Nuclear Power in the Twenty-First Century – an Assessment (Part I)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Developing an Intergovernmental Nuclear Regulatory Organization
Developing an Intergovernmental Nuclear Regulatory Organization: Lessons Learned from the International Civil Aviation Organization, the International Maritime Organization, and the International Telecommunication Union Clarence Eugene Carpenter, Jr. Bachelor of Science in Mechanical Engineering, May 1988 Seattle University, Seattle, WA Master of Science in Technical Management, May 1997 The Johns Hopkins University, Baltimore, MD Master of Arts in International Science and Technology Policy, May 2009 The George Washington University, Washington, DC A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 10, 2020 Dissertation directed by Kathryn Newcomer Professor of Public Policy and Public Administration The Columbian College of Arts and Sciences of The George Washington University certifies that Clarence Eugene Carpenter, Jr. has passed the Final Examination for the degree of Doctor of Philosophy as of November 26, 2019. This is the final and approved form of the dissertation. Developing an Intergovernmental Nuclear Regulatory Organization: Lessons Learned from the International Civil Aviation Organization, the International Maritime Organization, and the International Telecommunication Union Clarence Eugene Carpenter, Jr. Dissertation Research Committee: Kathryn Newcomer, Professor of Public Policy and Public Administration, Dissertation Director Philippe Bardet, Assistant Professor, -
Grappling with the Bomb: Britain's Pacific H-Bomb Tests
Timeline and glossary Nuclear timeline, 1945–1963 16 July 1945 Alamogordo, United States conducts first-ever nuclear New Mexico, USA test, codenamed ‘Trinity .’ 6 August 1945 Hiroshima, Japan US aircraft Enola Gay drops the atomic weapon ‘Little Boy’ on Hiroshima, killing 80,000 people immediately and an estimated 100,000 people within six months . 9 August 1945 Nagasaki, Japan US aircraft Bockscar drops the atomic weapon ‘Fat Man’ on Nagasaki, killing 70,000 people immediately and tens of thousands in following months . 30 June 1946 Bikini Atoll, Marshall Under Operation Crossroads, United Islands States conducts the first of two atomic tests at Bikini Atoll in the Marshall Islands. ‘Able’ and ‘Baker’ are the first of 67 atmospheric tests in the Marshall Islands between 1946–1958 . 6 August 1948 Hiroshima, Japan Hiroshima’s first Peace Festival. 29 August 1949 Semipalatinsk, USSR conducts first atomic test Kazakhstan RDS-1 in Operation Pervaya molniya (Fast lightning), dubbed ‘Joe-1’ by United States . 1950–1954 Korean peninsula United States, Britain and Australia, under a United Nations mandate, join military operations in Korea following clashes between forces from the south and north of Korea. The Democratic People’s Republic is backed by the newly created People’s Republic of China . 3 October 1952 Monte Bello Islands, Under Operation Hurricane, United Western Australia Kingdom begins its nuclear testing program in Australia with a 25 kiloton atomic test . xi GRAPPLING WITH THE BOMB 1 November 1952 Bikini Atoll, Marshall United States conducts its first Islands hydrogen bomb test, codenamed ‘Mike’ (10 .4 megatons) as part of Operation Ivy . -
The Development of Military Nuclear Strategy And
The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew. -
The Question of Reducing the Threat Posed by Nations Possessing
Mesaieed International School Model United Nations Forum: General Assembly 1 Issue: The Question of reducing threat posed by nations possessing nuclear Weapons. Student Officer: Subhan Khan Position: Deputy Chair Introduction The issue of nuclear weapons has been an ever-present issue within the world and was the first issue adopted by the UN (United Nations) in 1946. Nuclear armaments when detonated have devastating effects both environmentally and socio-economically via the fallout that it left behind from the bomb exploded. Many nations throughout the world are working to combat the issue, and the dismantling of all these weapons would be the perfect solution to all these issues, but this would be very difficult to do. Over 14,900 reported missiles remain on the Earth, and the decommissioning of all these weapons would be a feat for the human race. There is also the issue that nuclear weapons provide a sense of security and defence to a nation as they can pose a severe threat to any potential adversaries looking to harm a country. The decommissioning of nuclear weapons is an effort to preserve peace in the world and eradicate further complications that are to arise due to the threat of atomic weapons. Nations such as the US (United States) and formally the Soviet Union are unwilling to decommission their nuclear arsenals due to the risk of an attack that may occur at any point with the invention of ICBM’s (Intercontinental Ballistic Missiles). Definition of Key Terms WMD (Weapons of Mass Destruction) Regarded as a chemical, biological, radiological or nuclear weapon that is capable of causing great damage to humans, infrastructure and biological systems in the vicinity of its deployment. -
Significant Incidents in Nuclear Fuel Cycle Facilities
IAEA-TECDOC-867 Significant incidents in nuclear fuel cycle INTERNATIONAL ATOMIC ENERGY AGENCY The IAEA does not normally maintain stocks of reports in this series. However, microfiche copie f thesso e reportobtainee b n sca d from INIS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria Orders should be accompanied by prepayment of Austrian Schillings 100, in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. The originating Section of this publication in the IAEA was: Nuclear Fuel Cycle and Materials Section International Atomic Energy aoiicy A Wagramerstrasse 5 0 10 P.Ox Bo . A-1400 Vienna, Austria SIGNIFICANT INCIDENT NUCLEASN I R FUEL CYCLE FACILITIES IAEA, VIENNA, 1996 IAEA-TECDOC-867 ISSN 1011-4289 ©IAEA, 1996 Printe IAEe th AustriAn y i d b a March 1996 FOREWORD significano Tw t accidents have occurre histore th n di f nuclea yo r power, namely t Threa , e Mile Islan Chernobyld dan orden I . preveno rt t such accidents, causes were investigate actiond dan s were taken r exampleFo . , reporting systems were establishe accumulato dt disseminatd ean e information on accidents such as INES (International Nuclear Event Scale) and IRS (Incident Reporting System). Operators of nuclear power plants also established an information system to share incident information. The purpose of INES is to facilitate prompt communication between the nuclear community, the media and the public. The purpose of IRS is to analyse causes of significant incidents. Those systems serve to promote safety culture in nuclear power plants. -
Leonard Abdale and Others
IN THE FIRST-TIER TRIBUNAL WPAFCC Refs: as below WAR PENSIONS AND ARMED FORCES COMPENSATION CHAMBER Sitting at Royal Courts of Justice, Strand, London, WC2A 2LL Date: 16th December 2016 TRIBUNALS COURTS AND ENFORCEMENT ACT 2007 TRIBUNAL PROCEDURE (FIRST-TIER TRIBUNAL) (WAR PENSIONS AND ARMED FORCES COMPENSATION CHAMBER) RULES 2008 BEFORE: THE HON MR JUSTICE BLAKE MRS I MCCORD DR J RAYNER BETWEEN 1. LEONARD ABDALE (Deceased) ENT/00203/2015 2. DARRYL BEETON ENT/00202/2015 3. TREVOR BUTLER (Deceased) ENT/00258/2015 4. DEREK HATTON (Deceased) ENT/00200/2015 5. ERNEST HUGHES ENT/00254/2015 6. BRIAN LOVATT ENT/00201/2015 7. DAWN PRITCHARD (Deceased) ENT/00258/2015 8. LAURA SELBY ENT/00199/2015 9. DENIS SHAW (Deceased) ENT/00253/2015 10. JEAN SINFIELD ENT/00204/2015 11. DONALD BATTERSBY (Deceased) ENT/00250/2015 12. ANNA SMITH ENT/00251/2015 Appellants - and - SECRETARY OF STATE FOR DEFENCE Respondent Hearing Dates: 13 to 30 June 2016 Representation: Roger Ter Haar QC and Richard Sage (instructed pro bono by HOGAN LOVELLS) for Appellants 1 to 10. Christopher Busby, Hugo Charlton and Cecilia Busby acting as pro bono lay representatives for Appellants 11-12. Adam Heppinstall and Abigail Cohen instructed by the Government Legal Department for the Respondent. TRIBUNAL’S DECISION AND REASONS The unanimous DECISION of the Tribunal is: the appeal of each appellant is dismissed save for the appeal of Leonard Abdale deceased in respect of his claim for cataracts. On this issue his appeal is allowed. INDEX TO DETERMINATION PART ONE INTRODUCTION p.5 Outline -
Australian Radiation Laboratory R
AR.L-t*--*«. DEPARTMENT OF HEALTH. HOUSING & COMMUNITY SERVICES Public Health Impact of Fallout from British Nuclear Weapons Tests in Australia, 1952-1957 by Keith N. Wise and John R. Moroney Australian Radiation Laboratory r. t J: i AUSTRALIAN RADIATION LABORATORY i - PUBLIC HEALTH IMPACT OF FALLOUT FROM BRITISH NUCLEAR WEAPONS TESTS IN AUSTRALIA, 1952-1957 by Keith N Wise and John R Moroney ARL/TR105 • LOWER PLENTY ROAD •1400 YALLAMBIE VIC 3085 MAY 1992 TELEPHONE: 433 2211 FAX (03) 432 1835 % FOREWORD This work was presented to the Royal Commission into British Nuclear Tests in Australia in 1985, but it was not otherwise reported. The impetus for now making it available to a wider audience came from the recent experience of one of us (KNW)* in surveying current research into modelling the transport of radionuclides in the environment; from this it became evident that the methods we used in 1985 remain the best available for such a problem. The present report is identical to the submission we made to the Royal Commission in 1985. Developments in the meantime do not call for change to the derivation of the radiation doses to the population from the nuclear tests, which is the substance of the report. However the recent upward revision of the risk coefficient for cancer mortality to 0.05 Sv"1 does require a change to the assessment we made of the doses in terms of detriment tc health. In 1985 we used a risk coefficient of 0.01, so that the estimates of cancer mortality given at pages iv & 60, and in Table 7.1, need to be multiplied by five. -
Compare and Contrast Major Nuclear Power Plant Disasters: Lessons Learned from the Past
163 10th International Conference of the International Institute for Infrastructure Resilience and Reconstruction (I3R2) 20–22 May 2014 Purdue University, West Lafayette, Indiana, USA Compare and Contrast Major Nuclear Power Plant Disasters: Lessons Learned from the Past Sayanti Mukhopadhyay and Makarand Hastak Construction Engineering and Management, Purdue University Jessica Halligan School of Nuclear Engineering, Purdue University ABSTRACT The construction of nuclear power plants is a major step towards reducing greenhouse gas emissions compared to the conventional coal-fired or oil-fired power plants. However, some of the major nuclear accidents in the past have raised questions about the safety and reliability of nuclear power plants. This paper compares and contrasts the major nuclear accidents of the past for example, the Chernobyl disaster (USSR), the Fukushima Daiichi disaster (Japan), and the Three Mile Island incident (USA). Although each of the accidents was unique, a thorough comparison found some common issues, such as faulty design of reactors and safety systems, safety rules violations, and lack of trained operators. The primary impacts mostly involved radiation hazards such as exposure to varying doses of radiation, uninhabitable neighborhoods and health problems; the levels of impact varied mostly due to different intensities of warnings and precautionary measures taken by the local governments. The research findings would serve as an important resource for the nuclear professionals to plan proper precautionary measures in order to avoid the major issues that initiated or resulted from the accidents in the past. 1. INTRODUCTION summarizes the important lessons learned from the past instances which could serve as an Nuclear power plants are one of the most complex information tool for the nuclear professionals to and sophisticated energy systems designed to plan for proper preventive measures well in produce low carbon electrical energy in contrast to advance to avoid similar accidents in future. -
The Nuclear Accident at Chernobyl: Immediate and Further Consequences
The article was received on September 10, 2020, and accepted for publishing on February 13, 2021. VARIA The nuclear accident at Chernobyl: Immediate and further consequences Symeon Naoum1, Vasileios Spyropoulos1 Abstract: The accident at Chernobyl occurred in April 1986 at the Chernobyl Nuclear Power Plant in Soviet Union. The incident occurred during a scheduled safety test. A combination of inherent reactor design flaws and operators’ mistakes resulted in reactor’s No.4 disaster and the emission of a large quantity of radiation. The immediate actions involved the fire extinguishing, the cleanup of radioactive residues and the prevention of a new explosion. For this purpose, plenty of people worked with self-sacrifice. The people who lived nearby were removed. As far as the socio-economic impact for the Soviet Union is concerned, it was quite serious. Moreover, the environmental and human health consequences were also alarming with thyroid cancer being the most studied. Useful conclusions, especially for the safety both of reactors and nuclear power, as well as for the impact of radiation at ecosystems have been drawn. The debate about the use of nuclear power has remained open ever since. Keywords: nuclear power, thyroid cancer, RBMK reactor, radiation, radioactivity, liquidators INTRODUCTION while 28 firemen and employees finally died. The Chernobyl The Chernobyl nuclear accident occurred on 26 April 1986 in accident is considered the most damaging nuclear power the light water graphite moderated reactor No 4 at the plant accident in history. The Chernobyl and the Fukushima Chernobyl Nuclear Power Plant, close the town of Pripyat, in accident are the two nuclear accidents classified as a level 7 Ukrainian Soviet Socialist Republic Soviet Union, roughly (the maximum classification) on the International Nuclear 100km of the city of Kiev [1]. -
The Growth of Nuclear Power: a Detailed Investigation
Journal of Basic and Applied Engineering Research p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 2, Number 18; July-September, 2015, pp. 1590-1594 © Krishi Sanskriti Publications http://www.krishisanskriti.org/Publication.html The Growth of Nuclear Power: A Detailed Investigation Soumyajit Saha1, Pallab Ghosh2, Sayantan Mukherjee3, Ayan Mitra4, Diposmit Ghosh5 13rd Year BTech, Civil Engineering Undergraduate Student, University Of Engineering And Management, Jaipur, India 2,3,4,5 3rd Year BTech, Mechanical Engineering Undergraduate Student, University Of Engineering And Management, Jaipur, India Abstract—The concept of atom has existed for many centuries, Nuclear Science because of his contribution to the theory of however the enormous potential of the tiny mass has been realised atomic structure. recently. Atom have a large amount of energy which is required to hold the nuclei together. Certain isotopes of some element can be Albert Einstein developed his theory of the relationship split up and in turn they will release a part of the energy as heat. This between mass and energy one year later. The mathematical entire process is referred to as fission. The heat released in this formula referred to as E=mc2 or energy equal mass times the process can be easily used to generate electricity in power plants. speed of light squared. It took almost 35 year for someone to Uranium -235 (U-235) is one of the isotopes that can be fissioned prove Einstein’s theory. very easily. During fission, U-235 atoms absorb loose neutrons and it becomes unstable and split into light atoms called fission products. The combined mass of the fission products is less than original U- 235. -
Nuclear Arms Race
WINDSCALE AND THE POST-WAR NUCLEAR ARMS RACE Windscale, 1956, with the impressive James Chadwick works with Major General Leslie Groves And so, Attlee decided to independently pursue Piles on the right. as part of the Manhattan Project. the research of nuclear science and creation of an atomic bomb. In 1945, he created the Gen The special relationship Churchill had so carefully 75 Committee, also known as the Atomic Bomb cultivated began to fracture after the war ended. Committee, which established the government’s Considering the new technology and information uncovered nuclear policy. He knew he would need some of during the Manhattan Project to be a joint discovery, Britain’s sharpest minds to successfully develop Britain had expected that the sharing of advancements Britain’s nuclear technology and brought some of in the nuclear field would continue in peacetime. But the the country’s most prominent scientists on board, death of Roosevelt in 1945 would mark the end of wartime fresh from their time working on the Manhattan collaboration between the two countries, as President Project. Although these scientists had gained key Truman brought to a conclusion the agreements previously experience in the States and returned home with reached with Britain and Canada, going so far as to valuable knowledge, none of them had a complete introduce the Atomic Energy Act in 1946 which classified picture of how their research came together to US atomic secrets. With this act, it became a federal create a nuclear weapon, having been limited in their offence to reveal such nuclear secrets, deeming it a matter roles. -
Investigation on Conversion of I-Graphite from Decommissioning of Chernobyl Npp Into a Stable Waste Form Acceptable for Long Term Storage and Disposal
INVESTIGATION ON CONVERSION OF I-GRAPHITE FROM DECOMMISSIONING OF CHERNOBYL NPP INTO A STABLE WASTE FORM ACCEPTABLE FOR LONG TERM STORAGE AND DISPOSAL BORYS ZLOBENKO, YRIY FEDORENKO, VICTOR YATZENKO, BORYS SHABALIN, VADIM SKRIPKIN National Academy of Sciences of Ukraine: State Institution “Institute of Environmental Geochemistry” Department of Nuclear Geochemistry (Radiocarbon Laboratory), Kyiv, Ukraine INTRODUCTION For Ukraine, the main radiocarbon (14C) source is irradiated graphite from Chernobyl Nuclear Power Plant. The ChNPP is a decommissioned nuclear power station about 14 km northwest of the city of Chernobyl, and 110 km north of Kyiv. The ChNPP had four RBMK reactor units. The commissioning of the first reactor in 1977 was followed by reactor No. 2 (1978), No. 3 (1981), and No.4 (1983). Reactors No.3 and 4 were second generation units, whereas Nos.1 and 2 were first-generation units. RBMK is an acronym for "High Power Channel-type Reactor" of a class of graphite-moderated nuclear power reactor with individual fuel channels that uses ordinary water as its coolant and graphite as its moderator. The combination of graphite moderator and water coolant is found in no other type of nuclear reactor. Parameters RBMK-1000 Thermal power, MW 3840 Core diameter, m 11.80 Core height, m 7.0 Core volume, m 765 Mean specific power 5.02 per core volume, MW/m Mean specific power 20.8 per fuel quantity, MW/t Mean power per fuel 18.3 rod length, kW/m On September 9, 1982, a partial core meltdown occurred in Reactor No. 1 at the Chernobyl plant. The extent of the accident was not made public until several years later.