On the Additivity of Crossing Numbers

Total Page:16

File Type:pdf, Size:1020Kb

On the Additivity of Crossing Numbers ON THE ADDITIVITY OF CROSSING NUMBERS A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Science In Mathematics By Alicia Arrua 2015 SIGNATURE PAGE THESIS: ON THE ADDITIVITY OF CROSSING NUMBERS AUTHOR: Alicia Arrua DATE SUBMITTED: Spring 2015 Mathematics and Statistics Department Dr. Robin Wilson Thesis Committee Chair Mathematics & Statistics Dr. Greisy Winicki-Landman Mathematics & Statistics Dr. Berit Givens Mathematics & Statistics ii ACKNOWLEDGMENTS This thesis would not have been possible without the invaluable knowledge and guidance from Dr. Robin Wilson. His support throughout this entire experience has been amazing and incredibly helpful. I’d also like to thank Dr. Greisy Winicki- Landman and Dr. Berit Givens for being a part of my thesis committee and offering their support. I’d also like to thank my family for putting up with my late nights of work and motivating me when I needed it. Lastly, thank you to the wonderful friends I’ve made during my time at Cal Poly Pomona, their humor and encouragement aided me more than they know. iii ABSTRACT The additivity of crossing numbers over a composition of links has been an open problem for over one hundred years. It has been proved that the crossing number over alternating links is additive independently in 1987 by Louis Kauffman, Kunio Murasugi, and Morwen Thistlethwaite. Further, Yuanan Diao and Hermann Gru­ ber independently proved that the crossing number is additive over a composition of torus links. In order to investigate the additivity of crossing numbers over a composition of a different class of links, we introduce a tool called the deficiency of a link. When the deficiency is equal to 0, we are able to use a powerful result to prove that the crossing number is additive over a composition of links with de­ ficiency 0. Applying this result, we are able to focus on computing the deficiency of a class of links called Montesinos links, specifically alternating pretzel knots and non-alternating pretzel knots. iv Contents Acknowledgements iii Abstract iv List of Figures ix 1 Introduction 1 1.1 Historical Background ......................... 1 1.2 Knot Theory Background ....................... 3 1.3 Problem Statement ........................... 10 2 On Surfaces and Polynomials 11 2.1 Surfaces and Knots ........................... 11 2.2 Seifert Surfaces and Genus ....................... 14 2.3 Polynomials ............................... 23 3 Additivity of Crossing Numbers 30 3.1 Preliminaries .............................. 30 3.2 Alternating Knots ............................ 37 3.3 Torus Knots ............................... 41 v 4 Pretzel Knots 46 4.1 Tangles ................................. 46 4.2 Montesinos Links and Pretzel Knots . 48 4.3 Nonalternating Pretzel Links ...................... 55 4.4 Future Work ............................... 60 Bibiliography 61 vi List of Figures 1.1 Some examples of knots and links ................... 4 1.2 A projection ............................... 4 1.3 A diagram ................................ 4 1.4 Regular crossings ............................ 5 1.5 Nonregular Crossings .......................... 5 1.6 Type I Reidemeister moves ....................... 6 1.7 Type II Reidemeister moves ...................... 6 1.8 Type III Reidemeister moves ...................... 7 1.9 Perko pair ................................ 8 1.10 Examples of knots with orientation . 8 1.11 Composition of knots .......................... 9 1.12 Composite knot ............................. 9 2.1 Deformation from a sphere to a cube . 11 2.2 Surfaces with 1, 1, and 3 boundary components . 12 2.3 Possible intersections of triangles . 12 2.4 Sphere and torus ............................ 13 2.5 Assigning an orientation ........................ 15 2.6 Eliminating the crossings ........................ 15 vii 2.7 Two views of the Seifert circles produced . 15 2.8 Two views of the Seifert surface produced . 16 2.9 A band joining two Seifert circles ................... 16 2.10 Adding vertices, edges, and faces to a band . 16 2.11 Edges for each band .......................... 17 2.12 Creating a composite knot from K1 and K2 ............. 20 2.13 Removing a point of intersection between F and S ......... 21 2.14 Intersection loops on S ......................... 21 2.15 Surgery along disk D .......................... 22 2.16 +1 crossing ............................... 25 2.17 −1 crossing ............................... 25 2.18 Hopf link with orientation ....................... 26 2.19 Labeling the regions of the projection plane . 26 2.20 B-split and A-split ........................... 27 2.21 Trefoil knot with labeled crossings . 28 2.22 All states of the trefoil knot ...................... 28 3.1 2-bridge knots .............................. 31 3.2 A braid and its closure ......................... 32 3.3 A meridian curve and a longitude curve on a torus . 41 3.4 Two views of the trefoil knot embedded on a torus . 41 3.5 Standard representation D of T .................... 43 4.1 Example of a tangle ........................... 46 4.2 Another example of a tangle ...................... 46 4.3 The 0 tangle ............................... 47 viii 4.4 The 1 tangle .............................. 47 4.5 A Montesinos knot ........................... 49 4.6 A diagram of the knot Kn ....................... 50 4.7 Condition 1 ............................... 51 4.8 Condition 2 ............................... 51 4.9 A labeling of the trefoil knot ...................... 51 4.10 A labeling of the 74 knot ........................ 51 4.11 One possibility of ri ........................... 52 4.12 Another possibility of ri ........................ 52 4.13 The figure eight knot with relators . 52 4.14 A pretzel knot (3; 3; :::; 3; 2) with labelings from Sn ......... 54 3 4.15 K2 = (3; −3; 2) ............................. 56 3 4.16 Two views of the Seifert surface of K2 ................ 56 3 4.17 Kn = (3; −3; 3; :::; 3; 2)......................... 57 2k+1 4.18 Kn = (2k + 1; −(2k + 1); 2k + 1; ::: 2k + 1; 2) . 59 ix Chapter 1 Introduction 1.1 Historical Background Knot theory is a particularly interesting field of mathematics in which questions are easily stated and not so easily solved. One of the earliest known works came from Carl Friedrich Gauss whose notes involving a collection of knot drawings from 1794 were found and whose interest in the subject continued, later deriving the “Gauss Linking Number” in 1833. After some time, physicists and chemists also became interested in knot theory and in the 1860’s, Sir William Thomson (Lord Kelvin), an English physicist, attempted to explain the different types of matter by hypoth­ esizing that different knots would correspond to different elements. He did this as an attempt to combine two ideas which were prevalent in the scientific society: the idea that matter is composed of atoms and the idea that matter consisted of waves. It was after this that Scottish physicist Peter Guthrie Tait began tabulating knots in 1867 in order to classify knots. In 1885, he published tables of knots up to ten crossings. Independently, American mathematician Charles Newton Little also 1 began tabulating knots and in 1899 he published tables of nonalternating knots up to ten crossings and deduced that there were 43 such knots. However, in 1974, Kenneth Perko discovered that two of the knots in Little’s table were actually the same knot so there were really 42 nonalternating knots of ten crossings or less [1]. Right around the time that the tables were published, Thomson’s theories were shown to be incorrect. However, knot theory continued to be pursued as a math­ ematical field and Tait’s interest in knots also continued as he investigated the properties of reduced knot diagrams. As a consequence, he produced three impor­ tant conjectures which continue to be useful and will be stated in Chapter 2 [1]. He provided nonrigorous proofs for these conjectures and it wasn’t until the 1980’s that these were rigorously proven after the discovery of the Jones polynomial. The need to distinguish between knots led mathematicians to discover new in­ variants which could then be used in rigorous proofs. Of these invariants, Laurent polynomials are particularly interesting in that a unique Laurent polynomial of one variable can be computed from a projection of a knot, even if it is computed using different projections of the knot. There are several types of interrelated Laurent polynomials that can arise from a knot. American mathematician James Waddell Alexander II first produced a polynomial associated to knots and links in 1928 called the Alexander polynomial. This polynomial was the only known polynomial invariant until 1984 when a mathematician from New Zealand, Vaughan Jones, dis­ covered a new polynomial that is now known as the Jones polynomial. Within four months, a two-variable generalized Jones polynomial called the HOMFLY polyno­ mial was discovered by mathematicians Jim Hoste, Adrian Ocneau, Kenneth Millet, Peter J. Freyd, William B. R. Lickorish, and David N. Yetter and independently by J´ozef H. Przytycki and Pawell Traczyk. The Jones polynomial will be discussed 2 in further detail in Chapter 2. These polynomials, along with other invariants, allow us to examine and classify knots in order to discover and work with the properties which arise from each type of knot. More details related to the history of knot theory can be found in [1] and [12]. In the rest of this chapter,
Recommended publications
  • Hyperbolic Structures from Link Diagrams
    Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova, joint work with Morwen Thistlethwaite Louisiana State University/University of Tennessee Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 1/23 Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H.
    [Show full text]
  • Some Generalizations of Satoh's Tube
    SOME GENERALIZATIONS OF SATOH'S TUBE MAP BLAKE K. WINTER Abstract. Satoh has defined a map from virtual knots to ribbon surfaces embedded in S4. Herein, we generalize this map to virtual m-links, and use this to construct generalizations of welded and extended welded knots to higher dimensions. This also allows us to construct two new geometric pictures of virtual m-links, including 1-links. 1. Introduction In [13], Satoh defined a map from virtual link diagrams to ribbon surfaces knotted in S4 or R4. This map, which he called T ube, preserves the knot group and the knot quandle (although not the longitude). Furthermore, Satoh showed that if K =∼ K0 as virtual knots, T ube(K) is isotopic to T ube(K0). In fact, we can make a stronger statement: if K and K0 are equivalent under what Satoh called w- equivalence, then T ube(K) is isotopic to T ube(K0) via a stable equivalence of ribbon links without band slides. For virtual links, w-equivalence is the same as welded equivalence, explained below. In addition to virtual links, Satoh also defined virtual arc diagrams and defined the T ube map on such diagrams. On the other hand, in [15, 14], the notion of virtual knots was extended to arbitrary dimensions, building on the geometric description of virtual knots given by Kuperberg, [7]. It is therefore natural to ask whether Satoh's idea for the T ube map can be generalized into higher dimensions, as well as inquiring into a generalization of the virtual arc diagrams to higher dimensions.
    [Show full text]
  • A Knot-Vice's Guide to Untangling Knot Theory, Undergraduate
    A Knot-vice’s Guide to Untangling Knot Theory Rebecca Hardenbrook Department of Mathematics University of Utah Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 1 / 26 What is Not a Knot? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 2 / 26 What is a Knot? 2 A knot is an embedding of the circle in the Euclidean plane (R ). 3 Also defined as a closed, non-self-intersecting curve in R . 2 Represented by knot projections in R . Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 3 / 26 Why Knots? Late nineteenth century chemists and physicists believed that a substance known as aether existed throughout all of space. Could knots represent the elements? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 4 / 26 Why Knots? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 5 / 26 Why Knots? Unfortunately, no. Nevertheless, mathematicians continued to study knots! Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 6 / 26 Current Applications Natural knotting in DNA molecules (1980s). Credit: K. Kimura et al. (1999) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 7 / 26 Current Applications Chemical synthesis of knotted molecules – Dietrich-Buchecker and Sauvage (1988). Credit: J. Guo et al. (2010) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 8 / 26 Current Applications Use of lattice models, e.g. the Ising model (1925), and planar projection of knots to find a knot invariant via statistical mechanics. Credit: D. Chicherin, V.P.
    [Show full text]
  • Arxiv:2003.00512V2 [Math.GT] 19 Jun 2020 the Vertical Double of a Virtual Link, As Well As the More General Notion of a Stack for a Virtual Link
    A GEOMETRIC INVARIANT OF VIRTUAL n-LINKS BLAKE K. WINTER Abstract. For a virtual n-link K, we define a new virtual link VD(K), which is invariant under virtual equivalence of K. The Dehn space of VD(K), which we denote by DD(K), therefore has a homotopy type which is an invariant of K. We show that the quandle and even the fundamental group of this space are able to detect the virtual trefoil. We also consider applications to higher-dimensional virtual links. 1. Introduction Virtual links were introduced by Kauffman in [8], as a generalization of classical knot theory. They were given a geometric interpretation by Kuper- berg in [10]. Building on Kuperberg's ideas, virtual n-links were defined in [16]. Here, we define some new invariants for virtual links, and demonstrate their power by using them to distinguish the virtual trefoil from the unknot, which cannot be done using the ordinary group or quandle. Although these knots can be distinguished by means of other invariants, such as biquandles, there are two advantages to the approach used herein: first, our approach to defining these invariants is purely geometric, whereas the biquandle is en- tirely combinatorial. Being geometric, these invariants are easy to generalize to higher dimensions. Second, biquandles are rather complicated algebraic objects. Our invariants are spaces up to homotopy type, with their ordinary quandles and fundamental groups. These are somewhat simpler to work with than biquandles. The paper is organized as follows. We will briefly review the notion of a virtual link, then the notion of the Dehn space of a virtual link.
    [Show full text]
  • Knots: a Handout for Mathcircles
    Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot.
    [Show full text]
  • Hyperbolic Structures from Link Diagrams
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geometry and Topology Commons Recommended Citation Tsvietkova, Anastasiia, "Hyperbolic Structures from Link Diagrams. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1361 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Anastasiia Tsvietkova entitled "Hyperbolic Structures from Link Diagrams." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mathematics. Morwen B. Thistlethwaite, Major Professor We have read this dissertation and recommend its acceptance: Conrad P. Plaut, James Conant, Michael Berry Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Hyperbolic Structures from Link Diagrams A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Anastasiia Tsvietkova May 2012 Copyright ©2012 by Anastasiia Tsvietkova. All rights reserved. ii Acknowledgements I am deeply thankful to Morwen Thistlethwaite, whose thoughtful guidance and generous advice made this research possible.
    [Show full text]
  • Introduction to Vassiliev Knot Invariants First Draft. Comments
    Introduction to Vassiliev Knot Invariants First draft. Comments welcome. July 20, 2010 S. Chmutov S. Duzhin J. Mostovoy The Ohio State University, Mansfield Campus, 1680 Univer- sity Drive, Mansfield, OH 44906, USA E-mail address: [email protected] Steklov Institute of Mathematics, St. Petersburg Division, Fontanka 27, St. Petersburg, 191011, Russia E-mail address: [email protected] Departamento de Matematicas,´ CINVESTAV, Apartado Postal 14-740, C.P. 07000 Mexico,´ D.F. Mexico E-mail address: [email protected] Contents Preface 8 Part 1. Fundamentals Chapter 1. Knots and their relatives 15 1.1. Definitions and examples 15 § 1.2. Isotopy 16 § 1.3. Plane knot diagrams 19 § 1.4. Inverses and mirror images 21 § 1.5. Knot tables 23 § 1.6. Algebra of knots 25 § 1.7. Tangles, string links and braids 25 § 1.8. Variations 30 § Exercises 34 Chapter 2. Knot invariants 39 2.1. Definition and first examples 39 § 2.2. Linking number 40 § 2.3. Conway polynomial 43 § 2.4. Jones polynomial 45 § 2.5. Algebra of knot invariants 47 § 2.6. Quantum invariants 47 § 2.7. Two-variable link polynomials 55 § Exercises 62 3 4 Contents Chapter 3. Finite type invariants 69 3.1. Definition of Vassiliev invariants 69 § 3.2. Algebra of Vassiliev invariants 72 § 3.3. Vassiliev invariants of degrees 0, 1 and 2 76 § 3.4. Chord diagrams 78 § 3.5. Invariants of framed knots 80 § 3.6. Classical knot polynomials as Vassiliev invariants 82 § 3.7. Actuality tables 88 § 3.8. Vassiliev invariants of tangles 91 § Exercises 93 Chapter 4.
    [Show full text]
  • Electricity Demand Evolution Driven by Storm Motivated Population
    aphy & N r at og u e ra G l Allen et al., J Geogr Nat Disast 2014, 4:2 f D o i s l a Journal of a s DOI: 10.4172/2167-0587.1000126 n t r e u r s o J ISSN: 2167-0587 Geography & Natural Disasters ResearchResearch Article Article OpenOpen Access Access Electricity Demand Evolution Driven by Storm Motivated Population Movement Melissa R Allen1,2, Steven J Fernandez1,2*, Joshua S Fu1,2 and Kimberly A Walker3 1University of Tennessee, Knoxville, Oak Ridge, USA 2Oak Ridge National Laboratory, Oak Ridge, USA 3Indiana University, Oak Ridge, USA Abstract Managing the risks to reliable delivery of energy to vulnerable populations posed by local effects of climate change on energy production and delivery is a challenge for communities worldwide. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. These moves result in changing geographic patterns of demand for infrastructure services. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these new electric power topologies. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand.
    [Show full text]
  • Milnor Invariants of String Links, Trivalent Trees, and Configuration Space Integrals
    MILNOR INVARIANTS OF STRING LINKS, TRIVALENT TREES, AND CONFIGURATION SPACE INTEGRALS ROBIN KOYTCHEFF AND ISMAR VOLIC´ Abstract. We study configuration space integral formulas for Milnor's homotopy link invari- ants, showing that they are in correspondence with certain linear combinations of trivalent trees. Our proof is essentially a combinatorial analysis of a certain space of trivalent \homotopy link diagrams" which corresponds to all finite type homotopy link invariants via configuration space integrals. An important ingredient is the fact that configuration space integrals take the shuffle product of diagrams to the product of invariants. We ultimately deduce a partial recipe for writing explicit integral formulas for products of Milnor invariants from trivalent forests. We also obtain cohomology classes in spaces of link maps from the same data. Contents 1. Introduction 2 1.1. Statement of main results 3 1.2. Organization of the paper 4 1.3. Acknowledgment 4 2. Background 4 2.1. Homotopy long links 4 2.2. Finite type invariants of homotopy long links 5 2.3. Trivalent diagrams 5 2.4. The cochain complex of diagrams 7 2.5. Configuration space integrals 10 2.6. Milnor's link homotopy invariants 11 3. Examples in low degrees 12 3.1. The pairwise linking number 12 3.2. The triple linking number 12 3.3. The \quadruple linking numbers" 14 4. Main Results 14 4.1. The shuffle product and filtrations of weight systems for finite type link invariants 14 4.2. Specializing to homotopy weight systems 17 4.3. Filtering homotopy link invariants 18 4.4. The filtrations and the canonical map 18 4.5.
    [Show full text]
  • A New Technique for the Link Slice Problem
    Invent. math. 80, 453 465 (1985) /?/ven~lOnSS mathematicae Springer-Verlag 1985 A new technique for the link slice problem Michael H. Freedman* University of California, San Diego, La Jolla, CA 92093, USA The conjectures that the 4-dimensional surgery theorem and 5-dimensional s-cobordism theorem hold without fundamental group restriction in the to- pological category are equivalent to assertions that certain "atomic" links are slice. This has been reported in [CF, F2, F4 and FQ]. The slices must be topologically flat and obey some side conditions. For surgery the condition is: ~a(S 3- ~ slice)--, rq (B 4- slice) must be an epimorphism, i.e., the slice should be "homotopically ribbon"; for the s-cobordism theorem the slice restricted to a certain trivial sublink must be standard. There is some choice about what the atomic links are; the current favorites are built from the simple "Hopf link" by a great deal of Bing doubling and just a little Whitehead doubling. A link typical of those atomic for surgery is illustrated in Fig. 1. (Links atomic for both s-cobordism and surgery are slightly less symmetrical.) There has been considerable interplay between the link theory and the equivalent abstract questions. The link theory has been of two sorts: algebraic invariants of finite links and the limiting geometry of infinitely iterated links. Our object here is to solve a class of free-group surgery problems, specifically, to construct certain slices for the class of links ~ where D(L)eCg if and only if D(L) is an untwisted Whitehead double of a boundary link L.
    [Show full text]
  • Textile Research Journal
    Textile Research Journal http://trj.sagepub.com A Topological Study of Textile Structures. Part II: Topological Invariants in Application to Textile Structures S. Grishanov, V. Meshkov and A. Omelchenko Textile Research Journal 2009; 79; 822 DOI: 10.1177/0040517508096221 The online version of this article can be found at: http://trj.sagepub.com/cgi/content/abstract/79/9/822 Published by: http://www.sagepublications.com Additional services and information for Textile Research Journal can be found at: Email Alerts: http://trj.sagepub.com/cgi/alerts Subscriptions: http://trj.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.co.uk/journalsPermissions.nav Citations http://trj.sagepub.com/cgi/content/refs/79/9/822 Downloaded from http://trj.sagepub.com by Andrew Ranicki on October 11, 2009 Textile Research Journal Article A Topological Study of Textile Structures. Part II: Topological Invariants in Application to Textile Structures S. Grishanov1 Abstract This paper is the second in the series TEAM Research Group, De Montfort University, Leicester, on topological classification of textile structures. UK The classification problem can be resolved with the aid of invariants used in knot theory for classi- V. Meshkov and A. Omelchenko fication of knots and links. Various numerical and St Petersburg State Polytechnical University, St polynomial invariants are considered in application Petersburg, Russia to textile structures. A new Kauffman-type polyno- mial invariant is constructed for doubly-periodic textile structures. The values of the numerical and polynomial invariants are calculated for some sim- plest doubly-periodic interlaced structures and for some woven and knitted textiles.
    [Show full text]
  • A Mathematical Analysis of Knotting and Linking in Leonardo Da Vinci's
    November 3, 2014 Journal of Mathematics and the Arts Leonardov4 To appear in the Journal of Mathematics and the Arts Vol. 00, No. 00, Month 20XX, 1–31 A Mathematical Analysis of Knotting and Linking in Leonardo da Vinci’s Cartelle of the Accademia Vinciana Jessica Hoya and Kenneth C. Millettb Department of Mathematics, University of California, Santa Barbara, CA 93106, USA (submitted November 2014) Images of knotting and linking are found in many of the drawings and paintings of Leonardo da Vinci, but nowhere as powerfully as in the six engravings known as the cartelle of the Accademia Vinciana. We give a mathematical analysis of the complex characteristics of the knotting and linking found therein, the symmetry these structures embody, the application of topological measures to quantify some aspects of these configurations, a comparison of the complexity of each of the engravings, a discussion of the anomalies found in them, and a comparison with the forms of knotting and linking found in the engravings with those found in a number of Leonardo’s paintings. Keywords: Leonardo da Vinci; engravings; knotting; linking; geometry; symmetry; dihedral group; alternating link; Accademia Vinciana AMS Subject Classification:00A66;20F99;57M25;57M60 1. Introduction In addition to his roughly fifteen celebrated paintings and his many journals and notes of widely ranging explorations, Leonardo da Vinci is credited with the creation of six intricate designs representing entangled loops, for example Figure 1, in the 1490’s. Originally constructed as copperplate engravings, these designs were attributed to Leonardo and ‘known as the cartelle of the Accademia Vinciana’ [1].
    [Show full text]