Cotton Spinning Calculations and Yarn Costs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Twist on the Physical Properties of a Number 7S Yarn
EFFECT OF TWIST ON THE PHYSICAL PROPERTIES OF A NUMBER 7S YARN By F. R. McGowan, Charles W. Schoflstall, and A. A. Mercier ABSTRACT This investigation was made to determine the most suitable twist for manu- facturing the yarn to be used in the Pima post office bag investigation. Data were obtained on the relation of the twist to the breaking strength, diameter of the yarn, yarn count, contraction, and angle of twist. While these data were not sufficiently extensive to attempt to fix definite formula for these relations, it is thought that the tabular and graphical relation studied in this investigation will be useful for the cotton manufacturer. The most suitable twist for the yarn to be used in the Pima mail bags was found to be about 12 turns per inch. CONTENTS Page I. Introduction 85 II. Purpose 86 III. Method of manufacture 86 IV. Methods of test 87 1. Contraction 87 2. Yarn count 87 3. Diameter of yarn .. 87 4. Angle of twist 88 5. Breaking strength 89 V. Discussion of results 89 VI. Summary 95 I. INTRODUCTION There are many different ideas regarding the amount of twist 1 which should be given to a cotton yarn to serve any specific purpose. These opinions have been founded more or less on observation and fact, but sometimes they have no sound reasonable basis. For in- stance, the terms " hosiery twist," " warp twist," " filling twist," etc., are used with numerous ideas as to just what they comprise, for they vary considerably from mill to mill, and even within the organization of a single mill marked variations in practice occur. -
This Clock Is a Rather Curious the Movement Is That of a a Combination
MINERAL GLASS CRYSTALS 36 pc. Assortment Clear Styrene Storage Box Contains 1 Each of Most Popular Sizes From 19.0 to 32.0 $45.00 72 pc. Assortment Clear Styrene Storage Box Contains 1 Each of Most Popular Refills Available Sizes From 14.0 to 35.0 On All Sizes $90.00 :. JJl(r1tvfolet Gfa:ss A~hesive Jn ., 'N-e~ilie . Pofot Tobe · Perfect for MinenifGlass Crystals - dire$ -iA. secondbn ~un or ultraviolet µgh{'DS~~~ cfa#ty as gl;lss. Stock Up At These Low Prices - Good Through November 10th FE 5120 Use For Ronda 3572 Y480 $6.50 V237 $6.50 Y481 $6.95 V238 $6.95 Y482 $6.95 V243 $6.95 51/2 x 63/4 $9.95 FREE - List of Quartz Movements With Interchangeability, Hand Sizes, Measurements, etc. CALL TOLL FREE 1-800-328-0205 IN MN 1-800-392-0334 24-HOUR FAX ORDERING 612-452-4298 FREE Information Available *Quartz Movements * Crystals & Fittings * * Resale Merchandise * Findings * Serving The Trade Since 1923 * Stones* Tools & Supplies* VOLUME13,NUMBER11 NOVEMBER 1989 "Ask Huck" HOROLOGICAL Series Begins 25 Official Publication of the American Watchmakers Institute ROBERT F. BISHOP 2 PRESIDENT'S MESSAGE HENRY B. FRIED QUESTIONS & ANSWERS Railroad 6 Emile Perre t Movement JOE CROOKS BENCH TIPS 10 The Hamilton Electric Sangamo Clock Grade MARVIN E. WHITNEY MILITARY TIME 12 Deck Watch, Waltham Model 1622-S-12 Timepieces WES DOOR SHOP TALK 14 Making Watch Crystals JOHN R. PLEWES 18 REPAIRING CLOCK HANDS 42 CHARLES CLEVES OLD WATCHES 20 Reality Sets In ROBERT D. PORTER WATCHES INSIDE & OUT 24 A Snap, Crackle, & Pop Solution J.M. -
The Evolution of Tower Clock Movements and Their Design Over the Past 1000 Years
The Evolution Of Tower Clock Movements And Their Design Over The Past 1000 Years Mark Frank Copyright 2013 The Evolution Of Tower Clock Movements And Their Design Over The Past 1000 Years TABLE OF CONTENTS Introduction and General Overview Pre-History ............................................................................................... 1. 10th through 11th Centuries ........................................................................ 2. 12th through 15th Centuries ........................................................................ 4. 16th through 17th Centuries ........................................................................ 5. The catastrophic accident of Big Ben ........................................................ 6. 18th through 19th Centuries ........................................................................ 7. 20th Century .............................................................................................. 9. Tower Clock Frame Styles ................................................................................... 11. Doorframe and Field Gate ......................................................................... 11. Birdcage, End-To-End .............................................................................. 12. Birdcage, Side-By-Side ............................................................................. 12. Strap, Posted ............................................................................................ 13. Chair Frame ............................................................................................. -
Some Physical Quantities of Mule Yarns
Journal of the Textile Institute Proceedings and Abstracts ISSN: 0368-4504 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/tjti19 Some Physical Quantities of Mule Yarns A. E. Oxley M.A., D.Sc., F. Inst. P. & F. T. Peirce B.Sc., A. Inst. P To cite this article: A. E. Oxley M.A., D.Sc., F. Inst. P. & F. T. Peirce B.Sc., A. Inst. P (1922) Some Physical Quantities of Mule Yarns, Journal of the Textile Institute Proceedings and Abstracts, 13:9, 172-188, DOI: 10.1080/03684504.1922.11673741 To link to this article: http://dx.doi.org/10.1080/03684504.1922.11673741 Published online: 22 Feb 2016. Submit your article to this journal View related articles Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjti19 Download by: [University of Cincinnati Libraries] Date: 21 March 2016, At: 21:32 SOME PHYSICAL QUANTITIES OF MULE YARNS. By A. E. OxLEY, M.A., D.Sc., F. Inst. P., and F. T. PEIRCE, B.Sc., A. Inst. P (The British Cotton Industry Research Association). (1) THE RELATION BETWEEN THE TWIST AND THE AMOUNT OF FIBRE. In a previous paper (this vol., pp.M-98) a method of measuring the regularity of a yarn was described, the quantity measmed being the thick ness under compression and small tension. This quantity, which might be termed the " hardness " is a function of the t\vist and number and fine ness of the fibres in a cross section. -
Recommendations for Producing Linen-Look Yarn on Conventional Equipment
TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 TRI 1010 RECOMMENDATIONS FOR PRODUCING LINEN-LOOK YARN ON CONVENTIONAL EQUIPMENT © 1992 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers. TABLE OF CONTENTS Page CONCEPT 2 INTRODUCTION 2 FIBER ANALYSIS 3 LINEN-LOOK YARN--PREPARATORY PROCEDURE 3 SPINNING PROCEDURE 4 PROCESSING SEQUENCE AND EQUIPMENT SETTINGS 4 OPENING AND CLEANING 4 CARDING 4 DRAWING--FIRST PROCESS 4 DRAWING--SECOND PROCESS 5 ROVING 5 SPINNING 5 TEST RESULTS--18/1 Ne 6 CONCEPT To produce a 100% cotton novelty yarn with long linen-like slubs using standard mill machinery without special attachments. INTRODUCTION Cotton Incorporated developed a totally new novelty yarn with a linen look which can be produced on conventional mill machinery without special attachments. It is called "linen look" because it simulates long slubs common to linen yarn but is made using 100% cotton. The slubs are formed by using small amounts of comber noils (short fibers) in the final drawing operation. One of the main targets for this yarn is women's wear fabrics for blouses and skirts. In the current work, counts of 18/1 Ne were spun. The effective count range of this type yarn is projected to be from 8/1 Ne to 28/1 Ne. Example: Linen-Look vs. Regular Yarn (Ne 18/1 Ring TM 3.8) 2 FIBER ANALYSES 1. Characteristics of fiber used in this project Type - U.S. upland cotton Grade - SLM Length (inches) - 1.12 Mic - 3.8 - 4.6 Strength (grams/tex) - 24 and up 2. -
Arithmetical Calculations for Weaving Students
<si ^ : Arithmetical Calculations FOR Weaving Students, COMPILED H. NEVILLE, Principal of the Textile Department of the Blackburn Municipal Technical School. PART I.—YARNS AND CLOTH. JBlacfcbum Standard and Express " Office, 41 Church Street. 1904. PRE FACE. The following compilation has been devised primarily with the object of bringing before students, and others Interested in Cotton Weaving, a number of Textile Rules and Examples in as simple and concise a form as is possible with such subject matter. The arrangement followed is such as to allow one to trace step by step that course of operations which from experience has been found necessary for converting yarns into a woven fabric. All explanatory and argumentative matter has been left to the teacher, and the Author hopes that this will be an inducement fco the busy business man to use these pages as a ready book of reference. The questions set as exercises at the end of the book have been gathered from, or have been based upon, the questions set by the City and Guilds of London Institute, the Union of Lancashire and Cheshire Institutes, and our own Local and other Examination papers in the subject of Cotton Weaving. The Author's great hope is that these pages may he found useful. H.N. Blackburn, 1904. Digitized by the Internet Archive in 2010 with funding from NCSU Libraries http://www.archive.org/details/arithmeticalcalcOOnevi — Arithmetical Calculations L—INTRODUCTORY.— Notes on Various Trade Names given to Yarns. Yarn is a generic term applied to all threads used for textile purposes. Fibres of cotton, wool, silk, flax, &c, or any of these put together, are employed in thread manufacture producing, as the result of specific operations, two kinds of yarn, viz. -
Diploma in Textile Technology Courses Offered
DIPLOMA IN TEXTILE TECHNOLOGY COURSES OFFERED Course Code Courses Credits Year / Semester (15O) A. Foundation Technology Courses - 49 Credits (Common to all Programmes) 0101 Communicative English – I 5 I / ODD 0102 Engineering Mathematics – I 8 I / ODD 0103 Engineering Physics – I 5 I / ODD 0104 Engineering Chemistry – I 5 I / ODD 0105 Engineering Physics – I Practical 1 I / ODD 0106 Engineering Chemistry – I Practical 1 I / ODD 0107 Communicative English – II 4 I / EVEN 0108 Engineering Mathematics – II 5 I / EVEN 0109 Applied Mathematics 5 I / EVEN 0110 Engineering Physics – II 4 I / EVEN 0111 Engineering Chemistry – II 4 I / EVEN 0112 Engineering Physics – II Practical 1 I / EVEN 0113 Engineering Chemistry – II Practical 1 I / EVEN B. Core Technology Courses - 45 Credits 0201 Workshop Practical 1 I / ODD 0202 Engineering Graphics – I 3 I / ODD 0203 Engineering Graphics– II 3 I / EVEN 0204 Computer Applications Practical – I 1 I / ODD 0205 Computer Applications Practical – II 1 I / EVEN Diploma in Textile Technology Page 1 Course Code Courses Credits Year / Semester (15O) 5201 Fibre Science and Technology 5 II / ODD 5202 Yarn Manufacture – I 5 II / ODD 5203 Fabric Manufacture– I 6 II / ODD 5204 Textile Wet Processing – I 5 II / EVEN 5205 Basic Engineering 5 II / EVEN 5206 Fibre Identification Practical 2 II / ODD 5207 Yarn Manufacture –I Practical 3 II / ODD 5208 Fabric Manufacture – I Practical 3 II / ODD 5209 Life and Employability Skills Practical 2 II / ODD C. Applied Technology Courses – 57 Credits 5301 Yarn Manufacture – II 6 -
High-Speed Ground Transportation Noise and Vibration Impact Assessment
High-Speed Ground Transportation U.S. Department of Noise and Vibration Impact Assessment Transportation Federal Railroad Administration Office of Railroad Policy and Development Washington, DC 20590 Final Report DOT/FRA/ORD-12/15 September 2012 NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. Any opinions, findings and conclusions, or recommendations expressed in this material do not necessarily reflect the views or policies of the United States Government, nor does mention of trade names, commercial products, or organizations imply endorsement by the United States Government. The United States Government assumes no liability for the content or use of the material contained in this document. NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. -
Q1. Density of Cotton Fibre Is Approximately (A) 1.52 Denier
Q1. Density of cotton fibre is approximately (a) 1.52 Denier (b) 1.52 g/Tex (c) 1.52 kg/m3 (d) 1.52 g/ cm3 Q2. The byproduct obtained from polycondensation of diethylene glycol terephthalate (DGT) is (a) Glycolic acid (b) Water (c) Diethylene glycol (d) Ethylene glycol Q3. Ziegler Natta catalyst is used in the polymerization of (a) PET (b) Nylon (c) Acetate (d) Polyproplyene Q4. The cross section of the spinneret used for producing hollow fibre is (a) C -Shaped (b) Rectangular (c) Annular concentric (d) Triangular Q5. 20s, 30s, 40s and 60s Ne cotton yarn have same twist per inch. The yarn having maximum obliquity is (a) 20s Ne (b) 30s Ne (c) 40s Ne (d) 60s Ne Q6. For a given yarn count made from the same fibre, rotor spun yarn is bulkier than ring spun yarn, due to (a) Rotor spun yarn is more even than ring spun yarn (b) Navel tube peels off the fibre from rotor yarn surface (c) Rotor spun yarn has large numbers of wrapper fibres (d) Yarn tension in rotor spinning id lower as compared to ring spinning Q7. During the roller drafting, better fibre control is achieved by flexing the fibre strand over bottom roller due to (a) Enhanced fibre to fibre coefficient of friction (b) Enhanced fibre to fibre friction (c) Reduced slippage of the top roller (d) Reduced fibre to metal friction Q8. Hairiness is more in the following yarn (a) Rotor yarn (b) Airjet Yarn (c) Ring Yarn (d) DREF yarn Q9. In the modern draw frame maximum delivery speed is upto (a) 300 m/min (b) 500 m/min (c) 1500 m/min (d) 3000 m/min Q10. -
Cotton Mill Handbook Text I L E Worl D Han Dbook Series
COTTON MILL HAN DBOOK FOR SUPERINTENDENTS AN D OV ERSEERS IN C OTTON YARN AN D C LOTH MI LLS TE X TI L E WORL D B RAGD L RD AN D AGLE MPA I NC C Y . ON . O N O N , Pu blish er s 334 F U RTH AV EN U E N EW Y RK U S A . O , O . FO REWO RD This book has been c ompiled for th o se engaged in cotton yarn and cloth manufacturing, and is intended to aid them in solving mill problems and making the necessary n . yar , cloth and machinery calculations Part I is devoted o f to methods yarn numbering, yarn and cloth calcula tions , and humidity in cotton manufacturing . Part II gives answers to over one hundred manufacturing prob lems that have been solved for cotton mill men and printed o n the ! uestions and Answers page of TEXTILE WORLD . Part III takes up the causes of defects in s yarn, and give useful rules and tables on production and A machinery calculations . carefully prepared index fol lowing Part III enables quick reference to be made to the various subjects . TEXTILE WORLD B C o . I N G G C . RA DON, LORD NA LE , Publishers COTTON MILL HANDBOOK TEXT I L E WORL D HAN DBOOK SERIES PART I SI! ES OF YARNS — NUM B ERING f e The sizes o yarns are designat d by the terms count, f s . o cut, run, hank , kein , dram, grain , etc , all which are i. -
KOM DIGITAL NOTES.Pdf
DIGITAL NOTES Kinematics of Machinery R18A0307 B.Tech –II – I DEPARTMENT OF MECHANICAL ENGINEERING MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution – UGC, Govt.of India) Recognizes under 2(f) and 12(B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE –Accredited by NBA & NAAC-“A” Grade-ISO 9001:2015 Certified) MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY Department Of Mechanical Engineering,MRCET. COURSE OBJECTIVES: Understand the fundamentals of the theory of kinematics and dynamics of machines. Understand techniques for studying motion of machines and their components. Use computer software packages in modern design of machines. UNIT – I Mechanisms : Elements or Links , Classification, Rigid Link, flexible and fluid link, Types of kinematic pairs , sliding, turning, rolling, screw and spherical pairs lower and higher pairs, closed and open pairs, constrained motion, completely, partially or successfully constrained and incompletely constrained . Machines : Mechanism and machines, classification of machines, kinematic chain , inversion of mechanism, inversion of mechanism , inversions of quadric cycle, chain , single and double slider crank chains. UNIT – II Straight Line Motion Mechanisms: Exact and approximate copiers and generated types Peaucellier, Hart and Scott Russul Grasshopper Watt T. Chebicheff and Robert Mechanisms and straight line motion, Pantograph. Steering Mechanisms: Conditions for correct steering Davis Steering gear, Ackermans steering gear velocity ratio. Hooke’s Joint: Single and double Hookes joint Universial coupling application problems. UNIT – III Kinematics: Velocity and acceleration - Motion of link in machine - Determination of Velocity and acceleration diagrams - Graphical method - Application of relative velocity method four bar chain. Analysis of Mechanisms: Analysis of slider crank chain for displacement, velocity and acceleration of slider - Acceleration diagram for a given mechanism, Kleins construction, Coriolis acceleration, determination of Coriolis component of acceleration. -
Kinematics of Machinery
KINEMATICS OF MACHINERY Subject code: ME302ES Regulations: R16-JNTUH Class: II Year B. Tech MECH I Sem Department of Mechanical Engineering BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY Ibrahimpatnam - 501 510, Hyderabad 1 | P a g e KINEMATICS OF MACHINERY (ME302ES) COURSE PLANNER I. COURSE OBJECTIVE AND RELEVANCE: 1. To understand the basic components and layout of linkages in the assembly of a system/machine. 2. To understand the principles involved in the displacement, velocity and acceleration at any point in a link of a mechanism. 3. To understand the motion resulting from a specified set of linkages. 4. To understand and to design few linkage mechanisms and cam mechanisms for specified output motions. 5. To understand the basic concepts of toothed gearing and kinematics of gear trains. II. PRE REQUISITES: Knowledge of engineering mechanics is required. III. COURSE PURPOSE This course introduces students to involve in kinematics study how a physical system might develop or alter over time and study the causes of those changes. In particular, kinematics is mostly related to Newton's second law of motion. However, all three laws of motion are taken into consideration, because these are interrelated in any given observation or experiment. Kinematics of machine deals with the relative motion of machine parts. Kinematic schemes of a machine can be investigated without considering the forces. IV. COURSE OUTCOME: S.NO Description Bloom’s Taxonomy Level 1 Classify different types of links and mechanisms used for different Knowledge, Understand, purposes in different machines. (Level1, Level2,) 2 Solve the forces, velocities and accelerations in different Understand, Apply mechanisms and machines components ( Level2,Level 3) 3 List, Predict and Design different type of links applied to get the Understand, Apply required motion of different types of the parts of machines ( Level2,Level 3) 2 | P a g e V.