History of Ranavirus Die-Offs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Rhacophoridae, Pseudophilautus) in Sri Lanka
Molecular Phylogenetics and Evolution 132 (2019) 14–24 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Diversification of shrub frogs (Rhacophoridae, Pseudophilautus) in Sri Lanka T – Timing and geographic context ⁎ Madhava Meegaskumburaa,b,1, , Gayani Senevirathnec,1, Kelum Manamendra-Arachchid, ⁎ Rohan Pethiyagodae, James Hankenf, Christopher J. Schneiderg, a College of Forestry, Guangxi Key Lab for Forest Ecology and Conservation, Guangxi University, Nanning 530004, PR China b Department of Molecular Biology & Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka c Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA d Postgraduate Institute of Archaeology, Colombo 07, Sri Lanka e Ichthyology Section, Australian Museum, Sydney, NSW 2010, Australia f Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA g Department of Biology, Boston University, Boston, MA 02215, USA ARTICLE INFO ABSTRACT Keywords: Pseudophilautus comprises an endemic diversification predominantly associated with the wet tropical regions ofSri Ancestral-area reconstruction Lanka that provides an opportunity to examine the effects of geography and historical climate change on diversi- Biogeography fication. Using a time-calibrated multi-gene phylogeny, we analyze the tempo of diversification in thecontextof Ecological opportunity past climate and geography to identify historical drivers of current patterns of diversity and distribution. Molecular Diversification dating suggests that the diversification was seeded by migration across a land-bridge connection from India duringa Molecular dating period of climatic cooling and drying, the Oi-1 glacial maximum around the Eocene-Oligocene boundary. Lineage- Speciation through-time plots suggest a gradual and constant rate of diversification, beginning in the Oligocene and extending through the late Miocene and early Pliocene with a slight burst in the Pleistocene. -
Anura, Rhacophoridae)
Zoologica Scripta Patterns of reproductive-mode evolution in Old World tree frogs (Anura, Rhacophoridae) MADHAVA MEEGASKUMBURA,GAYANI SENEVIRATHNE,S.D.BIJU,SONALI GARG,SUYAMA MEEGASKUMBURA,ROHAN PETHIYAGODA,JAMES HANKEN &CHRISTOPHER J. SCHNEIDER Submitted: 3 December 2014 Meegaskumbura, M., Senevirathne, G., Biju, S. D., Garg, S., Meegaskumbura, S., Pethiya- Accepted: 7 May 2015 goda, R., Hanken, J., Schneider, C. J. (2015). Patterns of reproductive-mode evolution in doi:10.1111/zsc.12121 Old World tree frogs (Anura, Rhacophoridae). —Zoologica Scripta, 00, 000–000. The Old World tree frogs (Anura: Rhacophoridae), with 387 species, display a remarkable diversity of reproductive modes – aquatic breeding, terrestrial gel nesting, terrestrial foam nesting and terrestrial direct development. The evolution of these modes has until now remained poorly studied in the context of recent phylogenies for the clade. Here, we use newly obtained DNA sequences from three nuclear and two mitochondrial gene fragments, together with previously published sequence data, to generate a well-resolved phylogeny from which we determine major patterns of reproductive-mode evolution. We show that basal rhacophorids have fully aquatic eggs and larvae. Bayesian ancestral-state reconstruc- tions suggest that terrestrial gel-encapsulated eggs, with early stages of larval development completed within the egg outside of water, are an intermediate stage in the evolution of ter- restrial direct development and foam nesting. The ancestral forms of almost all currently recognized genera (except the fully aquatic basal forms) have a high likelihood of being ter- restrial gel nesters. Direct development and foam nesting each appear to have evolved at least twice within Rhacophoridae, suggesting that reproductive modes are labile and may arise multiple times independently. -
AMPHIBIANS and REPTILES of Morningside, Sri Lanka
AMPHIBIANS and REPTILES of Morningside, Sri Lanka 1 Peter Janzen Justus-von-Liebig-Schule, Duisburg, Germany Photos: Peter Janzen © Peter Janzen [[email protected]] Male (M), Female (F), Juvenile (Juv.), Endemic (E) and Poisonous (P). [fieldguides.fieldmuseum.org] [1061] version 1 3/2019 1 Adenomus kelaartii (E) 2 Duttaphrynus melanostictus 3 Euphlyctis cyanophlyctis 4 Euphlyctis cyanophlyctis BUFONIDAE BUFONIDAE DICROGLOSSIDAE DICROGLOSSIDAE 5 Fejervarya kirtisinghei (E) 6 Fejervarya kirtisinghei (E) 7 Fejervarya kirtisinghei (E) 8 Microhyla karunaratnei (E) DICROGLOSSIDAE DICROGLOSSIDAE DICROGLOSSIDAE MICROHYLIDAE 9 Microhyla karunaratnei (E) 10 Microhyla karunaratnei (E) 11 Uperodon obscurus (E) 12 Uperodon obscurus (E) MICROHYLIDAE MICROHYLIDAE MICROHYLIDAE MICROHYLIDAE 13 Uperodon obscurus (E) 14 Uperodon obscurus (E) 15 Lankanectes corrugatus (E) 16 Indosylvirana temporalis MICROHYLIDAE MICROHYLIDAE NYCTIBATRACHIDAE RANIDAE 17 Indosylvirana temporalis 18 Indosylvirana temporalis 19 Indosylvirana temporalis 20 Indosylvirana temporalis RANIDAE RANIDAE RANIDAE RANIDAE AMPHIBIANS and REPTILES of Morningside, Sri Lanka 2 Peter Janzen Justus-von-Liebig-Schule, Duisburg, Germany Photos: Peter Janzen © Peter Janzen [[email protected]] Male (M), Female (F), Juvenile (Juv.), Endemic (E) and Poisonous (P). [fieldguides.fieldmuseum.org] [1061] version 1 3/2019 21 Indosylvirana temporalis 22 Indosylvirana temporalis 23 Polypedates cruciger (E) 24 Polypedates cruciger (E) RANIDAE RANIDAE RHACOPHORIDAE RHACOPHORIDAE 25 Polypedates cruciger (E) 26 Polypedates -
The Ultimate and Proximate Regulation of Developmental Polyphenism in Spadefoot Toads Brian L
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2009 The Ultimate and Proximate Regulation of Developmental Polyphenism in Spadefoot Toads Brian L. (Brian Lee) Storz Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES THE ULTIMATE AND PROXIMATE REGULATION OF DEVELOPMENTAL POLYPHENISM IN SPADEFOOT TOADS By BRIAN L. STORZ A Dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2009 Copyright © 2009 Brian L. Storz All Rights Reserved The members of the committee approve the dissertation of Brian L. Storz defended on June 30, 2008. ________________________________ Timothy S. Moerland Professor Directing Dissertation ________________________________ J. Michael Overton Outside Committee Member ________________________________ P. Bryant Chase Committee Member ________________________________ Thomas A. Houpt Committee Member ________________________________ Wu-Min Deng Committee Member Approved: ______________________________ P. Bryant Chase, Chair, Department of Biological Science ______________________________ Joseph Travis, Dean, College of Arts and Sciences The Graduate School has verified and approved the above-named committee members. ii ACKNOWLEDGEMENTS To Shonna for always being there for me and being the most supportive and wonderful wife in the world. To Logan for being crazy and keeping my life entertaining and utterly exhausting. To Timothy S. Moerland for helping me up, dusting me off, and putting me back on the biology bicycle, for teaching me how to think like a CMB biologist, and most importantly, for teaching me how to balance science with family. -
3Systematics and Diversity of Extant Amphibians
Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water. -
BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls -
Anura Rhacophoridae
Molecular Phylogenetics and Evolution 127 (2018) 1010–1019 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Comprehensive multi-locus phylogeny of Old World tree frogs (Anura: Rhacophoridae) reveals taxonomic uncertainties and potential cases of T over- and underestimation of species diversity ⁎ Kin Onn Chana,b, , L. Lee Grismerc, Rafe M. Browna a Biodiversity Institute and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Blvd., University of Kansas, Lawrence KS 66045, USA b Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore c Herpetology Laboratory, Department of Biology, La Sierra University, 4500 Riverwalk Parkway, Riverside, CA 92505 USA ARTICLE INFO ABSTRACT Keywords: The family Rhacophoridae is one of the most diverse amphibian families in Asia, for which taxonomic under- ABGD standing is rapidly-expanding, with new species being described steadily, and at increasingly finer genetic re- Species-delimitation solution. Distance-based methods frequently have been used to justify or at least to bolster the recognition of Taxonomy new species, particularly in complexes of “cryptic” species where obvious morphological differentiation does not Systematics accompany speciation. However, there is no universally-accepted threshold to distinguish intra- from inter- Molecular phylogenetics specific genetic divergence. Moreover, indiscriminant use of divergence thresholds to delimit species can result in over- or underestimation of species diversity. To explore the range of variation in application of divergence scales, and to provide a family-wide assessment of species-level diversity in Old-World treefrogs (family Rhacophoridae), we assembled the most comprehensive multi-locus phylogeny to date, including all 18 genera and approximately 247 described species (∼60% coverage). -
Anura, Rhacophoridae)
ZOOLOGICAL RESEARCH A new genus and species of treefrog from Medog, southeastern Tibet, China (Anura, Rhacophoridae) Ke JIANG1,#, Fang YAN1,#, Kai WANG2,1, Da-Hu ZOU3,1, Cheng LI4, Jing CHE1, * 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China 2 Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman OK 73072-7029, U.S.A. 3 Tibet University, Lhasa Tibet 850000, China 4 Imaging Biodiversity Expedition, Beijing 100107, China ABSTRACT was described based on two specimens from southern Medog. For nearly a century, there are no further reports or re-description A new genus and species of threefrog is described of the species, and its species boundary is solely delimited based from Medog, southeastern Tibet, China based on on the original description. 1 morphological and phylogenetic data. The new During a herpetological survey of southeastern Tibet in 2015, a genus can be distinguished from other treefrog male treefrog was collected from the tree crown in the tropical rain genera by the following combination of characters: forest at Medog. Phylogentic analysis revealed that this specimen (1) body size moderate, 45.0 mm in male; (2) snout shared the same haplotype with a specimen (6255 RAO) also from rounded; (3) canthus rostralis obtuse and raised Medog that was identified as T. moloch in Li et al. (2009). However, prominently, forming a ridge from nostril to morphological comparisons reveal that the treefrog we collected from anterior corner of eyes; (4) web rudimentary on Medog is distinguished readily from the true T. -
Standard Guidelines for the Captive Keeping of Anurans
Standard Guidelines for the Captive Keeping of Anurans Developed by the Workgroup Anurans of the Deutsche Gesellschaft für Herpetologie und Terrarienkunde (DGHT) e. V. Informations about the booklet The amphibian table benefi ted from the participation of the following specialists: Dr. Beat Akeret: Zoologist, Ecologist and Scientist in Nature Conserva- tion; President of the DGHT Regional Group Switzerland and the DGHT City Group Zurich Dr. Samuel Furrer: Zoologist; Curator of Amphibians and Reptiles of the Zurich Zoological Gardens (until 2017) Prof. Dr. Stefan Lötters: Zoologist; Docent at the University of Trier for Herpeto- logy, specialising in amphibians; Member of the Board of the DGHT Workgroup Anurans Dr. Peter Janzen: Zoologist, specialising in amphibians; Chairman and Coordinator of the Conservation Breeding Project “Amphibian Ark” Detlef Papenfuß, Ulrich Schmidt, Ralf Schmitt, Stefan Ziesmann, Frank Malz- korn: Members of the Board of the DGHT Workgroup Anurans Dr. Axel Kwet: Zoologist, amphibian specialist; Management and Editorial Board of the DGHT Bianca Opitz: Layout and Typesetting Thomas Ulber: Translation, Herprint International A wide range of other specialists provided important additional information and details that have been Oophaga pumilio incorporated in the amphibian table. Poison Dart Frog page 2 Foreword Dear Reader, keeping anurans in an expertly manner means taking an interest in one of the most fascinating groups of animals that, at the same time, is a symbol of the current threats to global biodiversity and an indicator of progressing climate change. The contribution that private terrarium keeping is able to make to researching the biology of anurans is evident from the countless publications that have been the result of individuals dedicating themselves to this most attractive sector of herpetology. -
Journal of BIOLOGICAL RESEARCHES ISSN: 08526834 | E-ISSN:2337-389X Volume 21| No
Journal of BIOLOGICAL RESEARCHES ISSN: 08526834 | E-ISSN:2337-389X Volume 21| No. 1| December | 2015 Review Article SPECIATION AND ZOOGEOGRAPHY OF AMPHIBIAN IN SUNDALAND Nia Kurniawan1*, Driyana Rike Ahmadlia2, Day Shine Nahari3, Anggun Sausan Firdaus1 1Biology Department, Faculty of Mathematics and Natural Sciences, University of Brawijaya 2Biology Department, Faculty of Sciences and Technology, Islamic State University Maulana Malik Ibrahim 3Chemistry Department, Faculty of Sciences and Technology, Islamic State University Maulana Malik Ibrahim Veteran Street, Malang 65145, East Java, Indonesia ABSTRACT Sundaland is an interesting area to be explored based on its geological history, topography, and climate. Sundaland con- sists of Penisular Malaysia, Sumatra, Borneo, and Java which experienced some emergence and submergence process in the past. During 1981-2015, most of research in Sundaland found that amphibian family in Sundaland was dominated by Bufonidae, Ranidae, Microhylidae, Megophrydae, Rachophoridae, and Dicroglossidae which experienced lot of spe- ciation in its history. Among of 4 major islands in Sundaland, Borneo has the highest number of species diversity, then Peninsular Malaysia, Sumatra, and Java. During those years, Sumatra and Java got least concern by researcher. There- fore, it is suggested for further study to explore more in Sumatra and Java. Keywords: Sundaland, amphibian, speciation, zoogeography. INTRODUCTION Amphibian composition in Sundaland is the result of amphibian exchange at Plio-Pleistocene period (Wilting et The history of Sundaland has begun at the Early- al., 2012; Brandon and Jones, 1996). There were several Cenozoic (approximately 65 mya). It was merged with the factors which influenced amphibian composition in southern end of Eurasia continent (Hall, 1996). During Sundaland, they are geological history of Sundaland and Pliocene and Pleistocene period, Sundaland was a large tropical climate which affected on the other geological single landmass. -
1704632114.Full.Pdf
Phylogenomics reveals rapid, simultaneous PNAS PLUS diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary Yan-Jie Fenga, David C. Blackburnb, Dan Lianga, David M. Hillisc, David B. Waked,1, David C. Cannatellac,1, and Peng Zhanga,1 aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and dMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by David B. Wake, June 2, 2017 (sent for review March 22, 2017; reviewed by S. Blair Hedges and Jonathan B. Losos) Frogs (Anura) are one of the most diverse groups of vertebrates The poor resolution for many nodes in anuran phylogeny is and comprise nearly 90% of living amphibian species. Their world- likely a result of the small number of molecular markers tra- wide distribution and diverse biology make them well-suited for ditionally used for these analyses. Previous large-scale studies assessing fundamental questions in evolution, ecology, and conser- used 6 genes (∼4,700 nt) (4), 5 genes (∼3,800 nt) (5), 12 genes vation. However, despite their scientific importance, the evolutionary (6) with ∼12,000 nt of GenBank data (but with ∼80% missing history and tempo of frog diversification remain poorly understood. data), and whole mitochondrial genomes (∼11,000 nt) (7). In By using a molecular dataset of unprecedented size, including 88-kb the larger datasets (e.g., ref. -
Cytogenetic Study of Three Microhylid Species (Anura, Microhylidae) from Thailand
© 2017 The Japan Mendel Society Cytologia 82(1) Special Issue: 67–74 Cytogenetic Study of Three Microhylid Species (Anura, Microhylidae) from Thailand Wiwat Sangpakdee1, Sumalee Phimphan2, Bundit Tengjaroenkul3,7, Krit Pinthong4, Lamyai Neeratanaphan5,7 and Alongklod Tanomtong6,7* 1 Program in Biology, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 40001, Thailand 2 Program in Public Health, Faculty of Science and Technology, Surindra Rajabhat University, Surin 32000, Thailand 3 Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Khon Kaen 40002, Thailand 4 Program in Biology, Department of Fundamental Science, Faculty of Science and Technology, Surindra Rajabhat University, Surin 32000, Thailand 5 Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand 6 Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand 7 Research Group on Toxic Substances in Livestock and Aquatic Animals, Khon Kaen University, Khon Kaen 40002, Thailand Received December 6, 2015; accepted April 29, 2016 Summary The cytogenetics of the ornamented pygmy frog (Microhyla fissipes), painted chorus frog (M. pul- chra) and narrow-mouthed frog (M. heymonsi) were studied in the aspect of chromosome numbers, morphology and nucleolus organizer region (NOR) locations. For this present study, we provided the karyotype and idiogram of these three species by conventional and Ag-NOR staining techniques. The 10 male and female samples of those three species were collected in Northeast Thailand. The metaphase chromosome preparations were pre- pared from the bone marrows by the standard protocol. To stain the chromosomes, 10% Giemsa’s and 50% sil- ver nitrate were applied. The results showed that all three species had the same diploid chromosome number of 2n=24, and fundamental numbers (NF) were 48 in both males and females.