Multipronged Approach to Study Glaucoma-Associated Phenotypes

Total Page:16

File Type:pdf, Size:1020Kb

Multipronged Approach to Study Glaucoma-Associated Phenotypes University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 8-2016 Multipronged Approach to Study Glaucoma- Associated Phenotypes Sumana Rameshbabu Chintalapudi University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Neurosciences Commons Recommended Citation Chintalapudi, Sumana Rameshbabu (http://orcid.org/0000-0003-1079-0950), "Multipronged Approach to Study Glaucoma- Associated Phenotypes" (2016). Theses and Dissertations (ETD). Paper 404. http://dx.doi.org/10.21007/etd.cghs.2016.0410. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Multipronged Approach to Study Glaucoma-Associated Phenotypes Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Integrated Program in Biomedical Sciences Track Neuroscience Research Advisor Monica M. Jablonski, Ph.D. Committee Edward Chaum, M.D., Ph.D. Dianna A. Johnson, Ph.D. Rajendra Raghow, Ph.D. Vanessa Morales-Tirado, Ph.D. Robert W. Williams, Ph.D. ORCID http://orcid.org/0000-0003-1079-0950 DOI 10.21007/etd.cghs.2016.0410 Comments One year embargo expires August 2017. This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/404 Multipronged Approach to Study Glaucoma-Associated Phenotypes A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Sumana Rameshbabu Chintalapudi August 2016 . Chapter 3 © 2016 by John Wiley & Sons. Chapter 4 © 2016 by 2007-2016 Frontiers Media, SA. All other material © 2016 by Sumana Rameshbabu Chintalapudi. All rights reserved. ii DEDICATION To my parents, Ramesh Babu Chintalapudi Usha Rani Chithirala And My better half, Purav Trivedi iii ACKNOWLEDGEMENTS First of all, I wish to thank the Almighty Lord for helping me start, pursue and successfully complete my PhD. Working as PhD student in UTHSC was a magnificent as well as challenging experience for me. This dissertation was the product of a large measure of serendipity, fortuitous encounters with people who have changed the course of my academic career. It would not have been possible without the help of so many people in so many ways. Here is a tribute to all those people. I want to thank my supervisor Prof. Dr. Monica M. Jablonski for giving me this wonderful opportunity to pursue PhD and introducing me to the world of glaucoma research. I will cherish the time I have spent as your mentee for the rest of my life. The academic and research freedom you provided me is unparalleled, and the intellectually stimulating discussions regarding work and research, and conversations about all things non-academic have benefitted me immensely. Above all and the most needed, she provided me unflinching encouragement and support in various ways. Dr. Vanessa Morales-Tirado has been supportive throughout the doctoral program, her cheerful enthusiasm and ever-friendly nature was a constant inspiration, she has provided tremendous help in the study design and analytical methodology in my research studies. Dr. Robert Williams has always asked thought-provoking questions and provided insightful feedback that has helped me in improving my research studies. Dr. Dianna Johnson has been kind to meet me several times on short notice and provided great feedback and inputs regarding research and life in academics. Dr. Edward Chaum has provided great feedback and inputs for my research studies during the vision research seminars and committee meetings. Dr. Rajender Raghow has been very supportive and provided valuable guidance to improve my research studies. My wonderful family stood by me and encouraged me in each and every endeavor that I have embarked upon. With enduring patience, they stood by me during the ups and downs of my life. I can barely find words to express all the wisdom, love and support given to me by my beloved parents, Dr. Ramesh Babu Chintalapudi and Mrs. Usha Rani Chithirala for their unconditional love, fidelity, endurance and encouragement. I am deeply indebted to my best friend and husband, Purav Trivedi, for giving me untiring support during my years of Doctoral study. I am wordless in expressing my sincere gratefulness for his constant encouragement and love. He has helped me to see and practice life altogether in a different perspective, to stay focused and to go after my dreams. I thank my brother Anil Kumar Chintalapudi and his wife Leena Kora for their unconditional love and support at all times in life, and especially during my doctoral education. I would like to thank my wonderful in-laws, Mr. Tuhinanshu Trivedi and Mrs. Meha Trivedi, for their love and support, and blessings during this critical phase in my life. I thank my sister-in-law, Pankti Trivedi, for her support and affection. Many friends and colleagues from both India and US have helped me stay sane throughout my PhD. Their support and care helped me overcome setbacks and stay focused on my graduate study. I greatly value their friendship and I deeply appreciate iv their belief in me. I want to thank current and past members of Jablonski, XiangDi Wang, Doaa Maria, Mohamed Mostafa Ibrahim, Samy Maria, Yunfeng Shi, Mallika Palamoor, Liyuan Li, Huiling Li, Hong Lu, Xiaofei Wang. Also to members of Morales lab, Bradley Gao, Levon Djenderedjian and Zachary Goldsmith. My tribute…..to a number of animals who have paid a price with their lives and suffering in the name of human protection. I pay my tribute to their sacrifice and pray that it is not in vain. In all, the journey to my Ph.D. has been a long and challenging road. And I am thrilled it is done. But most of all, I am excited for what the future holds…. v ABSTRACT Glaucoma refers to a group of conditions characterized by death of RGCs, increase in intraocular pressure is usually a precursor to glaucoma and irreversible optic neuropathy leads to visual impairment and blindness. Recent advances have seen a surge of new ideas and technologies to aid in the early detection, efficacious treatments and neuroprotection. Despite advances we face several challenges in understanding the pathophysiology of glaucoma. One of the many challenges scientists and ophthalmologists are facing is, to better understand IOP, its role in glaucomatous damage and design safer, more predictable IOP-lowering therapies. Another challenge is to find a practical method or develop tools to understand the molecular pathways to study RGC function and health to develop novel therapies for vision loss. This work leads to three complementary insights on how to address these challenges. First, we used a novel systems genetics approach to identify and validate genetic modifiers of IOP using the enlarged BXD family of strains in combination with human GWAS glaucoma cohorts. This will pave the way for improved drug development tailored to individual genotypes for POAG. Second, we have combined systems genetics, bidirectional studies using multiple species, meta-analyses, immunohistochemistry, FACS sorting and gene knockdown studies to identify and validate the identity of a genetic modulator of Sncg, a gene that has been previously implicated in RGC death in glaucoma. Outcomes of the investigation may provide clues to understanding the molecular mechanisms that account for the degenerative changes in RGCs in glaucoma. Third, we optimized a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC. This will allow for future careful assessment of important cell specific pathways in RGC to provide mechanistic insights into the declining of visual acuity in aged populations and those suffering from retinal neurodegenerative diseases. Taken together these studies offer a concise outlook on use of integrated systems science, molecular and imaging technologies as a needs-led innovation in ophthalmology and visual health. vi TABLE OF CONTENTS CHAPTER 1. INTRODUCTION .....................................................................................1 Primary Open Angle Glaucoma .......................................................................................1 IOP as a major risk factor ............................................................................................1 Role of RGCs in POAG ...............................................................................................2 Genetics of POAG .......................................................................................................3 Candidate gene studies ............................................................................................ 3 Genome-wide studies .............................................................................................. 4 Systems Genetics Approach to Study Glaucoma ............................................................5 Recombinant inbred strains ..........................................................................................5 DBA/2J inbred strain as glaucoma mouse model ................................................... 6 BXD strains ............................................................................................................
Recommended publications
  • Novel Human Embryonic Stem Cell Regulators Identified by Conserved and Distinct Cpg Island Methylation State
    RESEARCH ARTICLE Novel Human Embryonic Stem Cell Regulators Identified by Conserved and Distinct CpG Island Methylation State Steve Pells1,2*, Eirini Koutsouraki1, Sofia Morfopoulou1, Sara Valencia-Cadavid1, Simon R. Tomlinson1, Ravi Kalathur3, Matthias E. Futschik3, Paul A. De Sousa1,2* 1 MRC Centre for Regenerative Medicine, School of Clinical Studies, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom, 2 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom, 3 Centre for Molecular and Structural Biomedicine, University of Algarve, 8005–139, Faro, Portugal * [email protected] (PDS); [email protected] (SP) Abstract Human embryonic stem cells (hESCs) undergo epigenetic changes in vitro which may com- OPEN ACCESS promise function, so an epigenetic pluripotency “signature” would be invaluable for line vali- Citation: Pells S, Koutsouraki E, Morfopoulou S, dation. We assessed Cytosine-phosphate-Guanine Island (CGI) methylation in hESCs by Valencia-Cadavid S, Tomlinson SR, Kalathur R, et al. genomic DNA hybridisation to a CGI array, and saw substantial variation in CGI methylation (2015) Novel Human Embryonic Stem Cell Regulators Identified by Conserved and Distinct CpG between lines. Comparison of hESC CGI methylation profiles to corresponding somatic Island Methylation State. PLoS ONE 10(7): tissue data and hESC mRNA expression profiles identified a conserved hESC-specific e0131102. doi:10.1371/journal.pone.0131102 methylation pattern associated with expressed genes. Transcriptional repressors and acti- Editor: Jason Glenn Knott, Michigan State University, vators were over-represented amongst genes whose associated CGIs were methylated or UNITED STATES unmethylated specifically in hESCs, respectively. Knockdown of candidate transcriptional Received: March 10, 2015 regulators (HMGA1, GLIS2, PFDN5) induced differentiation in hESCs, whereas ectopic Accepted: May 27, 2015 expression in fibroblasts modulated iPSC colony formation.
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • A Molecular and Genetic Analysis of Otosclerosis
    A molecular and genetic analysis of otosclerosis Joanna Lauren Ziff Submitted for the degree of PhD University College London January 2014 1 Declaration I, Joanna Ziff, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Where work has been conducted by other members of our laboratory, this has been indicated by an appropriate reference. 2 Abstract Otosclerosis is a common form of conductive hearing loss. It is characterised by abnormal bone remodelling within the otic capsule, leading to formation of sclerotic lesions of the temporal bone. Encroachment of these lesions on to the footplate of the stapes in the middle ear leads to stapes fixation and subsequent conductive hearing loss. The hereditary nature of otosclerosis has long been recognised due to its recurrence within families, but its genetic aetiology is yet to be characterised. Although many familial linkage studies and candidate gene association studies to investigate the genetic nature of otosclerosis have been performed in recent years, progress in identifying disease causing genes has been slow. This is largely due to the highly heterogeneous nature of this condition. The research presented in this thesis examines the molecular and genetic basis of otosclerosis using two next generation sequencing technologies; RNA-sequencing and Whole Exome Sequencing. RNA–sequencing has provided human stapes transcriptomes for healthy and diseased stapes, and in combination with pathway analysis has helped identify genes and molecular processes dysregulated in otosclerotic tissue. Whole Exome Sequencing has been employed to investigate rare variants that segregate with otosclerosis in affected families, and has been followed by a variant filtering strategy, which has prioritised genes found to be dysregulated during RNA-sequencing.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Structural and Functional Dissection of Reovirus Capsid Folding and Assembly by the Prefoldin-Tric/CCT Chaperone Network
    Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network Jonathan J. Knowltona,b,1, Daniel Gestautc,1, Boxue Mad,e,f,2, Gwen Taylora,g,2, Alpay Burak Sevenh,i, Alexander Leitnerj, Gregory J. Wilsonk, Sreejesh Shankerl, Nathan A. Yatesm, B. V. Venkataram Prasadl, Ruedi Aebersoldj,n, Wah Chiud,e,f, Judith Frydmanc,3, and Terence S. Dermodya,g,o,3 aDepartment of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224; bDepartment of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; cDepartment of Biology, Stanford University, Stanford, CA 94305; dDepartment of Bioengineering, Stanford University, Stanford, CA 94305; eDepartment of Microbiology and Immunology, Stanford University, Stanford, CA 94305; fDepartment of Photon Science, Stanford University, Stanford, CA 94305; gCenter for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224; hDepartment of Structural Biology, Stanford University, Stanford, CA 94305; iDepartment of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94305; jDepartment of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; kDepartment of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232; lVerna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; mDepartment of Cell Biology, University of Pittsburgh School of Medicine,
    [Show full text]
  • DIPPER, a Spatiotemporal Proteomics Atlas of Human Intervertebral Discs
    TOOLS AND RESOURCES DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics Vivian Tam1,2†, Peikai Chen1†‡, Anita Yee1, Nestor Solis3, Theo Klein3§, Mateusz Kudelko1, Rakesh Sharma4, Wilson CW Chan1,2,5, Christopher M Overall3, Lisbet Haglund6, Pak C Sham7, Kathryn Song Eng Cheah1, Danny Chan1,2* 1School of Biomedical Sciences, , The University of Hong Kong, Hong Kong; 2The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China; 3Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; 4Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong; 5Department of Orthopaedics Surgery and Traumatology, HKU-Shenzhen Hospital, Shenzhen, China; 6Department of Surgery, McGill University, Montreal, Canada; 7Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong Abstract The spatiotemporal proteome of the intervertebral disc (IVD) underpins its integrity *For correspondence: and function. We present DIPPER, a deep and comprehensive IVD proteomic resource comprising [email protected] 94 genome-wide profiles from 17 individuals. To begin with, protein modules defining key †These authors contributed directional trends spanning the lateral and anteroposterior axes were derived from high-resolution equally to this work spatial proteomes of intact young cadaveric lumbar IVDs. They revealed novel region-specific Present address: ‡Department profiles of regulatory activities
    [Show full text]
  • A Transcriptional Signature of Postmitotic Maintenance in Neural Tissues
    Neurobiology of Aging 74 (2019) 147e160 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Postmitotic cell longevityeassociated genes: a transcriptional signature of postmitotic maintenance in neural tissues Atahualpa Castillo-Morales a,b, Jimena Monzón-Sandoval a,b, Araxi O. Urrutia b,c,*, Humberto Gutiérrez a,** a School of Life Sciences, University of Lincoln, Lincoln, UK b Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK c Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico article info abstract Article history: Different cell types have different postmitotic maintenance requirements. Nerve cells, however, are Received 11 April 2018 unique in this respect as they need to survive and preserve their functional complexity for the entire Received in revised form 3 October 2018 lifetime of the organism, and failure at any level of their supporting mechanisms leads to a wide range of Accepted 11 October 2018 neurodegenerative conditions. Whether these differences across tissues arise from the activation of Available online 19 October 2018 distinct cell typeespecific maintenance mechanisms or the differential activation of a common molecular repertoire is not known. To identify the transcriptional signature of postmitotic cellular longevity (PMCL), Keywords: we compared whole-genome transcriptome data from human tissues ranging in longevity from 120 days Neural maintenance Cell longevity to over 70 years and found a set of 81 genes whose expression levels are closely associated with Transcriptional signature increased cell longevity. Using expression data from 10 independent sources, we found that these genes Functional genomics are more highly coexpressed in longer-living tissues and are enriched in specific biological processes and transcription factor targets compared with randomly selected gene samples.
    [Show full text]
  • Human Prefoldin Modulates Co-Transcriptional Pre-Mrna Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.14.150466; this version posted July 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. BIOLOGICAL SCIENCES: Biochemistry Human prefoldin modulates co-transcriptional pre-mRNA splicing Payán-Bravo L 1,2, Peñate X 1,2 *, Cases I 3, Pareja-Sánchez Y 1, Fontalva S 1,2, Odriozola Y 1,2, Lara E 1, Jimeno-González S 2,5, Suñé C 4, Reyes JC 5, Chávez S 1,2. 1 Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain. 2 Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain. 3 Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain. 4 Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" IPBLN-CSIC, PTS, Granada, Spain. 5 Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain. Correspondence: Sebastián Chávez, IBiS, campus HUVR, Avda. Manuel Siurot s/n, Sevilla, 41013, Spain. Phone: +34-955923127: e-mail: [email protected]. * Co- corresponding; [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.14.150466; this version posted July 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Prefoldin is a heterohexameric complex conserved from archaea to humans that plays a cochaperone role during the cotranslational folding of actin and tubulin monomers.
    [Show full text]
  • Research Article Sex Difference of Ribosome in Stroke-Induced Peripheral Immunosuppression by Integrated Bioinformatics Analysis
    Hindawi BioMed Research International Volume 2020, Article ID 3650935, 15 pages https://doi.org/10.1155/2020/3650935 Research Article Sex Difference of Ribosome in Stroke-Induced Peripheral Immunosuppression by Integrated Bioinformatics Analysis Jian-Qin Xie ,1,2,3 Ya-Peng Lu ,1,3 Hong-Li Sun ,1,3 Li-Na Gao ,2,3 Pei-Pei Song ,2,3 Zhi-Jun Feng ,3 and Chong-Ge You 2,3 1Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China 2Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China 3The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, China Correspondence should be addressed to Chong-Ge You; [email protected] Received 13 April 2020; Revised 8 October 2020; Accepted 18 November 2020; Published 3 December 2020 Academic Editor: Rudolf K. Braun Copyright © 2020 Jian-Qin Xie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ischemic stroke (IS) greatly threatens human health resulting in high mortality and substantial loss of function. Recent studies have shown that the outcome of IS has sex specific, but its mechanism is still unclear. This study is aimed at identifying the sexually dimorphic to peripheral immune response in IS progression, predicting potential prognostic biomarkers that can lead to sex- specific outcome, and revealing potential treatment targets. Gene expression dataset GSE37587, including 68 peripheral whole blood samples which were collected within 24 hours from known onset of symptom and again at 24-48 hours after onset (20 women and 14 men), was downloaded from the Gene Expression Omnibus (GEO) datasets.
    [Show full text]
  • Clinical Impact of Copy Number Variation Changes in Bladder Cancer Samples
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 901, 2021 Clinical impact of copy number variation changes in bladder cancer samples VICTORIA SPASOVA1, BORIS MLADENOV2, SIMEON RANGELOV3, ZORA HAMMOUDEH1, DESISLAVA NESHEVA1, DIMITAR SERBEZOV1, RADA STANEVA1,4, SAVINA HADJIDEKOVA1,4, MIHAIL GANEV1, LUBOMIR BALABANSKI1,5, RADOSLAVA VAZHAROVA5,6, CHAVDAR SLAVOV3, DRAGA TONCHEVA1 and OLGA ANTONOVA1 1Department of Medical Genetics, Medical University‑Sofia, 1431 Sofia;2 Department of Urology, UMBALSM N.I. Pirogov, 1606 Sofia; 3Department of Urology, Tsaritsa Yoanna University Hospital, 1527 Sofia; 4Medical Genetics Laboratory, Nadezhda Women's Health Hospital, 1373 Sofia; 5Medical Genetics Laboratory, GARH Malinov, 1680 Sofia; 6Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria Received November 30, 2019; Accepted February 18, 2021 DOI: 10.3892/etm.2021.10333 Abstract. The aim of the present study was to detect copy uroepithelial tumours may lay a foundation for implementing number variations (CNVs) related to tumour progression and molecular CNV profiling of bladder tumours as part of a metastasis of urothelial carcinoma through whole‑genome routine progression risk estimation strategy, thus expanding scanning. A total of 30 bladder cancer samples staged from the personalized therapeutic approach. pTa to pT4 were included in the study. DNA was extracted from freshly frozen tissue via standard phenol‑chloroform extraction Introduction and CNV analysis was performed on two alternative platforms (CytoChip Oligo aCGH, 4x44K and Infinium OncoArray‑500K The most successful approach to treating a disease has BeadChip; Illumina, Inc.). Data were analysed with BlueFuse always been etiological therapy. In the case of bladder Multi software and Karyostudio, respectively.
    [Show full text]
  • A Quantitative Chaperone Interaction Network Reveals the Architecture of Cellular Protein Homeostasis Pathways
    A Quantitative Chaperone Interaction Network Reveals the Architecture of Cellular Protein Homeostasis Pathways The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Taipale, Mikko et al. “A Quantitative Chaperone Interaction Network Reveals the Architecture of Cellular Protein Homeostasis Pathways.” Cell 158.2 (2014): 434–448. As Published http://dx.doi.org/10.1016/j.cell.2014.05.039 Publisher Elsevier Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/105723 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ NIH Public Access Author Manuscript Cell. Author manuscript; available in PMC 2015 July 17. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Cell. 2014 July 17; 158(2): 434–448. doi:10.1016/j.cell.2014.05.039. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways Mikko Taipale1, George Tucker2,3, Jian Peng2,3, Irina Krykbaeva1, Zhen-Yuan Lin4, Brett Larsen4, Hyungwon Choi5, Bonnie Berger2,3, Anne-Claude Gingras4,6, and Susan Lindquist1,7,8 1Whitehead Institute for Biomedical Research, Cambridge, MA 02114, USA 2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 4Centre for Systems
    [Show full text]