full text]
  • Intravenous Oxycodone Versus Other Intravenous Strong Opioids for Acute Postoperative Pain Control: a Systematic Review of Randomized Controlled Trials
    Pain Ther (2019) 8:19–39 https://doi.org/10.1007/s40122-019-0122-4 REVIEW Intravenous Oxycodone Versus Other Intravenous Strong Opioids for Acute Postoperative Pain Control: A Systematic Review of Randomized Controlled Trials Milton Raff . Anissa Belbachir . Salah El-Tallawy . Kok Yuen Ho . Eric Nagtalon . Amar Salti . Jeong-Hwa Seo . Aida Rosita Tantri . Hongwei Wang . Tianlong Wang . Kristal Cielo Buemio . Consuelo Gutierrez . Yacine Hadjiat Received: January 3, 2019 / Published online: April 19, 2019 Ó The Author(s) 2019 ABSTRACT (inclusive) that evaluated the acute postopera- tive analgesic efficacy of intravenous oxy- Introduction: Optimal pain management is codone against fentanyl, morphine, sufentanil, crucial to the postoperative recovery process. pethidine, and hydromorphone in adult We aimed to evaluate the efficacy and safety of patients (age C 18 years). Outcomes examined intravenous oxycodone with intravenous fen- included analgesic consumption, pain intensity tanyl, morphine, sufentanil, pethidine, and levels, side effects, and patient satisfaction. hydromorphone for acute postoperative pain. Results: Eleven studies were included in the Methods: A systematic literature search of review; six compared oxycodone with fentanyl, PubMed, Cochrane Library, and EMBASE data- two compared oxycodone with morphine, and bases was performed for randomized controlled three compared oxycodone with sufentanil. trials published from 2008 through 2017 There were no eligible studies comparing oxy- codone with pethidine or hydromorphone. Overall, analgesic consumption was lower with oxycodone than with fentanyl or sufentanil. Enhanced Digital Features To view enhanced digital Oxycodone exhibited better analgesic efficacy features for this article go to: https://doi.org/10.6084/ m9.figshare.7931558. than fentanyl and sufentanil, and comparable analgesic efficacy to morphine.
    [Show full text]
  • Journal of Pharmaceutical and Pharmacological Sciences
    Journal of Pharmaceutical and Pharmacological Sciences Eldalal OA, et al. J Pharma Pharma Sci: 4: 186. Review Article DOI: 10.29011/2574-7711.100086 The Correlation between Pharmacological Parameters of Oxycodone and Opioid Epidemic Othman A. Eldalal1,3,4*, Farag E S Mosa2,3, Oladayo A. Oyebanji1, Avinash Satyanarayan. Mahajan1, Terry L Oroszi1 1Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA 2Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada 3School of pharmacy, Omar Almukhtar University, Libya 4Department of Drug Technology, Faculty of Medical Technology, Derna, Libya *Corresponding author: Othman A. Eldalal, Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA Citation: Eldalal OA, Mosa FES, Oyebanji OA, Mahajan AS, Oroszi TL (2020) The Correlation between Pharmacological Param- eters of Oxycodone and Opioid Epidemic. J Pharma Pharma Sci: 4: 186. DOI: 10.29011/2574-7711.100086 Received Date: 16 March, 2020; Accepted Date: 30 March, 2020; Published Date: 06 April, 2020 Abstract Despite its high risk of abuse and diversion, Oxycodone remains a common choice in the management of moderate-to-se- vere pain. Increased consumption, largely secondary to increased prescription over the last 2 decades, has led to renewed interests in its pharmacology, and opioids in general. The behavioral impacts of oxycodone (and other opioids) are associated with several factors such as its chemical properties, pharmacodynamic properties, and pharmacokinetic parameters. The solubility and rate of absorption are essential factors that participate in the rapid concentration of oxycodone in the brain. Alterations in oxycodone metabolism have been associated with dose‐dependent kinetics, first-pass metabolism, and variations in genetic characters (poor or extensive metabolizers).
    [Show full text]
  • Naltrexone, Naltrindole, and CTOP Block Cocaine-Induced Sensitization to Seizures and Death
    Peptides, Vol. 18, No. 8, pp. 1189–1195, 1997 Copyright © 1997 Elsevier Science Inc. Printed in the USA. All rights reserved 0196-9781/97 $17.00 1 .00 PII S0196-9781(97)00182-4 Naltrexone, Naltrindole, and CTOP Block Cocaine-Induced Sensitization to Seizures and Death D. BRAIDA,1 E. PALADINI, E. GORI AND M. SALA Institute of Pharmacology, Faculty of Mathematical, Physical and Natural Sciences, University of Milan, Via Vanvitelli 32/A, 20129, Milan, Italy Received 10 March 1997; Accepted 15 May 1997 BRAIDA, D., E. PALADINI, E. GORI AND M. SALA. Naltrexone, naltrindole, and CTOP block cocaine-induced sensitization to seizures and death. PEPTIDES 18(8) 1189–1195, 1997.—ICV injection for 9 days of either naltexone (NTX) (5, 10, 20, 40 mg/rat) or a selective m peptide (CTOP) (0.125, 0.25, 0.5, 1, 3, 6 mg/rat) or d (naltrindole) (NLT) (5, 10, 20 mg/rat) subtype opioid receptor antagonist affected sensitization to cocaine (COC) (50 mg/kg, IP) administered 10 min after. NTX (5 and 40 mg/rat), NLT (10 and 20 mg/rat), and the peptide CTOP (0.25–0.5 mg/rat) attenuated seizure parameters (percent of animals showing seizures, mean score and latency) in a day-related manner. The DD50 (days to reach 50% of death) value for COC was 2.69, whereas it was 9.67 and 7.27 for NTX 5 and 40 mg/rat, 8.59 for NLT (10 mg/rat), and 6.11, 5.95, and 4.30 for CTOP (0.25, 0.5, and 1 mg/rat respectively).
    [Show full text]
  • (2) Patent Application Publication (10) Pub. No.: US 2017/0020885 A1 Hsu (43) Pub
    US 20170020885A1 (19) United States (2) Patent Application Publication (10) Pub. No.: US 2017/0020885 A1 Hsu (43) Pub. Date: Jan. 26, 2017 (54) COMPOSITION COMPRISING A (52) U.S. CI. THERAPEUTIC AGENT AND A CPC ......... A61K 31/5377 (2013.01); A61K 9/0053 RESPIRATORY STIMULANT AND (2013.01); A61K 31/485 (2013.01); A61 K METHODS FOR THE USE THEREOF 9/5073 (2013.01); A61K 9/5047 (2013.01): A61K 45/06 (2013.01); A61K 9/0019 (71) Applicant: John Hsu, Rowland Heights, CA (US) (2013.01); A61K 9/209 (2013.01) (72) Inventor: John Hsu, Rowland Heights, CA (US) (57) ABSTRACT (21) Appl. No.: 15/214,421 (22) Filed: Jul. 19, 2016 The present disclosure provides a safe method for anesthesia or the treatment of pain by safely administering an amount Related U.S. Application Data of active agent to a patient while reducing the incidence or severity of suppressed respiration. The present disclosure (60) Provisional application No. 62/195,769, filed on Jul. provides a pharmaceutical composition comprising a thera 22, 2015. peutic agent and a chemoreceptor respiratory stimulant. In one aspect, the compositions oppose effects of respiratory Publication Classification suppressants by combining a chemoreceptor respiratory (51) Int. Cl. stimulant with an opioid receptor agonist or other respira A6 IK 31/5377 (2006.01) tory-depressing drug. The combination of the two chemical A6 IK 9/24 (2006.01) agents, that is, the therapeutic agent and the respiratory A6 IK 9/50 (2006.01) stimulant, may be herein described as the “drugs.” The A6 IK 45/06 (2006.01) present compositions may be used to treat acute and chronic A6 IK 9/00 (2006.01) pain, sleep apnea, and other conditions, leaving only non A6 IK 31/485 (2006.01) lethal side effects.
    [Show full text]
  • Updated Clinical Pharmacokinetics and Pharmacodynamics of Oxycodone
    Clinical Pharmacokinetics https://doi.org/10.1007/s40262-018-00731-3 REVIEW ARTICLE Updated Clinical Pharmacokinetics and Pharmacodynamics of Oxycodone Mari Kinnunen1 · Panu Piirainen1 · Hannu Kokki1 · Pauliina Lammi1 · Merja Kokki2 © The Author(s) 2019 Abstract Global oxycodone consumption has increased sharply during the last two decades, and, in 2008, oxycodone consumption surpassed that of morphine. As oxycodone was synthesized in 1916 and taken to clinical use a year later, it has not undergone the same approval process required by today’s standards. Most of the basic oxycodone pharmacokinetic (PK) data are from the 1990s and from academic research; however, a lot of additional data have been published over the last 10 years. In this review, we describe the latest oxycodone data on special populations, including neonates, children, pregnant and lactating women, and the elderly. A lot of important drug interaction data have been published that must also be taken into account when oxycodone is used concomitantly with cytochrome P450 (CYP) 3A inducers and inhibitors and/or CYP2D6 inhibitors. In addition, we gathered data on abuse-deterrent oxycodone formulations, and the PK of alternate administration routes, i.e. transmucosal and epidural, are also described. 1 Introduction Oxycodone was synthesized in 1916 and introduced for clinical use in 1917 in Germany [2]. It became available There has been a sharp increase in global oxycodone con- for use in the US in 1939. In Finland, oxycodone has been sumption since 1995, when a controlled-release (CR) tablet the most commonly used opioid analgesic since the 1960s, formulation was approved and launched for use in the fol- and, during the last 10 years, oxycodone has accounted for lowing year.
    [Show full text]